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Abstract: Forest stock volume (FSV) is a key indicator for measuring forest quality, evaluating forest
management capabilities, and the main factor for evaluating forest carbon sequestration levels. In this
study, to achieve an accurate estimation of FSV, we used Ninth Beijing Forest Inventory data (FID),
and Landsat 8 OLI and Sentinel-2 MSI imagery to establish FSV models. The performance of Landsat
8 and Sentinel-2 imagery data in estimating forest volume in Huairou District, Beijing, China was
compared. The combination of Landsat 8 and Sentinel-2 satellite data was employed to create a new
data source. Two variable selection methods, linear stepwise regression (LSR) and recursive feature
elimination (RFE), were used to extract feature variables. The multiple linear regression(MLR) models,
Back Propagation (BP) neural network models, and Random Forest (RF) models were employed
to estimate forest volume in the study area based on the feature variables obtained from both data
sources. The research results indicate (1) the Sentinel-2-based model achieved higher accuracy
compared to the same model based on the Landsat 8 factor set. The correlation between the red-edge
band of Sentinel-2 imagery and FSV is more significant than that of other characteristic variables
used. Variables derived from the red-edge band have the potential to reduce model errors; (2) the
estimation accuracy of the model can be significantly improved by using the RFE (Recursive Feature
Elimination) method to select remote sensing feature variables. RFE is based on the importance
ranking of all feature variables and selects the feature variables that contribute the most to the model.
In the variable group selected by RFE, the texture features and the derived features from the red-edge
band, such as SenB5, SenRVI , SenmNDVIre, and SenB5Mean, contribute the most to the improvement
of model accuracy. Furthermore, in the optimal Landsat 8–Sentinel-2 RFE-RF model, where texture
features are involved, the rRMSE is greatly reduced by 3.7% compared to the joint remote sensing
RFE-RF model without texture features; (3) the MLR, BP, and RF models based on the modeling factor
set established on Sentinel-2 have accuracy superior to the model accuracy established based on the
modeling factor set of Landsat 8. Among them, the Random Forest (RF) method inverted by the
recursive feature elimination (RFE) method using Sentinel-2A image has the best inversion accuracy
effect (R2 = 0.831, RMSE = 12.604 m3 ha−1, rRMSE = 36.411%, MAE = 9.366 m3 ha−1). Comparing
the performance of the models on the test set, the ranking is as follows, Random Forest (RF) model >
Back Propagation (BP) neural network model > multiple linear regression (MLR) model. The feature
variable screening based on the Random Forest’s recursive feature elimination (RFE) method is better
than the linear stepwise regression (LSR). Therefore, the RFE-RF method based on the joint variables
from Landsat 8 and Sentinel-2 satellite data to establish a new remote sensing data source provides
the possibility to improve the estimation accuracy of FSV and provides reference for forest dynamic
monitoring.

Keywords: forest stock volume (FSV); Landsat 8 OLI; Sentinel-2 MSI; forest inventory data (FID);
random forest (RF); back propagation (BP) neural network; multiple linear regression (MLR)
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1. Introduction

Forest stock volume (FSV, m3 ha−1) is a key indicator for measuring forest quality,
evaluating forest management capability, and assessing carbon sequestration ability. There-
fore, effective monitoring of FSV is a crucial task [1]. FSV is measured in cubic meters per
mu (1 mu = 0.06667 ha). Traditional methods for determining FSV involve ground surveys,
which use measured parameters of individual trees combined with local volume tables
to estimate the wood volume of each tree, then extrapolate to the total forest volume [2].
However, this method is time-consuming and inefficient. With the advancement and appli-
cation of remote sensing technology, optical remote sensing images, combined with ground
sample data, are used to establish inversion models for large-scale estimation of FSV, be-
coming the primary method for FSV estimation. Estimating forest biomass and carbon
sequestration heavily relies on forest stock volume (FSV), which serves as a fundamental
data source. FSV plays a critical role in reflecting the quality of forest resources and the
level of forest management [3–5]. Accurate and scientific forest management, as well as
the optimization of forest ecosystems’ functionality and carbon sequestration potential,
depend on the dynamic estimation of FSV’s spatial distribution [6–8].

Although FSV information can be easily obtained from many large-scale global prod-
ucts, its specific regional use is often limited by temporal and spatial resolution constraints
or other unknown local errors [9–11]. Due to the strong spatial heterogeneity of forest
ecosystems, the response relationship between remote sensing factors and FSV is typically
complex [12,13]. There are still many issues to be addressed in the research and application
of FSV estimation based on remote sensing technology. Furthermore, Light Detection and
Ranging (LiDAR), as an emerging active remote sensing technology, has limited availability
of satellite data and high acquisition costs for airborne data, which restricts its widespread
application in FSV remote sensing estimation [14,15]. On the other hand, optical remote
sensing is a passive remote sensing technology that often provides higher spatial resolution
and more detailed surface information. The spatial resolution of optical remote sensing
data, such as Landsat 8 and Sentinel-2, can reach below 30 m, while LiDAR, typically, has
a spatial resolution ranging from a few meters to a dozen meters [16,17]. Additionally,
data from satellites like Landsat 8 and Sentinel-2 are freely available, whereas LiDAR data
acquisition and processing costs are higher. The successful applications of these techno-
logical tools have paved the way for estimating forest variables, such as FSV, through
remote sensing technology. Launched by the European Space Agency (ESA) through its
Copernicus program in 2015 and 2017, respectively, Sentinel-2A and Sentinel-2B satellite
series offer imagery with a nominal five-day revisit time span worldwide [18].

