Landscape Characteristics in Relation to Ecosystem Services Supply: The Case of a Mediterranean Forest on the Island of Cyprus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mapping Land Cover and Ecosystem Services Supply
2.3. Landscape Characteristics That Contribute to ES Supply
3. Results
3.1. Distribution of LULC and ES Supply
3.2. Contributing Landscape Characteristics to ES Supply
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Vegetation Index | Formula |
---|---|
Normalized Differencing Vegetation Index (NDVI) | |
Modified Soil-Adjusted Vegetation Index (EVI) | |
Normalized Differencing Moisture Index (NDMI) |
HDNV | MDNV | LDNV | OR | AA | Total | UA | |
---|---|---|---|---|---|---|---|
HDNV | 32 | 3 | 0 | 0 | 0 | 35 | 0.91 |
MDNV | 3 | 31 | 1 | 0 | 1 | 36 | 0.86 |
LDNV | 0 | 1 | 31 | 1 | 4 | 33 | 0.94 |
OR | 0 | 0 | 2 | 34 | 2 | 36 | 0.94 |
AA | 0 | 1 | 2 | 0 | 28 | 31 | 0.81 |
Total | 35 | 35 | 35 | 35 | 35 | 156 | |
PA | 0.91 | 0.89 | 0.89 | 0.97 | 0.80 | ||
OA | 0.91 | ||||||
Kappa | 0.89 |
50 m | 250 m | 500 m | ||||
---|---|---|---|---|---|---|
ntrees | R2 (OOB) | R2 (NOT OOB) | R2 (OOB) | R2 (NOT OOB) | R2 (OOB) | R2 (NOT OOB) |
100 | 83.43% | 92.86% | 86.97% | 95.42% | 86.99% | 96.84% |
200 | 83.88% | 92.88% | 87.24% | 95.53% | 87.09% | 97.11% |
300 | 84.04% | 92.92% | 87.38% | 95.69% | 87.28% | 97.26% |
400 | 84.18% | 93.16% | 87.45% | 95.78% | 87.52% | 97.49% |
500 | 86.64% | 93.45% | 87.42% | 95.74% | 87.64% | 97.56% |
600 | 86.47% | 93.34% | 87.37% | 95.67% | 87.63% | 97.51% |
700 | 86.42% | 93.12% | 87.26% | 95.53% | 87.56% | 97.42% |
800 | 85.64% | 92.83% | 87.14% | 95.41% | 87.37% | 97.36% |
900 | 85.51% | 92.74% | 87.01% | 95.39% | 87.09% | 97.17% |
1000 | 84.98% | 92.68% | 86.92% | 95.22% | 87.00% | 97.05% |
Min | Max | Mean | SD | ||
---|---|---|---|---|---|
50 | Cohesion_HDNV | 0.00 | 1.57 | 0.27 | 0.24 |
MESH_HDNV | 0.00 | 1.46 | 0.24 | 0.20 | |
250 | Contagion | 0.02 | 0.49 | 0.15 | 0.07 |
ED_HDNV | 0.00 | 0.23 | 0.07 | 0.04 | |
500 | LPI_HDNV | 0.00 | 0.10 | 0.02 | 0.02 |
Cohesion_HDNV | 0.00 | 0.09 | 0.02 | 0.02 |
References
- Turner, M.G. Landscape Ecology: What Is the State of the Science? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 319–344. [Google Scholar] [CrossRef]
- Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L. The Impact of Land Use/Land Cover Changes on Land Degradation Dynamics: A Mediterranean Case Study. Environ. Manag. 2012, 49, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Geri, F.; Amici, V.; Rocchini, D. Human Activity Impact on the Heterogeneity of a Mediterranean Landscape. Appl. Geogr. 2010, 30, 370–379. [Google Scholar] [CrossRef]
- Kefalas, G.; Kalogirou, S.; Poirazidis, K.; Lorilla, R.S. Landscape Transition in Mediterranean Islands: The Case of Ionian Islands, Greece 1985–2015. Landsc. Urban Plan. 2019, 191, 103641. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Poirazidis, K.; Detsis, V.; Kalogirou, S.; Chalkias, C. Socio-Ecological Determinants of Multiple Ecosystem Services on the Mediterranean Landscapes of the Ionian Islands (Greece). Ecol. Model. 2020, 422, 108994. [Google Scholar] [CrossRef]
- Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Velasco-Muñoz, J.F. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, M.; Schaap, B. Forest Ecosystem Services: Background Analytical Study. Global Forest Goals. United Nations Forum on Forests. 2018. Available online: https://www.un.org/esa/forests/wp-content/uploads/2018/05/UNFF13_BkgdStudy_ForestsEcoServices.pdf (accessed on 18 June 2023).
