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Abstract: Reforestation is performed after the final felling as an important and often law-mandated
step to ensure that wood production is sustainable. In Sweden alone, over 400 millions seedlings
are planted annually. This work is physically demanding and the quality is uneven. Therefore,
automatic production systems are under research and development. A necessary effort in this
endeavor is presented in this paper: the development and evaluation of a mission supervisor utilized
to control the mission and behavior of a full-scale autonomous forest regeneration machine tested
in realistic environments. The mission supervisor is implemented in the Robot Operating System
framework using a finite state machine package called SMACH. A terrain machine built as a research
platform with an added full-scale forwarder crane is used as a base machine. First, we describe
the scenario in which planting is conducted, whereupon we develop the composite tasks required
as states. A simplified simulator then enables an intermediate step before field experiments. The
system is implemented and operated in real time on a full-scale machine. Results show that the
developed SMACH mission supervisor can be used as a sound basis for an autonomous forest
regeneration machine and the chosen communication solution between different systems works
well. The simulations show good agreement with the experiments. The results also show that
crane movements take 70% of the machine time, emphasizing the importance of limiting crane
movement, improving the actuator movement speed and integrating the composite solutions. Further
development with a holistic approach is required before the concept can reach the prototype level.

Keywords: silviculture; planter; mission planner; mission supervisor; Robot Operating System (ROS);
SMACH; experiment; simulation; digital twin

1. Introduction

Reforestation after final felling is an important part of the Swedish wood production
cycle. Planting allows refined seedling material to be used with higher survival and growth
rates compared to advance regeneration. Annually, more than 400 million seedlings are
delivered to Swedish forests [1] and almost all of them are planted manually. The work
is physically demanding and must be performed with good quality to ensure sufficient
seedling survival and growth, which is required by law in Sweden [2]. Ground preparation,
or scarification, is performed by different methods depending on the ground properties.
Excavators with a special mounding tool are used in very stony terrain. More commonly
used are disc trenchers or mounders pulled by forwarder machines on moderate and less
difficult conditions, respectively. While the process is important for high seedling survival
and growth, it has significant soil impacts. A disc trencher typically affects 50% of the area,
while pulled mounders affect around 35% [3].

Mechanized planting devices are available as units mounted on excavator machines,
such as the Bracke Forest P11.a and P12.a or the M-Planter from M-Planter Oy. These
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can carry numerous seedlings but the units are heavy and require the manual transfer of
seedlings to the carousel on the device, which is time-consuming [4].

Historically, continuously and intermittently advancing planting machines have
emerged. One early example of an intermittently advancing machine was the HIKO (or
Hilleshög) planting machine [5,6], which had three planting arms that both scarified and
planted. In the 1970s, the Nordic countries saw machines conducting forest regeneration
continuously—the Swedish Silva Nova and the Finnish Serlachius machine, which planted
with decent quality. They were abandoned some 30 years later due to a combination of
reasons, such as high investment and running costs [7]. Today, however, continuously
advancing planting machines are experiencing a renaissance as the Silva Nova has seen its
successor in the Plantma X planting machine. It is built on a large forwarder and mainly
uses disc trenching as a scarification method. Seedlings are planted at the back of the
machine with the help of two hydraulically actuated planting arms. The planting arms are
brought down onto the prepared ground, at which point a seedling is released. The ma-
chine is operated by one driver and a person at the back restocking seedlings. The planting
quality is lower compared to manual planting, and it is most effective on heathland [8].
The planting quality is, however, addressed with emerging neural network technology to
achieve adequate quality [9].

Other project initiatives are also in motion in Swedish silvicultural development.
Södra Skog, a large forest industry group in Sweden, is currently working on a project with
the goal to produce a functioning tree planting prototype during the summer of 2023 [10].
The main objective of this project is to reduce the footprint of the machine and actuators,
while maintaining and, preferably, increasing the planting quality.

The work in this paper is part of the project AutoPlant, which was initiated in 2021, and
field experiments were performed in 2022 [11]. The Autoplant project sought to make parts
of the tree planting functions autonomous, leading to solutions for scarification, planting,
crane control, seedling transfer, obstacle identification and base machine navigation. One
major change and challenge in this project was the aim to reduce the scarified area to enable
more precise planting with less ground disturbance. A plant ideally should have a humus
edge clearance radius of 0.2 m [12], and with a plant density of 2500 plants/ha this gives
a lower limit for the ground impact at 3%. The AutoPlant project aimed to approach this
limit, which would decrease the ground impact by more than 90%. To target this aim, a new,
innovative, high-precision scarification and planting device and seedling transfer system
was developed by Bracke Forest as one part of the project. A major advantage of reducing
the scarified area is that planting points can be chosen more decisively, i.e., a better decision
basis from sensor data can increase the quality with which scarification and subsequent
planting is conducted.

The top-level controller, the mission supervisor (or mission planner), which controlled
the high-level actions of the autonomous AutoPlant system, was developed and evaluated
during 2022. The objective of this paper is to present the development, implementation and
evaluation of finite state machines (FSMs) for use as a mission supervisor in the AutoPlant
project. The comprehensive AutoPlant system is built upon multiple subsystems, each
designated for a specific function. The presented work primarily centers around the
implementation and field experiment results of the mission supervisor and its role in
harmonizing these subsystems to achieve the desired machine behavior. The explanations
provided for the subsystems are intentionally brief and offer sufficient detail to provide
the reader with a comprehension of their functions and contributions to the overarching
controller’s architecture.

2. State Machines for Autonomous Control

Machines or robots designed to perform specific cycles, where one operation directly
follows another, are straightforward to program, similar to creating a recipe for cooking.
However, machines that require the ability to plan and execute complex tasks and handle a
variety of situations without human intervention need to be autonomous. Autonomous
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machines, such as the AutoPlant project, can operate within uncertain and unstructured
environments, managing unexpected events of both external and internal origin. The con-
trol logic of autonomous machines must be adaptable, capable of responding to conditions
and choosing different paths of execution based on the situation or the outcomes of prior
events. A simple program with predefined operations in a fixed order is insufficient to
achieve the desired level of autonomy. This section provides the theoretical background
and reasoning for selecting between two algorithmic principles to enable an autonomous
machine for the AutoPlant concept.