Sentinel-2 imagery consists of 13 spectral bands that offer spatial resolutions ranging
from 10 to 60 m. The European Copernicus program provides free access to Sentinel-2
satellite images, which are provided by the operational environment monitoring system.
One of the key applications of the Sentinel-2 satellite series is vegetation analysis [9].
Sentinel-2 images are a preferred source of remote sensing data for forestry research due
to their short revisit periods, numerous spectral attributes, and diverse spatial resolution
bands. For example, Persson et al. [19] leveraged the Sentinel-2 data to identify common
tree species in central Sweden, obtaining an overall accuracy of approximately 88.2% by
incorporating all of the imagery bands in their final classification model. A study carried
out by Hościło et al. [20] in southern Poland has confirmed that the Sentinel-2 series of
images can accurately delineate five tree species, including beech, oak, birch, alder, and
larch, with an overall accuracy higher than 85%. Similarly, Pandit et al. [21] investigated
the potential of Sentinel-2 images to estimate forest biomass in Nepal. They developed a
biomass estimation model that achieved an R2 value of 0.81 and an RMSE value of 25.57 t
ha−1. Zarco-Tejada et al. [22] showed that Sentinel-2A data can estimate the chlorophyll
content in conifer forests with an open canopy. The R2 value was higher than 0.7 for June
and higher than 0.4 for December. In the Brazilian Amazon, Lima et al. [23] conducted a
comparative study to monitor selective logging using Sentinel-2 and Landsat 8 imagery.
The effectiveness of Sentinel-2 data in detecting logging concessions exceeds Landsat
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8 data. Specifically, the study revealed that 43.2% of logging concessions were detected by
Sentinel-2 data, compared to only 35.5% detected by Landsat 8 data. Using the Sentinel-2
time series, Grabska et al. [24] conducted a study on mapping forest stand species in
the Carpathian Mountains of Poland. The study noted that a higher accuracy level was
achieved, specifically, an improvement between 5% and 10% in overall accuracy compared
to relying solely on single-date imagery. The studies discussed above vividly illustrate the
enormous potential of the Sentinel-2 for effective forest vegetation monitoring.

In the field of forest stock volume (FSV) estimation, researchers have investigated
the use of remote sensing to assess FSV. For example, Condés et al. [25] found that
combining satellite images and field data improved the prediction of plot-level growing
stock volume, resulting in a significant increase in the adjusted R-squared value from
0.19 to 0.42. Another study by Chrysafis et al. [26] compared the use of Sentinel-2 and
Landsat 8 images for estimating FSV using the Random Forest (RF) regression algorithm.
The results showed that FSV estimates based on Sentinel-2 images had better accuracy
(R2 = 0.63, RMSE = 63.11 m3 ha−1) than those based on Landsat 8 images (R2 = 0.62,
RMSE = 64.40 m3 ha−1). However, some studies were conducted that combined optical
images and microwave data to estimate forest variables [27–29]. Mauya et al. [30] conducted
a remarkable study in which they evaluated the Sentinel-1, Sentinel-2, and ALOS PALSAR-2
images-based multiple linear regression (MLR) models for predicting FSV, and reported
that the Sentinel-2 images performed much better with an RMSE of 42.03% and a pseudo
R2 of 0.63. For predicting forest variables, Pham et al. showed that machine learning
algorithms were likely to become more attractive in remote sensing [31]. Mura, Matteo
et al. [32] discovered that the usage of eight k-nearest neighbors (kNN) methods with
Sentinel-2A imagery proved successful in estimating the forest’s GSV.According to the
research conducted by Liu et al. [33] the combination of Sentinel-2A satellite image with
kNN produced 97.0%, 93.2%, and 83.6% accuracy in three scales—forestry bureau, forest
farm, and subclass, correspondingly. Li et al. [34] utilized the stepwise regression-based
multiple linear regression models in their research, and with the inclusion of Sentinel-2A
imagery data, forest inventory data, and digital elevation model (DEM) data of the study
area, attempted to estimate the FSV of Linhai City and Chun’an County. Their study
also employed the Stacking model with Least Absolute Shrinkage and Selection Operator
(LASSO), and achieved the minimum Mean Absolute Percentage Error (MAPE) of 20.24%
for FSV estimation. Jiang et al. [35] utilized a Random Forest regression (RFR) model with
a spatial resolution of 30 m to predict the forest’s growing stock volume (GSV) in Georgia.
They suggested that ecophisiological variations in each forest could be accurately captured
by variables derived from the Landsat time series. The authors recommend that future
studies use a greater variety of methods, larger study areas, and Sentinel-2 data to predict
the FSV with further accuracy.