- Gounaridis, D.; Newell, J.P.; Goodspeed, R. The Impact of Urban Sprawl on Forest Landscapes in Southeast Michigan, 1985–2015. Landsc. Ecol. 2020, 35, 1975–1993. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Poirazidis, K.; Kalogirou, S.; Detsis, V.; Martinis, A. Assessment of the Spatial Dynamics and Interactions among Multiple Ecosystem Services to Promote Effective Policy Making across Mediterranean Island Landscapes. Sustainability 2018, 10, 3285. [Google Scholar] [CrossRef] [Green Version]
- Vacchiano, G.; Garbarino, M.; Lingua, E.; Motta, R. Forest Dynamics and Disturbance Regimes in the Italian Apennines. For. Ecol. Manag. 2017, 388, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Xofis, P.; Poirazidis, K. Combining Different Spatio-Temporal Resolution Images to Depict Landscape Dynamics and Guide Wildlife Management. Biol. Conserv. 2018, 218, 10–17. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the Use of Landscape Spatial Metrics as Landscape Indicators: A Review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Almeida, D.; Rocha, J.; Neto, C.; Arsénio, P. Landscape Metrics Applied to Formerly Reclaimed Saltmarshes: A Tool to Evaluate Ecosystem Services? Estuar. Coast. Shelf Sci. 2016, 181, 100–113. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The Effects of Landscape Patterns on Ecosystem Services: Meta-Analyses of Landscape Services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking Ecosystem Services, Urban Form and Green Space Configuration Using Multivariate Landscape Metric Analysis. Landsc. Ecol. 2018, 33, 557–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syrbe, R.-U.; Walz, U. Spatial Indicators for the Assessment of Ecosystem Services: Providing, Benefiting and Connecting Areas and Landscape Metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Termorshuizen, J.W.; Opdam, P. Landscape Services as a Bridge between Landscape Ecology and Sustainable Development. Landsc. Ecol. 2009, 24, 1037–1052. [Google Scholar] [CrossRef]
- Bastian, O.; Grunewald, K.; Syrbe, R.-U.; Walz, U.; Wende, W. Landscape Services: The Concept and Its Practical Relevance. Landsc. Ecol. 2014, 29, 1463–1479. [Google Scholar] [CrossRef]
- Frank, S.; Fürst, C.; Koschke, L.; Makeschin, F. A Contribution towards a Transfer of the Ecosystem Service Concept to Landscape Planning Using Landscape Metrics. Ecol. Indic. 2012, 21, 30–38. [Google Scholar] [CrossRef]
- Hodder, K.H.; Newton, A.C.; Cantarello, E.; Perrella, L. Does Landscape-Scale Conservation Management Enhance the Provision of Ecosystem Services? Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 71–83. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing Landscape Fragmentation’s Effects on Ecosystem Services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.G.; Donato, D.C.; Romme, W.H. Consequences of Spatial Heterogeneity for Ecosystem Services in Changing Forest Landscapes: Priorities for Future Research. Landsc. Ecol. 2013, 28, 1081–1097. [Google Scholar] [CrossRef]
- Braimoh, A.K. Random and Systematic Land-Cover Transitions in Northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Adler, K.; Jedicke, E. Landscape Metrics as Indicators of Avian Community Structures—A State of the Art Review. Ecol. Indic. 2022, 145, 109575. [Google Scholar] [CrossRef]
- Curd, A.; Chevalier, M.; Vasquez, M.; Boyé, A.; Firth, L.B.; Marzloff, M.P.; Bricheno, L.M.; Burrows, M.T.; Bush, L.E.; Cordier, C.; et al. Applying Landscape Metrics to Species Distribution Model Predictions to Characterize Internal Range Structure and Associated Changes. Glob. Chang. Biol. 2023, 29, 631–647. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.; Poirazidis, K.; Wrbka, T. Towards a Core Set of Landscape Metrics for Biodiversity Assessments: A Case Study from Dadia National Park, Greece. Ecol. Indic. 2008, 8, 502–514. [Google Scholar] [CrossRef]
- Li, Z.; Han, H.; You, H.; Cheng, X.; Wang, T. Effects of Local Characteristics and Landscape Patterns on Plant Richness: A Multi-Scale Investigation of Multiple Dispersal Traits. Ecol. Indic. 2020, 117, 106584. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. In General Technical Report. PNW-GTR-351; US Department of Agriculture, Forest Service: Portland, OR, USA, 1995. [Google Scholar]