Finite state machines (FSMs) are a common formalism in building complex systems,
where the control logic is broken down into a finite set of states. The states typically
represent some form of action being performed, while the transitions between states
represent events taking place. FSMs are visually represented by state diagrams, where each
state is a block and the transitions between states are indicated by arrows [13]. The transition
condition is noted next to the transition arrow. A group of states that result in common
entry and exit transitions can be grouped into superstates. Even superstates can further be
combined into superstates. This allows complex machines to be represented at different
levels. An FSM traditionally only has one active state at each instance. An extension
is to use a concurrency superstate. The states or superstates within the concurrency
operate in parallel, possibly independently of each other. In the open-source framework
Robot Operating System (ROS), maintained by the nonprofit organization Open Robotics
(Mountainview, CA, USA), the SMACH toolbox [14] aids in the design of FSMs in Python
nodes.

In the research community, FSMs have been used as a basis in supervising architectures
that work in a task-based manner. Fue et al. [15] used the ROS and SMACH to perform
tasks with a cotton picking machine mechanically. Similar to the AutoPlant case, they too
controlled an articulated machine with a hydrostatic drivetrain in-field and were quite
successful in the outcome. SMACH was also used as a basis for tasks conducted by a
robot butler [16], by the research group that first formalized the SMACH package and
ROS integration, although there were issues with surrounding detection. As development
continued in perception, researchers were able to improve these wheeled humanoids while
still successfully using SMACH [17].

Behavior trees (BTs), which are another tool to model and implement complex behavior
in robots, are based on a tree structure of interconnected tasks. Each task represents a
specific behavior or action, and the robot’s behavior is determined by the combination and
ordering of the tasks in the tree. BTs are considered flexible and can be easily modified
or extended to add new behaviors. With their respective advantages and disadvantages,
studies have found that BTs are more effective at representing complex behavior [18], while
others have found that FSMs by comparison are more efficient and easier to manage and
operate [19]. While BTs are interesting from an autonomous control perspective, FSMs are
a more straightforward and well-known approach for the types of tasks that the AutoPlant
project represents.

3. Materials and Methods

This section covers the machine used to implement the developed mission supervisor
and explains the hardware and software components used to build the system.

3.1. Base Machine, Computers and Sensors

The presented system has been implemented on a research vehicle platform [20]
specifically built to be used to conduct research on sites where future machines may
operate. It targets research on autonomous navigation and control using on-board real-time
systems that collect data during operation. The vehicle is equipped with proprioceptive
and exteroceptive sensors, hydraulic pressure sensors and data collection systems that
enable a full kinematic model representing the vehicle in real time. A GNSS Leica GPS-
80 system with network-RTK (provided by Leica Geosystems, Sankt Gallen, Schweiz)
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enables the absolute vehicle position and heading to be tracked with high precision, to a
few centimetres in translation and tenths of a degree in rotation. The main exteroceptive
sensor used for perception is a ZED2 stereo camera from the manufacturer Stereolabs (San
Francisco, CA, USA). The camera is pointed backwards from the driving direction since its
main purpose is to allow the planting device to reach plantable ground.

The vehicle weight is approximately 10,000 kg, with a full-sized hydraulic crane
mounted at the rear of the machine, enabling full-size tests of crane actuation in correct
environments. The drivetrain is hydrostatic, with hydraulic motors on each wheel, powered
by a hydraulic pump attached to a 129 kW diesel engine. Furthermore, the machine
hardware includes a scarifying and tree planting device as an end-effector, and a seedling
storage and seedling transmission system; see Figure 1.

Base machine

Seedling storage and 

transfer

Crane

Scarifier and planter
Stereocamera sensor

Figure 1. The research platform including the AutoPlant machine, with the planter mounted on the
crane and seedling system mounted at the back of the machine. Photograph courtesy of Gustav Sten.

As computing hardware, an NVIDIA Jetson AGX (provided by Nvidia Corp., Santa
Clara, CA, USA) is used for cost-efficient graphics computing, in our case to run a neural
network that detects and positions clearcut obstacles. The Jetson also connects through
USB to the GNSS and reads positional data at 20 Hz. The low-level input/output system
connection to sensors and actuation amplifiers consists of a data acquisition and control
rack (provided by United Electronic Industries, Norwood, MA, USA), on which MAT-
LAB/Simulink (2021b, Mathworks, Natick, MA, USA) runs in external mode. To increase
the research flexibility, the ROS (Melodic distribution) runs on a high-performance laptop,
connected to the machine control rack through a UDP network interface. This allows the
laptop to quickly be moved from the machine and used to run in simulated environments
to verify functions before running on the machine itself in real environments.

3.2. Planter Device

The planter system was developed and built by Bracke Forest (Bräcke, Sweden) for the
AutoPlant project and has four parts: a seedling storage and transfer system, a scarifying
and planting unit and an electrical cabinet for its control systems. The seedling storage
and transfer system comprises a seedling tray holder that can hold one tray at a time. A
custom-designed low-capacity robotic arm is used to transmit seedlings from the seedling
tray and out to the crane end-effector. The crane end-effector consists of a device with three
functions: scarification, planting and soil compaction. The end-effector can be positioned
(by the crane) sufficiently close to the seedling transfer system such that one seedling at a
time can be transferred to the end-effector. The scarifier uses a drilling-like motion with
a hydraulic device to prepare the soil in a patch (cf. [21]) as a site preparation type and a
center hole for a seedling to be placed. The planter drops a seedling into place and finally a
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hydraulically propelled puncher compacts the soil around the seedling. The control cabinet
holds a Programmable Logic Controller (PLC) to control the seedling transfer robotic arm
and the scarifying and planting program. The mission supervisor in this project can control
these functions on a high level.

3.3. ROS

The Robot Operating System (ROS) (Melodic distribution [22]) is an open-source
software framework that provides libraries and tools that help developers to build and
manage complex robotic systems [23]. The ROS uses a publish–subscribe messaging system
to facilitate communication between different software components, called nodes. Nodes
can publish messages to a topic, and other nodes can subscribe to this topic to receive these
messages.