However, ground plot survey data are still indispensable for remote sensing model-
ing [36]. The costs of ground plot surveys have always been high, which presents obstacles
to estimating provincial FSV using remote sensing. Additionally, traditional sample loca-
tion survey technology often produces serious positional deviations that may impact the
modeling accuracy of plot data-based remote sensing estimations and predictions [37]. This
is a reason for the biased estimations resulting from inaccurate matching of sample plots
and pixels. Furthermore, limited research has compared the results of RF, BP, and MLR us-
ing Sentinel-2 and Landsat 8 images to predict FSVs. In addition, few studies have explored
which variable selection methods can make the selected dataset have better explanatory
and robustness to predict FSV. Hence, the novelty of this study primarily included the
following aspects. (1) The field plot data used in this study were obtained from the 9th
Beijing Forest Inventory Data (FID). The FID has comprehensive coverage and provides
detailed information on forest resources. The measurement accuracy for forest parameters
in the FID exceeds that of ordinary field measurements. By combining the forest inventory
data with remote sensing imagery, more accurate actual values of forest stock volume can
be provided, which is conducive to improving the accuracy of stock volume estimation.
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(2) Variable selection was performed using Pearson correlation coefficient combined with
linear stepwise regression (LSR) and the recursive feature elimination (RFE) method of Ran-
dom Forest in the process of establishing the forest stock volume model. Six combinations
of variables were formed, and multiple linear regression (MLR), back propagation (BP)
neural network model, and Random Forest (RF) model were constructed to estimate the
forest stock volume (FSV). The prediction accuracy of the models under different scenarios
was compared and analyzed. (3) Based on Landsat 8 OLI and Sentinel-2 optical remote
sensing data, the accuracy of forest stock volume estimation was compared between the
two remote sensing data sources. The two remote sensing datasets were combined, and the
forest stock volume was estimated using the combined data in conjunction with ground
plot data. Additionally, a map of forest stock volume (FSV) in Huairou District, Beijing,
was generated.

2. Materials and Methods
2.1. Study Site

The study site is situated in the northeast part of Beijing, in Huairou District, in the
coordinates 116◦17′–116◦53′ E, and 40◦41′–41◦4′ N. Beijing has a total area of 2122.6 square
kilometers, characterized by low-altitude terrain in the south and high-altitude terrain in
the north, with elevations ranging from 34 to 1661 m. The plains in the south form part
of the North China Plain, while the mountainous areas in the north belong to the Yan
Mountain Range [38]. The climate is semi-humid and warm temperate, exhibiting dry and
windy springs, high precipitation levels in summers, hot and humid weather patterns,
drastic temperature drops and early frost in autumn, and cold and less snowy winters.
The dominant tree species found in the artificial forests of Huairou District, Beijing, are
Pinus tabulaeformis Carr. and Populus tomentosa Carrière. In addition, the natural forests
primarily consist of Quercus mongolica Fisch. ex Ledeb., Platycladus orientalis (L.) Franco, and
Betula platyphylla Suk, among others. For clarification, the location of the study area and the
distribution of the sample plots can be found in (Figure 1).

Figure 1. The study area is located in Huairou District, Beijing City, China, and the distribution of the
sampling plots.
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2.2. Forest Inventory Data

The data used for this study originated from the 2016 continuous inventory of forest
resources in Beijing, known as “Forest Inventory Data (FID)” [39]. The systematic sam-
pling method was used to establish fixed square sample plots, each measuring 0.067 hm²
(25.8 m × 25.8 m), with a spacing of 2 km × 2 km between them. The recorded data from
each sample plot pertained to latitude, longitude, soil thickness, average age, average
diameter at breast height, and canopy density. The standing volume data were obtained
using MySQL5.6 software by matching the plot and tree databases with the plot and tree
numbers as matching criteria within the continuous forest resource inventory data. All
Huairou district sample plots in Beijing were assessed, and the plots that did not meet
the three-sigma rule criteria were excluded. The confidence level was set at 99.7%, with
outliers identified as any plots with values that were three times the standard deviation
away from the mean. A total of 273 plots remained after the abnormal data were removed.
The plots were partitioned into training and testing sets in a 7:3 ratio with 70 plots each. A
statistical table of plot volumes was generated.