- Riitters, K.H.; O’Neill, R.V.; Hunsaker, C.T.; Wickham, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A Factor Analysis of Landscape Pattern and Structure Metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Botequilha Leitão, A.; Ahern, J. Applying Landscape Ecological Concepts and Metrics in Sustainable Landscape Planning. Landsc. Urban Plan. 2002, 59, 65–93. [Google Scholar] [CrossRef]
- Lechner, A.M.; Reinke, K.J.; Wang, Y.; Bastin, L. Interactions between Landcover Pattern and Geospatial Processing Methods: Effects on Landscape Metrics and Classification Accuracy. Ecol. Complex. 2013, 15, 71–82. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Díaz-Varela, E.R.; Álvarez-Álvarez, P. Analysis of Spatial Scales for Ecosystem Services: Application of the Lacunarity Concept at Landscape Level in Galicia (NW Spain). Ecol. Indic. 2014, 36, 495–507. [Google Scholar] [CrossRef]
- Plexida, S.G.; Sfougaris, A.I.; Ispikoudis, I.P.; Papanastasis, V.P. Selecting Landscape Metrics as Indicators of Spatial Heterogeneity—A Comparison among Greek Landscapes. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 26–35. [Google Scholar] [CrossRef]
- Schindler, S.; von Wehrden, H.; Poirazidis, K.; Hochachka, W.M.; Wrbka, T.; Kati, V. Performance of Methods to Select Landscape Metrics for Modelling Species Richness. Ecol. Model. 2015, 295, 107–112. [Google Scholar] [CrossRef]
- Chen, A.; Yao, L.; Sun, R.; Chen, L. How Many Metrics Are Required to Identify the Effects of the Landscape Pattern on Land Surface Temperature? Ecol. Indic. 2014, 45, 424–433. [Google Scholar] [CrossRef]
- Stupariu, M.-S.; Cushman, S.A.; Pleşoianu, A.-I.; Pătru-Stupariu, I.; Fürst, C. Machine Learning in Landscape Ecological Analysis: A Review of Recent Approaches. Landsc. Ecol. 2022, 37, 1227–1250. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Aburas, M.M.; Ahamad, M.S.S.; Omar, N.Q. Spatio-Temporal Simulation and Prediction of Land-Use Change Using Conventional and Machine Learning Models: A Review. Environ. Monit. Assess. 2019, 191, 205. [Google Scholar] [CrossRef]
- Nikparvar, B.; Thill, J.-C. Machine Learning of Spatial Data. ISPRS Int. J. Geo-Inf. 2021, 10, 600. [Google Scholar] [CrossRef]
- Scowen, M.; Athanasiadis, I.N.; Bullock, J.M.; Eigenbrod, F.; Willcock, S. The Current and Future Uses of Machine Learning in Ecosystem Service Research. Sci. Total Environ. 2021, 799, 149263. [Google Scholar] [CrossRef]
- Willcock, S.; Martínez-López, J.; Hooftman, D.A.P.; Bagstad, K.J.; Balbi, S.; Marzo, A.; Prato, C.; Sciandrello, S.; Signorello, G.; Voigt, B.; et al. Machine Learning for Ecosystem Services. Ecosyst. Serv. 2018, 33, 165–174. [Google Scholar] [CrossRef]
- Humphries, G.; Magness, D.R.; Huettmann, F. (Eds.) Machine Learning for Ecology and Sustainable Natural Resource Management; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-96976-3. [Google Scholar]
- Lucas, T.C.D. A Translucent Box: Interpretable Machine Learning in Ecology. Ecol. Monogr. 2020, 90, e01422. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, K.; Bagheri, M.; Burken, J.G.; Gu, A.; Li, B.; Ma, X.; Marrone, B.L.; Ren, Z.J.; Schrier, J.; et al. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environ. Sci. Technol. 2021, 55, 12741–12754. [Google Scholar] [CrossRef] [PubMed]
- Thessen, A. Adoption of Machine Learning Techniques in Ecology and Earth Science. One Ecosyst. 2016, 1, e8621. [Google Scholar] [CrossRef] [Green Version]
- Sarica, A.; Cerasa, A.; Quattrone, A. Random Forest Algorithm for the Classification of Neuroimaging Data in Alzheimer’s Disease: A Systematic Review. Front. Aging Neurosci. 2017, 9, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Charlton Geographically Weighted Regression: The Analysis of Spatially Varying Relationships | Wiley. Available online: https://www.wiley.com/en-us/Geographically+Weighted+Regression%3A+The+Analysis+of+Spatially+Varying+Relationships+-p-9780471496168 (accessed on 9 February 2023).