3.3.1. Topics

Topics are named buses over which nodes exchange messages in a publish–subscribe
pattern [23]. Topics are essentially a tool for nodes to communicate with one another,
allowing them to share information and coordinate their activities. Each topic has a unique
name, and the data being transmitted over a topic are defined by a message type.

3.3.2. Nodes

Nodes are individual software components that perform specific tasks, such as process-
ing sensor data, controlling actuators or performing computations. Nodes communicate
with one another by publishing and subscribing to topics, allowing them to coordinate
their activities and exchange data. The nodes are typically written in Python or C++ [23],
with versions mandated by the specific ROS distribution.

3.3.3. Action Calls

An action call is a type of message exchange between nodes that enables asynchronous,
goal-oriented communication. It provides a means for one node to request a specific task
to be performed by another node, with the expectation that the task may take some time
to complete. An action call is typically initiated by a client node, which sends a goal
message to a server node. This goal message specifies the desired outcome of the task to be
performed. The server node receives the goal message, starts executing the task and can
periodically send feedback to the client to report on its progress. Once the task is complete,
the server node sends a result message back to the client, indicating whether the task was
successful or not.

3.3.4. Building and Visualizing Digital Twins

A real-time updated digital twin of a robot is valuable for development, simulations,
debugging and robot interfacing. In the ROS, the combination of the Unified Robot De-
scription Format (URDF), RViz and tf packages provides a powerful toolset to build and
visualize the digital twins of robots.

URDF is an XML-based file format to describe the structure, geometry, kinematics,
dynamics and visual representation of a robot. The robot parts are represented as a tree
of links connected by joints with optional sensors [24]. Links define the robot’s physical
parts, including its appearance, dimensions and inertial properties, while joints describe
the connections between links and the constraints on their relative motion. The appearance
can be defined using primitive shapes or CAD meshes. Meshes can be in the format of STL,
DAE or OBJ. Meshes exported from CAD systems can result in large files. To improve the
performance in visualization, these files can be reduced in complexity using decimation
in, for instance, Blender software versions 2.79 and up [25]. All links can have a collision
shape, which typically should be a primitive shape or simple geometry to outline the link
to improve the collision calculation performance.
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The ROS package tf provides a means to track and manage coordinate frames over time
in a distributed system, allowing for the translation and rotation of coordinates between
different frames of reference [23]. The frame is specified as a text string. The standard
frames base_link, odom and map are commonly used in ROS systems to represent the robot’s
base frame, the odometry frame and the map frame, respectively. Transforms are sent using
broadcasters and a receiver is called a listener. Certain message types, such as a point cloud
message, include a frame identifier to specify which frame the data are represented in. This
allows subscribers of the message to use a tf listener to perform transformations into any
other frame of geometrical reference defined in the system.

RViz is a ROS 3D visualization tool that uses the URDF model to illustrate the state of
the robot in real time [23]. Additional 2D or 3D information can be visualized in the tool in
relation to the robot and the virtual world, such as LiDAR point clouds or camera imagery.

3.3.5. SMACH

The SMACH (State MACHine) package is a high-level library that allows developers
to design and execute FSMs for complex robot behavior [26]. FSMs are commonly used in
robotics to model and implement behavior that requires the robot to transition between
different states in response to environmental stimuli.

SMACH provides a Python-based framework for the design of FSMs, with support for
state machine introspection, visualization and execution. The package includes a set of pre-
defined FSM components, such as states for the execution of actions, monitoring of topics
and querying of services. SMACH can be used in combination with other ROS packages,
such as the actionlib package for the execution of actions and the rospy package for
communication with other nodes. The SMACH package further allows for the development
of hierarchical FSMs (state machines within state machines). The SMACH introspection
tool is called smach_viewer [27]. This view is autogenerated from code and the current
state or states are indicated in real time.

3.3.6. Robotic Arm Motion Planning

The MoveIt™ version 1.0.11 ROS packages provide a tool chain to perform robotic
motion planning [28]. MoveIt utilizes the joint_trajectory_controller of ros_control for
robotic arm movement [29]. The MoveIt ROS packages utilizes kinematics, dynamics and
control capabilities, along with advanced algorithms for collision avoidance, in order to
effectively plan the movement of the robot arm. The software also supports integration
with various types of sensors for perception, enhancing the robot arm’s ability to interact
with its environment. The ability of MoveIt to provide collision-free paths is especially
helpful for situations where the robot arm needs to navigate close to itself, such in the crane
docking procedure of the AutoPlant concept.

The joint_trajectory_controller operates by taking in a trajectory and executing the
movements by controlling the individual joints of the robot arm. This allows for control
over both the path and final destination of the robot arm.

3.4. AutoPlant Scenario Description

The main task for the AutoPlant system was to autonomously conduct a full cycle of
tree seedling planting in a real Nordic environment. The system needs a machine with
navigation, seedling storage and transfer mechanisms, a scarification and planting tool, a
planner to select the planting position and a mechanism to place the tool at the planting
position.

The scenario assumptions can be explained as follows: 2D waypoints are output
on a map of a clearcut beforehand and assumed to be traversable by the machine. The
machine seedling storage is loaded manually with one seedling tray (a standard jackpot
with 67 seedlings tray) and a robotic arm for seedling transfer to the planter, which is
operated at each planting sequence. The scarification and planting tool is mounted as the
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crane’s end-effector, and the crane conducts the necessary movements for seedling refill
and movements to reach the planting positions behind the machine.

At the time of sequence initiation, the machine is (manually) positioned on the clearcut
area, pointing approximately towards the first waypoint. When placed in automatic mode,
the machine performs the following.

1. The machine moves 4 m towards the first waypoint.
2. The crane moves out of the way of the plantable ground behind the machine while

an onboard sensor collects data in a 4 m × 4 m area to use for decision support
for planting positions; see Figure 1. The plant planning algorithm selects a suitable
planting location free from detected obstacles. Meanwhile, the crane is positioned in
such way that a seedling can be transferred into the planter unit (crane end-effector).

3. The crane moves to a position above the selected planting position and then moves
slowly until the ground is detected.