2.3. Digital Elevation Model

The digital elevation model (DEM) primarily serves as raw data for topographical
analyses [40]. It is capable of extracting terrain data, including slope, aspect, and elevation.
These terrain features are used in various fields, including surveying, hydrology, and soil
science. This study procured the necessary digital elevation model (DEM) data with a
spatial resolution of 30 m from Geographic Space Data Cloud (www.gscloud.com, accessed
on 2 December 2022). The DEM data was primarily utilized to extract and investigate
the corresponding elevation, slope, and aspect values of the study area. Elevation, slope,
and aspect were extracted from the DEM imagery as terrain factors. Terrain factors are
important in distinguishing different landforms and their characteristics often have an
impact on the growth rate of forests. Therefore, there is a theoretical relationship between
terrain-based feature variables and forest stock volume (FSV) values. Thus, in this study,
texture feature variables related to the terrain were extracted from elevation, slope, and
aspect images of the study area.

2.4. Remote Sensing Data and Preprocessing

We used Landsat 8 OLI and Sentinel-2 MSI remote sensing sources. The Landsat 8 OLI
data, along with its OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor)
sensors, was launched in 2013 [23]. The OLI comprises 9 bands (Table 1) of 30 m spatial
resolution and one panchromatic band of 15 m resolution [41]. The TIRS contains two bands
with a spatial resolution of 100 m. Studies show that the forest vegetation is lush during the
summer and autumn seasons, and the overall change in forest characteristics is minimal.
For this reason, this article primarily uses satellite imagery from the summer and autumn as
its data source. Two Landsat 8 OIL images, taken on 11 October 2016 with a cloud cover of
less than 10% and a resolution of 30 m, were chosen, taking into account image quality and
cloud coverage. The chosen bands range from band 2 to band 7. (The B1 and B9 spectral
bands are excluded from the study since B1 is primarily utilized for coastline observation,
and B9 is predominantly used for cirrus cloud detection.) The image was downloaded from
the official website of the United States Geological Survey (https://earthexplorer.usgs.gov,
accessed on 23 December 2022). The study employed ENVI 5.3 to radiometrically calibrate
the obtained Landsat 8 OLI image, apply FLAASH atmospheric correction, fuse images,
and crop the image. The topographic correction expansion tool (Topographic Correction) in
ENVI5.3 software was used to correct the image for terrain, which produced a multispectral
image from Landsat 8 OLI of the study area.

Sentinel-2 is a mission by the European Space Agency (ESA) as part of the larger
Copernicus program, which aims to provide high-quality Earth observation data for a
range of applications [42]. Sentinel-2 is a pair of identical satellites, Sentinel-2A and
Sentinel-2B, launched in 2015 and 2017, respectively [43]. One of the key features of

www.gscloud.com
https://earthexplorer.usgs.gov
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Sentinel-2A is its multi-spectral instrument (MSI), which captures images in 13 spectral
bands (Table 1), ranging from the visible to the shortwave infrared. This enables the
satellite to provide detailed information on land vegetation growth, forestry management,
crop yields, and soil moisture content. The Sentinel-2 data provided by the European
Space Agency (ESA) is L1C level multi-spectral instrument (MSI) data [44]. L1C data are
georeferenced orthorectified imagery that needs radiometric and atmospheric calibration.
Hence, it is crucial to transform Sentinel-2 data to level 2A after undergoing radiometric
calibration and atmospheric correction. The Sentinel-2 imagery in this study were obtained
from the website of the United States Geological Survey (https://earthexplorer.usgs.gov,
accessed on 23 December 2022), collected in September 2016, and were in L1C format.
The Sentinel-2 L1C level images were converted to L2A level using the ESA’s Sen2Cor
2.5.5 module prior to analysis. Due to the fixed plot size of 25.8 m × 25.8 m, the spectral
bands of Sentinel-2 with varying resolutions may not align. Potential image misalignments
due to unmatched pixel and plot sizes could lead to significant errors in the study. Therefore,
the 11 bands of Sentinel-2 imagery, including B2–B12, were resampled in SNAP8.0 software,
and these 11 bands were uniformly resampled to a resolution of 25.8 m to match the sample
sites.

Table 1. Spectral bands of Sentinel-2 MSI and Landsat 8 OLI images used in this study.

Band Description Wavelenghts Satellite Instrument Resolution

min max

1 Coastal aerosol 430 457 Sentinel-2 MSI 60
2 Blue 448 546 10
3 Green 538 583 10
4 Red 646 684 10
5 Vegetation Red Edge (RE1) 694 713 20
6 Vegetation Red Edge (RE2) 731 749 20
7 Vegetation Red Edge (RE3) 769 797 20
8 Near-Infrared (NIR) 763 908 10

8a Narrow NIR (nNir) 848 881 20
9 Water vapor 932 958 60

10 Shortwave infrared - Cirrus 1336 1411 60
11 Shortwave infrared (SWIR1) 1542 1685 20
12 Shortwave infrared (SWIR2) 2081 2323 20