- Georganos, S.; Grippa, T.; Niang Gadiaga, A.; Linard, C.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S. Geographical Random Forests: A Spatial Extension of the Random Forest Algorithm to Address Spatial Heterogeneity in Remote Sensing and Population Modelling. Geocarto Int. 2021, 36, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Kalogirou, S. A Forest of Forests: A Spatially Weighted and Computationally Efficient Formulation of Geographical Random Forests. ISPRS Int. J. Geo-Inf. 2022, 11, 471. [Google Scholar] [CrossRef]
- Grekousis, G.; Feng, Z.; Marakakis, I.; Lu, Y.; Wang, R. Ranking the Importance of Demographic, Socioeconomic, and Underlying Health Factors on US COVID-19 Deaths: A Geographical Random Forest Approach. Health Place 2022, 74, 102744. [Google Scholar] [CrossRef]
- Quevedo, R.P.; Maciel, D.A.; Uehara, T.D.T.; Vojtek, M.; Rennó, C.D.; Pradhan, B.; Vojteková, J.; Pham, Q.B. Consideration of Spatial Heterogeneity in Landslide Susceptibility Mapping Using Geographical Random Forest Model. Geocarto Int. 2021, 37, 8190–8213. [Google Scholar] [CrossRef]
- Santos, F.; Graw, V.; Bonilla, S. A Geographically Weighted Random Forest Approach for Evaluate Forest Change Drivers in the Northern Ecuadorian Amazon. PLoS ONE 2019, 14, e0226224. [Google Scholar] [CrossRef]
- Khan, S.N.; Li, D.; Maimaitijiang, M. A Geographically Weighted Random Forest Approach to Predict Corn Yield in the US Corn Belt. Remote Sens. 2022, 14, 2843. [Google Scholar] [CrossRef]
- Kountouris, P.; Kousiappa, I.; Papasavva, T.; Christopoulos, G.; Pavlou, E.; Petrou, M.; Feleki, X.; Karitzie, E.; Phylactides, M.; Fanis, P.; et al. The Molecular Spectrum and Distribution of Haemoglobinopathies in Cyprus: A 20-Year Retrospective Study. Sci. Rep. 2016, 6, 26371. [Google Scholar] [CrossRef] [Green Version]
- The Geology of Cyprus—Cultural Foundation. Available online: https://www.boccf.org/about/projects/The-Geology-of-Cyprus/ (accessed on 21 February 2023).
- Kefalas, G.; Poirazidis, K.; Xofis, P.; Kalogirou, S. Mapping and Understanding the Dynamics of Landscape Changes on Heterogeneous Mediterranean Islands with the Use of OBIA: The Case of Ionian Region, Greece. Sustainability 2018, 10, 2986. [Google Scholar] [CrossRef] [Green Version]
- Haines-Young, R.; Potschin, M. Guidance on the Application of the Revised Structure. 2018. Available online: https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (accessed on 18 June 2023).
- Olson’s Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product (Tables 1–4). Available online: https://cdiac.ess-dive.lbl.gov/epubs/ndp/ndp017/table_b.html#table4 (accessed on 8 February 2023).
- ASTER Global Digital Elevation Map. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 8 February 2023).
- ESDAC—European Commission. Available online: https://esdac.jrc.ec.europa.eu/ (accessed on 8 February 2023).
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and Trade-Offs between Ecosystem Service Supply, Biodiversity, and Habitat Conservation Status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Scholes, R.J.; Agard, J.; Archer, E.; Arneth, A.; Bai, X.; Barnes, D.; Burrows, M.; Chan, L.; Cheung, W.L.; et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity and Climate Change. Available online: https://zenodo.org/record/5101125 (accessed on 15 December 2022).