4. Scarification and planting is performed.
5. The result is documented.
6. The crane is again positioned at the transfer position and receives another seedling.
7. If the entire area is ultimately deemed planted (or otherwise impossible to plant),

the machine is moved to the next staging area 4 m further down the predetermined
path. When the entire clearcut area is considered to have been planted or otherwise
evaluated, the machine reaches its finish point and the scenario ends.

In addition, the machine should not conduct seedling transfer if it is already carrying
a seedling. It should also directly try a new planting position if the first attempt fails and
the seedling is still available. This scenario can now be used to describe the mission and
thus the sequential and parallel actions needed to succeed.

3.5. Required Client Actions

Based on the identified scenario of the AutoPlant project, a set of hardware systems
was established along with functions or tasks. The functions were formulated as a set of
actions that each subsystem must be able to perform, which are summarized in Table 1. All
actions have return codes depending on the outcome of the requested action. These return
codes are used by the mission supervisor to take proper execution paths.

Table 1. The action and service commands used by the clients that are controlled directly by the
mission supervisor; See also Figure 2.

Command Description

Drive
NEXT_POS Move to next work area position

Crane
DOCK Position for seedling transfer
DOCK_WAYPOINT Waypoint when moving to dock
TRANSPORT Transport position
POSITION_ABOVE_PLANT Position above planned seedling position
POSITION_ON_GROUND Place unit on ground
PHOTO_PLANT Position above planted seedling for photo

Plant planner
PHOTO_WORKAREA Take photo of new work area
ADD_OBSTACLES Build obstacle map
GET_POSITION Get suggested planting position
SAVE_SUCCESS Save last planting position as fail
SAVE_FAIL_SCAR Save last planting position as scarification fail
SAVE_FAIL_GROUND Save last planting position as ground contact fail
SAVE_FAIL_CRANE Save last planting position as crane fail
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Table 1. Cont.

Command Description

Planter
TRANSFER Transfer seedling from tray
DROP Drop seedling into scarifying unit
PLANT Scarify and plant
STOP Emergency stop

Photo plant
TAKE_PHOTO Take photo of the planting attempt

Mission Supervisor

Crane clientDrive clientPlant planner client Planter client Plant photo client

Obstacle detector

Darknet Yolo

ZED wrapper

ZED stereo camera GNSS reciever

Global plan MoveIt™

ros_control

Hardware interface

Vehicle PLC Bracke PLC Camera

action action action action service

action

topics

topics

USB

USB

file

topic

action

action

ros_control

UDP

topics

digital

USB

Figure 2. Control system overview.

3.6. Real-Time Digital Twin of the Machine and Surroundings

A URDF representation was built of the machine to allow an ROS digital twin of the
machine. The visual parts were extracted as 3D meshes from the machine’s CAD model.
The meshes were decimated to reduce the complexity and file size to a maximum of 5 MB
for the largest parts. For the collision meshes of all machine parts, low-complexity models
of equal outer dimensions were used. Blender version 3.0 was used for the decimation and
to convert all mesh files into DAE format. The resulting digital twin is available in real time
in RViz, as illustrated in Figure 3.
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Planted seedlings

Crane target point

Detected obstacles

Failed planting attempts

Plan area

Vehicle

Figure 3. Digital twin visual representation of the machine using RViz. Feedback from the plant
planner, the obstacle detector and the crane sensors is also provided.

Timing is critical for the tf to give correct transformations in the tf system. Since the
hardware clock of the host machine is used to set the time of ROS broadcasts, synchroniza-
tion between hardware clocks needs to be ensured. Therefore, the main system laptop was
set as the NTP server and the NVIDIA Jetson AGX unit was the NTP client.

3.7. The Mission Supervisor

The mission supervisor is implemented as an FSM with support for parallel state
execution and runs in the ROS (distribution: Melodic) using Python code and the SMACH
package. The different subsystems of the machine are handled using a set of action
clients. Each client has various additional nodes and code to interface with the sensors and
hardware. The mission supervisor is responsible for coordinating the machine operation
by controlling each of the action clients. The clients in turn perform the commanded
tasks and report back to the mission supervisor upon completion or failure. The control
system hierarchy with the main communication paths is illustrated in Figure 2, with
the mission supervisor at the top of the control chain. Most of the states in the mission
supervisor correspond to the execution of a specific action from Table 1 by the corresponding
subsystem. The transitions in the FSM depend on the reported outcomes from the clients.
For instance, if the planter client reports failed planting, the execution takes a different
path compared to the case in which the planting is successful. As previously described, the
mission supervisor and all the clients operate in the ROS and are implemented in Python
code. The mission supervisor FSM at the top level is shown in Figure 4.
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start

Standby
end

Move
<submachine>

Set new state
entry: new_site=True

Transfer & map generation

<submachine>

new
site?

Plant
<submachine>

Set no new site
entry: new_site=False

Select plant position

<submachine>

stop

done

done

done

yes

transfer

no

done

plant

location done

end reached

Figure 4. The mission supervisor design, showing the top level. The submachines’ design materials
are available in the Supplementary Materials, Figure S1.

3.7.1. State Classes and Client Interfaces

The states in SMACH are defined using a provided state class. To communicate
with the clients, the mission supervisor uses ROS actions and service calls. Each client is
responsible for multiple tasks and is involved in many states. To avoid the definition of the
client communication in each state, the code to communicate with the clients is placed in a
custom interface class. Each state keeps a reference to this interface class and uses it for
communication with the clients. This also allows for an added functionality to ensure that
an interface is not being called multiple times by different states. The interface class serves
the same purpose as the built-in functionality of SMACH, called the proxy and action states.
However, the use of a custom definition provides greater transparency and ability to collect
application-specific code in the interface class.

The mission supervisor FSM was divided into superstates to enhance the readability
of the autogenerated diagrams, i.e., hierarchical FSMs, which is an ability of SMACH.

3.7.2. System Status Variables

In addition, a set of variables was used to keep track of certain key system states. These
system states comprise information about the system, in contrast to the mission supervisor
states, which all represent some action to be performed. Keeping these properties as
variables instead of additional states reduces the complexity of the FSM, at the cost of some
transitional logic being “hidden” in the state diagram. The variables are as follows.
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• has_seedling—a Boolean value to indicate whether the planting unit is holding a
seedling or not.