1 Violet-deep Blue (V-D Blue) 433 453 Landsat 8 OLI 30
2 Blue 450 515 30
3 Green 525 600 30
4 Red 630 680 30
5 Near-Infrared (NIR) 845 885 30
6 Pan-Chromatic 1560 1660 30
7 SWIR—Cirrus 2100 2300 30
8 Shortwave infrared (SWIR1) 500 680 30
9 Shortwave infrared (SWIR2) 1360 1390 30

2.5. Characteristic Variable Extraction

Remote sensing texture feature refers to the frequency of tonal changes in an image,
which reflects the surface characteristics of an object and is critical for extracting parameters
and interpreting images [45]. This article utilizes the Gray-Level Co-occurrence Matrix
(GLCM) method to extract texture features for the Landsat 8 image (B2–B7) and Sentinel-2A
image (B2–B8A), respectively. The window size is set to 3 × 3. The extracted texture
features using GLCM include mean, variance, homogeneity, contrast, dissimilarity, en-
tropy, second moment, and correlation [46]. To differentiate the texture feature variables
extracted from Landsat 8 and Sentinel-2, this article employs distinct expressions. For
instance, the mean extracted from the blue band of Landsat 8 is denoted as LanB2Mean,
while the correlation extracted from the blue band of Sentinel-2 is denoted as SenB2Cor. The

https://earthexplorer.usgs.gov
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vegetation index (VI) is composed of a formulaic combination of diverse remote sensing
spectral bands [47]. VI is of informative significance for determining vegetation charac-
teristics and can be used to evaluate growth in both qualitative and quantitative aspects
[48]. Based on Landsat 8 and Sentinel-2A image data, band calculations and extractions
were carried out to obtain single-band reflectance. Vegetation indices and texture fac-
tors calculated from the single-band reflectance showed that the inclusion of single-band
reflectance, vegetation indices, and texture factors can improve the accuracy of forest pa-
rameters estimation to varying degrees. Relevant literature was searched, and a total of
159 remote sensing variables were extracted in this article, including 69 remote sensing
variables extracted from Landsat 8 and 84 variables extracted from Sentinel-2, and three
topographic factors (Aspect, Slope, and DEM) extracted from DEM. Three forest inven-
tory data included mean of tree age (Mage), mean diameter at breast height (DBH), and
canopy density. (To avoid confusion, the expressions for Landsat 8 remote sensing variables
and Sentinel-2 variables are distinguished in this article), where Landsat 8 blue band is
expressed as LanB2 and Sentinel-2 blue band is expressed as SenB2. In total, 6 Landsat 8
single-band factors, namely LanB2, LanB3, LanB4, LanB5, LanB6, and LanB7, were selected
in this experiment, and a total of 11 Sentinel-2 single-band factors were selected, namely
SenB2, SenB3, SenB4, SenB5, SenB6, SenB7, SenB8, SenB8A, SenB10, SenB11, and SenB12 (Table 2).

Table 2. Description of predictor variables for the FSV estimation.

Variable Description Reference

Band Reflectivity LanB2, LanB3, LanB4, LanB5, LanB6, LanB7 [23]
SenB2, SenB3, SenB4, SenB5, SenB6, SenB7,

SenB8, SenB8A, SenB10, SenB11, SenB12
[23]

Vegetation Index LanNDVI = (LanB5 − LanB4)/(LanB5 + LanB4) [49]
LanND43 = (LanB4 − LanB3)/(LanB4 + LanB3) [49]
LanND25 = (LanB2 − LanB5)/(LanB2 + LanB5) [49]

LanND563 = (LanB5 + LanB6 − LanB3)/(LanB5 + LanB6 + LanB3) [49]
LanDVI = LanB5 − LanB4 [49]

LanSAVI = (1 + L)(LanB5 − LanB4)/(LanB5 + LanB4 + L) [49]
LanRVI = LanB5/LanB4 [49]

LanPVI = 0.939LanB5 − 0.344LanB4 + 0.09 [49]
SenRVI = SenB8/SenB4 [49]

SenRVIre = SenB8/SenB5 [49]
SenDVI = SenB8 − SenB4 [49]

SenNDVI = (SenB8 − SenB4)/(SenB8 + SenB4) [49]
SenNDVIre1 = (SenB8 − SenB5)/(SenB8 + SenB5) [49]
SenNDVIre2 = (SenB8 − SenB6)/(SenB8 + SenB6) [49]

SenmNDVI = (SenB8 − SenB4)/(SenB8 + SenB4 − 2SenB2) [49]
SenmNDVIre = (SenB8 − SenB5)/(SenB8 + SenB5 − 2SenB2) [49]

SenND11 = (SenB8 − SenB11)/(SenB8 + SenB11) [49]
Topographic Factor (Digital Elevation Model) Dem [33]

Aspect extracted from DEM (Aspect) [33]
Slope extracted from DEM (Slope) [33]

Forest Inventory Data Mean of Tree age (Mage) [35]
Mean Diameter at Breast Height (DBH) [35]