- Ciais, P.; Schelhaas, M.J.; Zaehle, S.; Piao, S.L.; Cescatti, A.; Liski, J.; Luyssaert, S.; Le-Maire, G.; Schulze, E.-D.; Bouriaud, O.; et al. Carbon Accumulation in European Forests. Nat. Geosci. 2008, 1, 425–429. [Google Scholar] [CrossRef]
- Guerra, C.A.; Maes, J.; Geijzendorffer, I.; Metzger, M.J. An Assessment of Soil Erosion Prevention by Vegetation in Mediterranean Europe: Current Trends of Ecosystem Service Provision. Ecol. Indic. 2016, 60, 213–222. [Google Scholar] [CrossRef]
- Benito-Calvo, A.; Pérez-González, A.; Magri, O.; Meza, P. Assessing Regional Geodiversity: The Iberian Peninsula. Earth Surf. Process. Landf. 2009, 34, 1433–1445. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide Susceptibility Estimation by Random Forests Technique: Sensitivity and Scaling Issues. Nat. Hazards Earth Syst. Sci. 2013, 13, 2815–2831. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Yan, J.; McClure, S. Distribution of the Environmental and Socioeconomic Risk Factors on COVID-19 Death Rate across Continental USA: A Spatial Nonlinear Analysis. Environ. Sci. Pollut. Res. 2021, 28, 6587–6599. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Kalogirou, S. SPATIAL ANALYSIS; Hellenic Academic Libraries Link: Athens, Greece, 2015; ISBN 978-960-603-285-1. [Google Scholar]
- Propastin, P.A. Spatial Non-Stationarity and Scale-Dependency of Prediction Accuracy in the Remote Estimation of LAI over a Tropical Rainforest in Sulawesi, Indonesia. Remote Sens. Environ. 2009, 113, 2234–2242. [Google Scholar] [CrossRef]
- Kalogirou, S.; Georganos, S. R Package: SpatialML. R Cran. 2022. Available online: https://cran.r-project.org/web/packages/SpatialML/index.html (accessed on 20 January 2023).
- Roger, B.; Tim, K.; Barry, R.; Edzer, P.; Michael, S.; Robert, H.; Daniel, B.; Even, R.; Frank, W.; Jeroen, O.; et al. R Package: Rgdal. R Cran 2023. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 20 January 2023).
- Gábor, C.; Hadley, W.; Kirill, M. R Package: Cli. R Cran 2023. Available online: https://cran.r-project.org/web/packages/cli/index.html (accessed on 1 April 2023).
- Max, K.; Jed, W.; Steve, W.; Andre, W.; Chris, K.; Allan, E.; Tony, C.; Zachary, M.; Brenton, K.; Michael, B.; et al. R Package: Carret. R Cran 2023. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 1 April 2023).
- Morán-Ordóñez, A.; Ramsauer, J.; Coll, L.; Brotons, L.; Ameztegui, A. Ecosystem Services Provision by Mediterranean Forests Will Be Compromised above 2 °C Warming. Glob. Chang. Biol. 2021, 27, 4210–4222. [Google Scholar] [CrossRef] [PubMed]
- Lorilla, R.S.; Kalogirou, S.; Poirazidis, K.; Kefalas, G. Identifying Spatial Mismatches between the Supply and Demand of Ecosystem Services to Achieve a Sustainable Management Regime in the Ionian Islands (Western Greece). Land Use Policy 2019, 88, 104171. [Google Scholar] [CrossRef]
- Galidaki, G.; Gitas, I. Mediterranean Forest Species Mapping Using Classification of Hyperion Imagery. Geocarto Int. 2015, 30, 48–61. [Google Scholar] [CrossRef]
- Xofis, P.; Buckley, P.G.; Takos, I.; Mitchley, J. Long Term Post-Fire Vegetation Dynamics in North-East Mediterranean Ecosystems. The Case of Mount Athos Greece. Fire 2021, 4, 92. [Google Scholar] [CrossRef]
- Médail, F. The Specific Vulnerability of Plant Biodiversity and Vegetation on Mediterranean Islands in the Face of Global Change. Reg. Environ. Chang. 2017, 17, 1775–1790. [Google Scholar] [CrossRef] [Green Version]
- Lorilla, R.S.; Kefalas, G.; Christou, A.K.; Poirazidis, K.; Homer Eliades, N.-G. Enhancing the Conservation Status and Resilience of a Narrowly Distributed Forest: A Challenge to Effectively Support Ecosystem Services in Practice. J. Nat. Conserv. 2023, 73, 126414. [Google Scholar] [CrossRef]