• new_site—a Boolean value to indicate whether a new staging area has been reached.

3.8. Graphical User Interface (GUI)

The system has a user-interface-based design with a focus on the concept as a research
tool. While the operator experience is an interesting topic, it was excluded from this project.
The user interface is therefore technical and practical in its design, instead of being designed
as a specific working product.

System start preparation involves a set of ROS launch files that need to be started
on the different hardware units. The final launch file will start the main interface tools.
The control interface is based on standard plugins from the ROS rtq tool [30]. From here,
service calls to start and stop the machine can be sent to the mission supervisor and an
error monitor collects errors from all ROS nodes in the system. The used rqt configuration
is illustrated in Figure 5.

Figure 5. Machine control GUI based on ROS RQT using standard plugins. Here, services and actions
calls are called, and sequence starts and stops can be made.

The real-time digital twin representation of the machine in RViz adds a useful GUI
component to the system. Visual feedback of the machine’s positional sensors, plant
planner operation, planted seedlings and detected obstacles are presented in the RViz
tool, illustrated by the screenshot in Figure 3. Markers illustrate different objects detected
(e.g., a cylinder for a detected stump) and resulting planted seedlings and failed attempts,
colorized differently depending on the outcome. The planted seedlings are kept in the
digital environment, while the detected obstacles and the planting area are reset for each
machine’s stop position.

The plant planner operation is illustrated by the planning map rendered as a surface
that is updated at each planting attempt and obstacle detection.

Insights into the FSM of the mission supervisor are provided using the smach_viewer.
This autogenerated view indicates the current state or states in real time; see Supplementary
Materials Figure S2. This is useful information during debugging and for understanding
the robot’s behavior.
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3.9. Subsystem Clients

The subsequent section provides a summarized overview of the subsystems involved
in the concept, as a comprehensive description of each subsystem is beyond the scope of
this paper. Instead, the focus of this paper remains on the mission supervisor. To a large
extent, the clients correlate to the hardware assemblies of the machine shown in Figure 1.

3.9.1. Drive

Drive is the client that controls the base machine, with the main responsibility for
moving and steering the base machine. Low-level 4WD antispin and pendulum arm control
are, however, managed by other systems. The default action of drive is to move a preset
distance navigating along a predefined path. The path is the global plan for the machine,
which is obtained by a planning tool before the sequence start. A dual-antenna GNSS with
network-RTK correction provides positioning and heading so that the drive system can
move the machine appropriately. The GNSS system was used as the single source of global
positioning for the machine. Hence, the map and odom frames were placed in the same
frame (no world frame was used). The tf tree was built from map and odom to gps. Therefore,
gps, which was the GNSS receiver position on the machine, also had to be the root frame of
the machine’s URDF. Drive broadcasts the transform from the map to the gps frame.

The current drive system implementation has no local planner to handle deviations in
site conditions not previously covered by the global planner. However, from the mission
supervisor’s point of view, the drive unit could implement a local plan when the action
NEXT_POS is requested.

3.9.2. Plant Planner

The plant planner client is responsible for providing suitable locations in the crane
operation area to place seedlings, also utilizing a map of the area that contains the locations
of obstacles, previously planted seedlings and scarifications. Output from this client is a
chosen terrain point for scarification, planting and soil compaction, which is achieved by
the same device and in direct sequence.

An important part of the plant planner is the sublevel action client called the obstacle
detector. This is called upon by the plant planner client when a new 4 m × 4 m site has
been found and when the crane and machine are positioned correctly. Then, a snapshot is
taken on the stage, where both image and depth data are saved. Utilizing a detector AI,
obstacle types, sizes and positions are acquired and used as a decision basis for the plant
planner client. Objects detected that are deemed obstacles to scarification and planting
are output as non-plantable areas, whereby the plant planner bases its plant positioning
decisions on the remaining area patches.

3.9.3. Planter

The planter client interfaces with the plant and scarification unit. The communication
hardware interface has a digital parallel 3-bit duplex implementation based on a send and
acknowledge structure. The actual planting unit holds a PLC with a program to control the
planter and the seedling transfer system. It accepts commands such as “collect seedling”,
“drop seedling into planting unit” and “scarify and plant”, encoded as integers. It returns
success codes such as “completed”, “fail” or “planter jammed”. The planter client simply
ensures the communication profile, converts the action calls into correct integer commands
for the planter unit and collects the result codes.

3.9.4. Crane

To enable the features of MoveIt and the ros_control chain (see Section 3.3.6), a
ros_control hardware interface node has been implemented. This hardware node also
forwards the control signals from the drive and planter clients to the machine platform.
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Additionally, a Python node was added that could process AutoPlant’s specific action
calls from the mission supervisor and make requests to MoveIt, which used the trajectory
controller to position the crane in the requested position or joint configuration.

This node also made the necessary transformations between the different reference
frames of the requested crane tip positions and the MoveIt planning frame. MoveIt tends to
use the robot root frame as the planning frame. Since the tf tree needs to be built from the
top, the root frame of the robot needs to be the gps frame (as explained in Section 3.9.1). Since
all crane planning was done in the planning frame, the movements had to be transformed
into the gps frame.

The node also has access to the pressure of the crane’s inner boom cylinder, which is
used to detect ground contact when placing the unit on the ground.

3.9.5. Plant Photo

One client called plant photo is responsible for quality assurance during the scenario
sequence. This client is quite simple; when planting is finalized and the crane has started
moving up and away from the scarified, planted and compacted planting position, the
client is called and takes a photo of the planting point. This information is saved in a
database along with the GNSS position.