Canopy density [35]
Texture analysis Mean, Variance, Homogeneity, Contrast, Dissimilarity,

Entropy, Second Moment, Correlation
[39]

2.6. Data Preprocessing

After extracting these modeling factors, it is necessary to standardize the factors with
different dimensions and data levels in order to eliminate the influence of dimensional and
scale differences on the results. This standardization will ensure that the numerical values
of different types of data are consistent to the same scale.
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The normalization formula for spectral bands [50], vegetation indices, texture features,
and elevation is as follows:

xi = (x− xmin)/(xmax − xmin) (1)

The normalization formula for slope is as follows:

xα = sin α (2)

The normalization formula for aspect is as follows:

xβ =
cos β + 1

2
(3)

2.7. Model Development
2.7.1. Correlation Analysis

The correlation relationship is a type of non-deterministic relationship that represents
the degree of association between two variables. The correlation relationship between
variables can be represented by correlation coefficients. Common correlation coefficients
include Kendall correlation coefficient, Spearman correlation coefficient, and Pearson
correlation coefficient [51]. This study uses the Person correlation coefficient to calculate the
correlation between the modeling feature variables and forest stock. The Pearson correlation
coefficient can be calculated using SPSS26 software. Its sign indicates the direction of the
correlation, while the value represents the strength of the relationship.

The formula is as follows

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(4)

where xi and yi, respectively, indicate the values of the two variables of the ith sample, x̄
and ȳ represent the mean values of the two variables, and n represents the sample size.
The value of rxy ranges from −1 to 1. When rxy is equal to 1, it indicates a completely
positive linear relationship between the two variables. When rxy is equal to −1, it indicates
a completely negative linear relationship between the two variables. When rxy is equal to 0,
it indicates that there is no linear relationship between the two variables.

2.7.2. Linear Stepwise Regression

The process of linear stepwise regression (LSR) involves introducing explanatory
variables into the regression equation in descending order of their correlation with the
dependent variable [52]. After each addition of an explanatory variable, it undergoes an
F-test followed by a T-test for each selected variable. If a previously introduced explanatory
variable becomes insignificant as a result of introducing later ones, it is eliminated to ensure
that the regression equation comprises only significant variables before adding another
variable. This iterative process is effective in reducing the problem of multicollinearity and
often yields a relatively low variance inflation factor (VIF) of the screened independent
variables. Consequently, we avoid the issue of high correlation between independent
variables and improve the accuracy of the model.

The formula is as follows:

y = b0 + b1x1 + b2x2 + . . . + bpxp (5)

b0 represents the intercept, x1, x2, . . . , xp represent the selected independent variables, and
b1, . . . , bp represent the regression coefficients of each independent variable.
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2.7.3. Recursive Feature Elimination

Random Forest recursive feature elimination is an important feature selection method
in machine learning. Recursive feature elimination (RFE) repeatedly constructs models,
selects the best or worst features, and repeats the process on the remaining features until all
features are evaluated [53]. This method ranks features based on the order in which they are
selected. This article utilizes the Random Forest algorithm for backward recursive feature
elimination. The main process involves training the model using the feature selection RFE
method in Python 3.6. First, the model is trained using all the feature variables, and the
importance score for each feature variable is calculated. Next, based on a predetermined
number of features to select, the feature variables with the highest scores are chosen and
retained. Finally, the remaining feature variables are trained as a new feature set, and the
above process is repeated until the desired number of features are obtained.

2.7.4. Multiple Linear Regression

Multiple linear regression (MLR) is a method of establishing the optimal fitting model
by screening variables [30,54–56]. It reduces the multicollinearity of the model by removing
variables with low contribution and high correlation with other variables from the candidate
variables. In this study, the forest volume of the 207 sample plots in the training set was
taken as the dependent variable, and the selected modeling factors after LSR and RFE
method screening were taken as the independent variables. Based on different modeling
factor sets, multiple linear regression models were established. The variable selection
method for the independent variables in SPSS version 26.0 should be set to “Stepwise” with
a confidence interval of 95%, utilizing the probability of the F statistic (sig) as the stepping
method criterion. Any variable that satisfies the condition F ≤ 0.05 will be included in the
regression model, while variables with F ≥ 0.10 will be excluded. The formula for multiple
linear regression (MLR) is provided below [57].

The formula for the MLR is:

ĜSV = β +
n

∑
i=1

αi × xi (6)

ĜSV represents the predicted FSV value of the multiple linear regression model; β is the
constant intercept of the linear regression model; xi represents the feature variable selected
by the LSR or RFE method; n represents the total number of feature variables selected
by the LSR or RFE method; and αi represents the linear regression equation coefficient
corresponding to the feature variable xi.