- Petrou, P.; Milios, E. Establishment and Survival of Pinus Brutia Ten. Seedlings over the First Growing Season in Abandoned Fields in Central Cyprus. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2012, 146, 522–533. [Google Scholar] [CrossRef]
- Petrou, P.; Milios, E. Investigation of the Factors Affecting Artificial Seed Sowing Success and Seedling Survival in Pinus Brutia Natural Stands in Middle Elevations of Central Cyprus. Forests 2020, 11, 1349. [Google Scholar] [CrossRef]
- Reyers, B.; O’Farrell, P.J.; Cowling, R.M.; Egoh, B.N.; Le Maitre, D.C.; Vlok, J.H.J. Ecosystem Services, Land-Cover Change, and Stakeholders: Finding a Sustainable Foothold for a Semiarid Biodiversity Hotspot. Ecol. Soc. 2009, 14, 38. [Google Scholar] [CrossRef] [Green Version]
- De Valck, J.; Landuyt, D.; Broekx, S.; Liekens, I.; De Nocker, L.; Vranken, L. Outdoor Recreation in Various Landscapes: Which Site Characteristics Really Matter? Land Use Policy 2017, 65, 186–197. [Google Scholar] [CrossRef]
- Queiroz, C.; Meacham, M.; Richter, K.; Norström, A.V.; Andersson, E.; Norberg, J.; Peterson, G. Mapping Bundles of Ecosystem Services Reveals Distinct Types of Multifunctionality within a Swedish Landscape. Ambio 2015, 44 (Suppl. S1), S89–S101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yapp, G.; Walker, J.; Thackway, R. Linking Vegetation Type and Condition to Ecosystem Goods and Services. Ecol. Complex. 2010, 7, 292–301. [Google Scholar] [CrossRef]
ES Section | Ecosystem Service | Indicator/Proxy | Data Source |
---|---|---|---|
Provisioning | Materials from timber (ΜΤ) | Presence of forest and agroforest land | 1 |
Regulating and Maintenance | Climate regulation (CR) | Below and above ground carbon storage | 1 & 2 |
Erosion protection (EP) | Soil erosion prevention | 1, 3, 4, & 5 | |
Cultural | Recreation (RC) | Recreation potential | 1, 3, 6, 7 |
Part A | Part B | |||
---|---|---|---|---|
LULC | Area (ha) | % | ES | Mean Value |
HDNV | 7571.91 | 24.22 | MT | 0.48 |
MDNV | 12,973.78 | 41.50 | EP | 0.55 |
LDNV | 7824.86 | 25.03 | CR | 0.63 |
OR | 1252.06 | 4.01 | RC | 0.28 |
AA | 1639.63 | 5.24 | ||
TOTAL | 31,262.23 |
RF Model | GRF Model | |||
---|---|---|---|---|
Mean Total ES Supply | Mean Total ES Supply | |||
R2 (OOB) | R2 (Not OOB) | R2 (OOB) | R2 (Not OOB) | |
MSE | MSE | MSE | MSE | |
50 m | 86.64% | 93.45 | 87.63% | 98.71 |
0.01 | 0.01 | 0.01 | 0.00 | |
250 m | 87.45% | 95.78% | 87.84% | 98.85% |
0.02 | 0.0. | 0.01 | 0.00 | |
500 m | 87.64% | 97.56% | 88.98% | 99.58% |
0.02 | 0.01 | 0.01 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kefalas, G.; Lorilla, R.S.; Xofis, P.; Poirazidis, K.; Eliades, N.-G.H. Landscape Characteristics in Relation to Ecosystem Services Supply: The Case of a Mediterranean Forest on the Island of Cyprus. Forests 2023, 14, 1286. https://doi.org/10.3390/f14071286
Kefalas G, Lorilla RS, Xofis P, Poirazidis K, Eliades N-GH. Landscape Characteristics in Relation to Ecosystem Services Supply: The Case of a Mediterranean Forest on the Island of Cyprus. Forests. 2023; 14(7):1286. https://doi.org/10.3390/f14071286
Chicago/Turabian StyleKefalas, George, Roxanne Suzette Lorilla, Panteleimon Xofis, Konstantinos Poirazidis, and Nicolas-George Homer Eliades. 2023. "Landscape Characteristics in Relation to Ecosystem Services Supply: The Case of a Mediterranean Forest on the Island of Cyprus" Forests 14, no. 7: 1286. https://doi.org/10.3390/f14071286
APA StyleKefalas, G., Lorilla, R. S., Xofis, P., Poirazidis, K., & Eliades, N. -G. H. (2023). Landscape Characteristics in Relation to Ecosystem Services Supply: The Case of a Mediterranean Forest on the Island of Cyprus. Forests, 14(7), 1286. https://doi.org/10.3390/f14071286