3.10. Simulations

Simulators are a powerful tool in advanced system development that can decrease
the time needed for actual system integration. Simulations can be used at different levels
depending on the aim and purpose. The ROS offers efficient integration with the Gazebo
simulator, which enables physical simulations and integration with ros_control, among
many other possibilities. While Gazebo was successfully used in the beginning of the
project, a custom simulator solution was found to be more suitable for our needs later
on. The solution was based on a low-complexity simulator coded in Python, based on the
measured joint properties of the machine. All joints of the machine had velocity interfaces;
however, the hardware interface used a calibration procedure to obtain the output effort
based on the requested velocity demand. The simulator used the calibration points in
reverse to obtain the expected machine velocities from the output commands. The resulting
joint position was obtained using

xt = xt−1 + v∆t (1)

where xt is the joint position, xt−1 is the joint position at the last time-step, ∆t is the time-
step and v is the joint velocity. Acceleration limitations were ignored. The simulator was
implemented as a Python node and used the same UDP interface as the actual machine,
which made it possible to simulate the full chain including the ros_control hardware
interface node.

The system overview in simulation mode is shown in Figure 6. To simulate the
different subsystems, the following solutions were used.

• Drive—The simulator took responsibility for updating the machine pose and position
according to Equation (1).

• Plant planner—The obstacle detector had a simulator to randomize obstacles in the
staging area. The plant planner itself was operational as usual.

• Crane—The chain extending to the UDP interface was the same as in real operation.
• Planter—The planter was replaced by timed delays that matched the actual processing

times of the planting units. Failed attempts could be randomized with a customizable
frequency.

• Plant photo—Replaced by a code to simply return completed.
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Figure 6. Overview of the control system in simulation mode. Compare with the physical implemen-
tation depicted in Figure 2.

3.11. Experiments

This section describes the integration experiments on the machine, the field exper-
iments with the full concept and the computer simulations. The experiments aimed to
show the capability to integrate all subsystems and the ability of the mission supervisor to
successfully coordinate the systems in the desired behavior. Another target was to validate
the simulations using experiments that could be replicated in the simulated environment.

3.11.1. Full Machine Integration

Planter unit integration was tested in a workshop to verify the communication protocol
and mechanical, electrical and hydraulic interfaces. The planter unit’s performance was
evaluated when mounted in a test bench and on the machine.

3.11.2. Machine Field Experiments

The complete AutoPlant assembly was also tested in a clearcut terrain on the outskirts
of Bräcke, Sweden, 62.9130° N, 15.6330° E (WGS84). This experiment was conducted in
order to integrate all the composite solutions and to test them with correct input data
from exteroceptive and proprioceptive sensors. The tests were aligned with the scenario
description in Section 3.4, although only one staging area was tested at a time and the drive
state was run to and from one staging area. Figures 1 and 7 shows the clearcut and machine
during these tests. The mission supervisor was implemented on the machine platform with
the drive client, crane client, planter interface and plant planner with the attached obstacle
detector running.
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Figure 7. The research platform in the role of the AutoPlant machine during field experiments.
Photograph courtesy of Gustav Sten.

3.11.3. State Timing Field Experiments

The second field experiment aimed to evaluate the timings between different states,
and to assess how and whether the machine and crane movements could be improved. The
location was a flat grass area at Skogforsk Sävar station, 63.8944° N, 20.5489° E (WGS84),
close to the town of Umeå in Sweden. Dummy obstacles were scattered on the ground
with known positions and the planting device was emulated with a dummy (an ordinary
grapple kept in a closed position); see Figure 8. The planter client was replaced by a node
that simply returned a successful result after the same amount of time that the different
operations took based on the test bench experiments of the planter unit.

Figure 8. The research platform in the role of the AutoPlant machine during the state timing field
experiments. Photograph courtesy of Stina Johannesson.

3.11.4. State Timing Simulations

The simulations used the same settings for all system parts as the timing field experi-
ments. The low-complexity simulator described in Section 3.10 was used. The obstacles
were randomized in position and size and chosen in number to be similar to the dummy
obstacles in the experiment. The simulator was allowed to run for a while to collect enough
data to be able to find a situation with the same number of plantings per location as in the
field experiments.
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4. Results

This section presents the results from the physical experiments with the concept in the
field, along with simulation comparisons.

4.1. System Design Verification

The output diagram from smach_viewer is given in the Supplementary Materials,
Figure S2. Visual inspection confirmed that this diagram indeed corresponds to the design
in Figure 4.

The autogenerated diagrams from the rqt_graph of the ROS system node communi-
cation and the ROS tf-tree are available in the Supplementary Materials, Figure S3 and
Figure S4 respectively.

4.2. Full Integration Experiment

In the full integration experiment, the main focus was to ensure the communication
between the different subsystems, both in the software and hardware. During the exper-
iments, a total of three laptops (two for the ROS system) and one NVIDIA Jetson Xavier
was online. A total of five terminal windows were active on the main laptop with separate
launch files and Secure Shell (SSH) connections to the different systems. The reason for the
many terminal windows was to be able to keep track of the errors and status of each of the
different action nodes in use. In the integration tests, special care was taken to verify the
planter unit’s communication. It was, however, noted that the planter unit was unable to
reach full performance when mounted on the machine crane. The available hydraulic flow
in the crane grapple functions was insufficient to supply the planter unit at full power. As a
consequence, the unit operation speed and force were decreased. A work bench experiment
timed the behavior of the planter unit when operating under optimal conditions. It was
apparent that the planter unit design caused it to behave in a very predictable way in terms
of time usage. The times for each operation are listed in Table 2.

Table 2. Planter operation times with workbench hydraulic power supply.

Operation Time (s)

Transfer 5.0
Drop 3.0
Plant 8.0

4.3. State Timing and Simulation Comparison

Figure 9 shows the time spent in different states during a trial in the field experiment
at Sävar. Each line represents one operational state. The sum of each state for the trial
is presented in Figure 10. The details are listed in Table 3 and compared to a simulation
with the same settings as the experiment. The crane motion planning calculation time is
included in the crane time and is estimated to be <1 s per motion plan.