2.7.5. Back Propagation Neural Network

The Back Propagation (BP) neural network is a widely used neural network model
based on the error Back Propagation algorithm for multi-layer feedforward neural networks.
It was first proposed by Rumelhart and McClelland in 1986 and is currently the most
commonly used neural network model. The BP neural network is a common branch of
ANN, which utilizes the back propagation of the error between the predicted and real
values to update the weights and biases in the BP neural network [58]. The fundamental
principle of the BP neural network algorithm is to minimize the mean squared error between
the output and expected values by utilizing gradient descent, a technique which involves
searching for the gradient. The BP neural network is widely applied in numerous fields
due to its advantages such as self-learning, adaptivity, and parallel processing. The neural
network model can be accessed directly in MATLAB through programming or the built-in
toolbox. As such, this paper utilizes MATLAB R2019a(9.6.0) software to model and test the
BP neural network.

The relationship between the input parameters x and output values y can be ex-
pressed as

y = f
(
∑ wx + b

)
(7)
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where w and b represent the weights matrix and the biases vector from the adjacent layers,
respectively, f represents the activation function [59].

2.7.6. Random Forest Model

The Random Forest (RF) algorithm is a non-parametric ensemble learning algorithm
that is less sensitive to noisy data and has strong noise resistance capabilities [60–65]. It
does not face the risk of overfitting and does not require assumptions about the distribution
of input data. Additionally, it can process input samples with high-dimensional features
without the need for dimensionality reduction and can effectively handle large datasets.
The RF algorithm utilizes the bootstrap method to randomly extract multiple samples from
the original population and generate a group of regression trees (ntree). For each tree,
the RF algorithm randomly selects a subset of predictors at each splitting node (mtry) to
build a tree without requiring tree pruning. In building each tree, a procedure called the
“out-of-bag” (OOB) error is used to independently construct each tree based on the training
data. The RF algorithm calculates variable importance (VI) and OOB error.

The OOB error can be estimated as follows

OOBerror =
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

where yi is the measured FSV, ŷi is the predicted FSV, and n is the total number of OOB
samples.

2.7.7. Model Evaluation

We assessed the fitting and predictive performance of the model on a set of indepen-
dent test data using various statistical metrics, including the coefficient of determination
(R2), absolute mean relative error (RMAE), root mean square error (RMSE), and mean
absolute error (MAE).

R2 = 1−
[

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)

2

]
(9)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(10)

MAE =
n

∑
i=1

∣∣∣∣yi − ŷi
n

∣∣∣∣ (11)

RMAE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (12)

where yi is the observed value, ŷi is the predicted value, n is the number of samples, and y
is the average of all the observed values

3. Results

For this study, 203 out of the 273 total sample plots (70%) were used as the training
data, and 70 out of the 273 total sample plots (30%) were used as the test data. Table 3 lists
the summarized statistics of the plot-level training data and test data. For the training data,
the minimum FSV was only 0.09 m3 ha−1, and the maximum FSV was 187.725 m3 ha−1. For
the test data, the FSV ranged from 0.075 m3 ha−1 to 140.190 m3 ha−1. In accordance with
the three-sigma rule and using a 99.7% confidence interval, we retained the plot volume
sampling points within three times the standard deviation range and removed outlier
sample points that were less than µ− 3σ or greater than µ + 3σ (where µ is the sample
mean and σ is the sample standard deviation). MATLAB R2019a(9.6.0) a software was used
to remove data outliers based on the three-sigma rule. Finally, 203 and 70 sampling sites
were, respectively, selected as the training and testing sets (Table 3).
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Table 3. Summary of sample plot data processing results.

Type Number of
Sample Plots

Min Max Mean SD *
m3 ha−1 m3 ha−1 m3 ha−1 m3 ha−1

Training Data 203 0.09 187.725 32.176 35.229
Test Data 70 0.075 140.19 28.897 29.885

Total sample
plots 273 0.075 187.725 31.279 33.838

* SD represents standard deviation of variables.

3.1. Correlation Analysis and Variable Selection

After preprocessing of remote sensing images, this study selected feature variables
extracted from Landsat 8 and Sentinel-2 images as potential predictive variables related
to FSV. Modeling factors were screened for the obtained feature variables through Pear-
son correlation coefficient testing in SPSS26 software.The Pearson correlation coefficient
can be used to describe the correlation between feature variables and ground truth data.
The study calculated the Pearson correlation coefficient between the survey FSV of the
sample plot and all extracted Landsat 8 feature variables and Sentinel-2 feature variables
separately. Among the feature variables of Landsat 8, there are 23 feature variables that are
significantly correlated at the 0.05 significance level (bilateral), and 13 feature variables that
are significantly correlated with FSV at the 0.01 level of significance. Among the feature
variables extracted from Landsat 8 images, except for the near-infrared band (LanB5), the
reflectance of the other five bands is significantly negatively correlated with FSV. Vegetation
indices (LanNDVI , LanRVI , LanSAVI) are all positively correlated with FSV and Aspect, DEM
are positively correlated with FSV, while texture factors (LanB2Mean, LanB3Mean, LanB4Mean,
LanB6Mean, LanB7Mean) are negatively correlated with FSV. Among the feature variables of
Sentinel-2, there are 24 feature variables that are significantly correlated at the 0.01 level,
among which SenB2, SenB3, SenB4, SenB5 are negatively correlated with FSV, and vegetation
indices (SenmNDVIre, SenRVI , SenDVI) are all positively correlated with FSV. Texture fac-
tors (SenB2Cor, SenB2Hom, SenB2Sec, SenB4Sec) are all positively correlated with FSV, while the
remaining texture factors (SenB2Mean, SenB2Ent, SenB2Diss, SenB3Mean, SenB4Ent, SenB4Mean,
SenB5Ent, SenB5Mean) are negatively correlated with FSV. The correlation between DEM and
FSV in terrain factors is 0.340.