The difference between the simulation and experiment for the planter was negligible
due to the fact that both cases were simulated. During the timing experiments, the planter
was emulated with timings from the bench experiment, as explained in Section 3.11.3.
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Figure 9. State durations sorted by subsystem during the experiments at Sävar for two staging areas
and a total of five planting attempts. Colors are coded according to which subcategory it resides
within, see Figure 10. Bar length indicates the state duration.
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Figure 10. Relative time usage of the subsystems and their operations during the experimental
durations in Figure 9. The diagram total is 450.5 s; labels for durations less than 1 s are not printed.
Total duration of the analysis is 419.0 s and the simultaneous operations therefore save 7.5% time.
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Table 3. Simulation and experiment total time comparison for two machine movements and five
planting attempts (without retries). States with total time shorter than 1 s are excluded. Note that the
planter was simulated in the experiment as well, hence the exact figures.

System State Simulation (s) Experiment (s)

Crane

Crane above planting position 110.9 111.1
Crane dock 54.7 50.9
Crane dock—waypoint 43.7 46.1
Crane to photo 45.1 45.3
Place crane on ground 32.7 41.6
Crane transport 9.7 25.3
Map workspace 1.2 1.3

Move Drive 22.1 36.7

Planter
Plant 40.5 40.5
Seedling transfer 25.5 25.6
Seedling drop 15.5 15.6

Planner Take photo of workspace - 6.2

Total 403.5 450.5

5. Discussion

This section discusses the outcomes of the simulations and field experiments, as well
as the implementation and usage of the ROS SMACH as a means of creating an FSM.

5.1. Discussion of Results

The problem of insufficient hydraulic power for the planter unit could be solved by
dedicated hydraulic hoses of sufficient dimensions and is not considered a limitation of
the concept. In total, the entire system’s energy consumption did not exceed the available
amount, which led us to conclude that the machine size of 10 tonnes is sufficient for this
application. Furthermore, at this machine size, it is plausible that at least half of a metal
frame of containerized seedlings (approximately 2000 seedlings) can fit within the machine
at each loading cycle. Bracke Forest’s implemented solution for seedling transfer works
well in transferring seedlings from the tray to the planting device, and while a technical
solution to move seedling trays around in the storage unit is not implemented on our
machine, we see this as a surmountable obstacle.

The most important function of the planting machine is to conduct planting satisfacto-
rily. The mission supervisor implemented and described in this paper was successfully used
to this end. However, the hardware solutions for the scarification and planting functions
(and the power to these functions) are a work in progress and were not at the proper state
to be evaluated with long-term tests at the time of the field tests conducted for this study.
The qualitative impressions that we gained from the field tests were, however, positive as
some points were successfully patch-scarified and planted.

From the timing studies, the crane movements were clearly the most time-consuming
part of the system. A major improvement would be to carry more seedlings in the planter
unit head, thus placing a demand on the seedling transfer function to be able to transfer
more than one seedling to the planting unit. The crane was also not entirely suitable for
the task at hand; a smaller and faster crane that still is able to apply ground pressure is
probably needed. Indeed, faster and lighter robotic arms are often used for the ROS MoveIt
package. The ideal end-effector carrying capacity would be as many seedlings as can be
placed in one staging area. A further improvement would be to perform the seedling
transfer while the machine is moving to the next staging area. Of note is that in order to
move the crane to take a photo of the seedling and to locate the ground, the same amount
of time is required as to position the entire machine. Improvements to the crane speed can
be achieved, as the crane motion control had not reached its full potential at the time of the
experiments. Nonetheless, it is clear that increasing the crane speed, possibly by using a
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smaller crane or a bespoke one, and using smaller position steps are important aspects to
reduce the machine’s time consumption.

One common problem during the integration field experiments was the narrow toler-
ances set in the ROS MoveIt package for manipulator control. These were not optimized for
a hydraulic forestry crane with rather noisy sensors, and they caused the task execution to
fail in some movements. While the problem was solved for the second field experiment (at
Sävar), this demonstrated the need for suitable failure procedures, as discussed as a very
important feature by the original SMACH inventors [16]. The proposed mission supervisor
should therefore be extended with more failure recovery features.

While the mission supervisor was implemented to allow parallel task execution, the
actual benefit was quite low. However, if seedling transfer could take place during machine
movement, this capability could offer greater potential. The rather long drop part of the
planter during seedling transfer is due to the robotic arm making a final movement above
the planter head after docking. This process could easily be executed during crane docking
instead and only the actual drop should be left for after docking. This would, in practice,
almost eliminate the drop time from the overall machine time. It is also notable that
the calculation parts of the system, such as object detection and plant planning, require
negligible time compared to the physical movements.

5.2. Simulations

The use of simulations has been a central tool during the development of the mission
supervisor and most of the subsystems in the AutoPlant concept. Further reductions in
machine time could be achieved by incorporating a development stage that utilizes the
actual computational hardware and a comparable network setup. Moreover, virtualiza-
tion software could provide supplementary opportunities by enabling the emulation of
additional hardware systems.

The presented low-complexity simulator shows impressive agreement with the real
machine, although with underestimated drive movements caused by the lack of acceleration
limitations in the simulator. The strong correlation between the experimental data and
simulation results enables the use of the simulator to examine the impact of various
choices in well-controlled environments. This allows for the virtual exploration of machine,
crane and algorithm designs without the need to fabricate and assemble all variants.
This is particularly beneficial in the context of operating costly, heavy machinery and
in scenarios where maintaining experimental consistency proves challenging, thereby
ensuring repeatable trials.

5.3. Abstraction Level

The tasks executed by the mission supervisor operate at a high level of abstraction.
For example, the directive to move the crane to the docking position could have been
decomposed into a universal capability within the crane client to arrange the crane in the
requested joint configuration. Subsequently, the mission supervisor could request various
joint configurations and velocity adjustments. One benefit of the chosen methodology is
that most of the clients can be optimized in their execution of the tasks independently
of the mission supervisor. Moreover, all specifications related to client operations can be
consolidated and managed within the client package. However, this approach does have
a disadvantage: the introduction of a new client feature necessitate updates to both the
mission supervisor and the client, as well as the intermediate communication interface.

5.4. ROS as Development Tool

The ROS and many of its packages have been used as basis for machine control during
this project. It is advantageous to use the ROS for this type of application since many of
the packages exist in open-source form and can be quite easily implemented and adjusted
to fit a specific robot setup. The disadvantage with this modularized method of building
a robot is that some modules are not suited perfectly to the actual hardware setup or
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the environment in which the robot works and can be either too general or too specific.
To take one example, the crane package MoveIt was used for trajectory planning and
execution in our hydraulically actuated crane. While the MoveIt package seems adaptable
to almost any robot arm setup, the default settings, examples and documentation tend to
assume a standard electrically actuated arm. This could pose a significant challenge when
implementing a 2000 kg crane with a reach of 10 m controlled by non-linear hydraulics
with noisy position feedback and complex dynamics.

The distributed nature of the ROS, with the ability to distribute execution to several
hardware systems and use different nodes, offers potential for modular design. For a rather
large and complex system, such as the one presented, it also presents some challenges in
terms of enabling all nodes and hardware to work at the same time. During the experiments,
a total of three laptops (two for the ROS system and one NVIDIA Jetson Xavier) were online.
Having many hardware components’ nodes being active simultaneously to keep track of
the errors and status can be problematic at times when trying to debug a certain error. Even
seemingly insignificant issues, such as two hardware clocks not being synchronized, can
cause problems that are difficult to decipher. Another problem with serious consequences
is the starting order of the nodes. At the simulation time, the nodes may start in one set of
order that works well but, in the real system, the starting order could be different, which
can cause a system failure or unusual behavior.

The ROS hardware control operates on separate hardware from the I/O computer,
contributing to the delay in the control loop. The C++ implementation of ros_control is
efficient (faster than a previously used Python ROS interface on the machine), and no
issues related to delays in communication were observed in the crane and machine control.
However, this system’s resilience to delay is largely due to the slow-changing nature of
sensor feedback for the position and angle from the crane and machine. If there is a need for
a control loop based on hydraulic pressure feedback for crane operation, the necessary time-
step would need to correlate with the fluid’s bulk modulus of elasticity. This would require
time-steps in the order of milliseconds, matching or exceeding the current time delay
between the ROS and the hardware I/O. In such cases where the feedback of hydraulic
pressure or accelerations is used, additional testing would be required to evaluate the effect
of delays.

The SMACH package in the ROS enables the user to code the states with Python.
The interface itself is code-based, while the outcome can be visualized. This is quite
different compared to, e.g., MATLAB/Simulink, where a GUI is used to build the states
and transitions as blocks and arrows, rendering the outcome in a graphically sensible way.
Moreover, Schleger et al. [31] conclude that a user-friendly GUI is needed and is lacking in
SMACH. Nevertheless, the outcome of SMACH enables superstates and other important
features, which still makes the usage valid for almost any case. Importantly, engineers
involved in the mission supervisor’s development and the development of its composite
functions can work directly in the code and use storage, tracking and collaborative functions
from external platforms, such as GitHub, Bitbucket or Azure DevOps. However, FSMs
are, by nature, graphical, and diagram-drawing software is needed as a supplement for
the effective design of complex FSMs. Another realization is the advantage of using
substate machines to organize the states into more manageable blocks. This allows the
functionality to be visualized in limited space, and by keeping the structure in the SMACH
implementation, the generated diagrams are more readable and easier to compare to the
drawings.

ROS 1, which is the framework that we have used for development, is not a real-time
operating system. In fact, peripheral workspaces are built on the machine directly in user-
friendly environments, instead of deploying binary packages. This could be an important
disadvantage when the robot is deployed as a real product, as some functionalities may
require that the clock cycles and the work performed during the cycle are stable. Nev-
ertheless, as productization approaches, ROS 2 and the ROS Tooling Working Group’s
tools [32] could be used to build minimal workspaces on edge machines but still maintain
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the advantage of easy code changes. ROS 2 also includes the implementation of a quality
of service system that allows policy rules to be stated for node communication to ensure
reliability, durability, a correct lifespan, etc.

5.5. Future Work

During this project, the aim was to obtain conceptual results and to show and evaluate
the potential of the different subsystems. The used vehicle is a means for research and
development and not a planting machine prototype. Further development is required
before the concept can reach the prototype level. We suggest a holistic optimization process
to integrate these developed composite solutions with more suitable components for the
machine, crane, power unit, drivetrain, electronics, etc.

From the mission supervisor perspective, additional control logic is needed to handle
various subsystem errors and other deviations that have not been discovered in our limited
field trials, along with more user-friendly interfaces. Proper navigation control is also still
lacking in terms of handling events not searched for, such as suddenly emerging obstacles,
sharp turns and people or animals in the work area. The machine system will need to
incorporate more functionalities, such as refueling, the reloading of seedling trays, handling
navigation obstacles or recovering from certain errors (cf. [16]), to increase the technology
readiness level. The presented FSM concept is a good foundation for the addition of
such functions. In recent years, significant updates have been made to the packages and
software within the ROS 2 environment that have been essential to this project. Given these
enhancements, especially in terms of productization and communication performance, it
would be beneficial to consider further work within the ROS 2 framework.

6. Conclusions

The objective of this paper was to present the implementation process, test outcomes
and evaluation of an FSM as a control system for an autonomous forest regeneration
machine for Nordic conditions. The machine’s task comprised a full tree planting cycle in
the field, which was completed successfully. The concept as such still lack obvious functions,
such as people detection and safety. Improvements are needed to the design, especially to
increase the crane speed and to increase the head’s seedling-carrying capacity. However,
the presented mission supervisor based on FSMs with parallel execution capabilities seems
to provide sufficient capability to coordinate the operation of an autonomous reforestation
machine. The modular approach including subsystems and a mission supervisor as a
coordinator allows subsystems to be extended or added to offer more functionalities.
The FSM can be adjusted to accommodate new execution behavior based on the new
subsystems.

The utilization of simulations has been instrumental in significantly reducing the
development time required on the physical machinery. Despite new challenges that have
surfaced during the process of full integration, the agreement between the experimental
results and simulations is promising. This correspondence implies that simulations could
serve as a reliable platform in evaluating and comparing the performance of different
algorithms and operation strategies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/f14071340/s1, Figure S1: Submachine design material;
Figure S2: SMACH diagram; Figure S3: Node graph communication diagram from rqt_graph;
Figure S4: The tf tree from rqt plugin TF tree.
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