As shown in Table 4, this study used Landsat 8 and Sentinel-2 images, and selected
Landsat 8 and Sentinel-2, as well as feature variable combinations using linear stepwise
regression (LSR) and recursive feature elimination (RFE) methods, respectively. With
Landsat 8 as the image source, nine feature variables were selected using LSR, including
multi-spectral bands; (Figure 2) shows that the maximum coefficient of determination R2

and the minimum root mean squared error (RMSE) were achieved when the number of
variables was three, as selected by RFE. Nine feature variables were ultimately selected.
Using Sentinel-2 as the image source, LSR selected five feature variables; by using RFE
selection, when the number of variables was three (Figure 2), the coefficient of determination
R2 of the model reached its maximum and both R2 and root mean squared error (RMSE)
reached its minimum. As a result, nine feature variables were ultimately screened. To
study the joint ability of Landsat 8 data and Sentinel-2 data to invert the volume, in
this experiment, the resolution of the two satellite images was both set to 25.8 m during
resampling, which was used to match the sample sites. By combining Sentinel-2 and
Landsat 8 remote sensing variables, nine feature variables were selected after LSR screening;
using RFE selection, when the number of variables is five (Figure 2), the determination
coefficient of the model reaches its maximum, and at the same time, R2 and RMSE reach
their minimum. Finally, 10 feature variables are selected.
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Table 4. The precision of FSV estimation values was compared for three models, MLR, BP, and RF,
under different combinations of variable selection methodologies of LSR and RFE.

Data Variable Selection Variables Methods R2 RMSE rRMSE MAE
Source Method Combination (m3 ha−1) (%) (m3 ha−1)

Landsat 8 OLI

LSR
LanNDVI , LanRVI , MLR 0.595 19.491 56.309 15.947

LanB2, LanB3, LanB4 BP 0.704 16.666 48.147 12.239
LanB5, LanB6, Dem, Aspect RF 0.776 14.488 41.855 9.449

RFE
LanRVI , LanB2, LanB4, MLR 0.602 19.323 55.824 15.699
LanB5, LanB6, LanB7, BP 0.779 14.413 41.639 11.383

LanB2Mean, Dem, Aspect RF 0.782 14.317 41.36 9.273

Sentinel-2

LSR
SenB2, SenB5, MLR 0.605 19.257 55.633 15.673

SenmNDVIre, SenRVI , BP 0.707 16.583 47.907 12.487
Dem RF 0.796 13.826 39.942 9.081

RFE
SenB3, SenB4, SenB5, MLR 0.684 17.215 49.732 12.869

SenB2Cor, SenB4Sec, SenB5Ent, BP 0.713 16.385 47.335 12.571
SenB5Mean, SenRVI , Dem RF 0.799 13.743 39.702 8.899

Landsat 8 OLI
and Sentinel-2

LSR
LanB2, LanB4, LanB5, MLR 0.613 19.043 55.015 15.591

SenmNDVIre, SenRVI , SenB3, BP 0.737 15.713 45.394 12.303
SenB5, Dem, Aspect RF 0.83 12.616 36.448 9.276

RFE
SenB3, SenB4, SenB5, LanB2, MLR 0.627 18.719 54.077 15.252

SenRVI , SenmNDVIre, SenB5Mean, BP 0.719 16.228 46.881 13.088
SenB2Cor, Aspect, Dem RF 0.831 12.604 36.411 9.366

Optimal hyperparameters are shown in Figure 3a–c for the Random Forest models.
The number of estimators was varied to observe the effect on the out-of-bag (OOB) error.
It is notable that the Landsat 8-based RF model had the lowest out-of-bag error when
310 estimators were used. For the Sentinel-2 based RF model, 280 estimators resulted in the
lowest out-of-bag error. The joint variable data of Landsat 8 and Sentinel-2 resulted in the
lowest out-of-bag error when 265 estimators were used.

Figure 2. The precision change of recursive feature elimination (RFE) under different numbers of
feature variables: The figures from left to right are, respectively, labeled as (a) Landsat 8 (b) Sentinel-
2 (c) Landsat 8 data and Sentinel-2 combined.

Figure 3. Landsat 8 data and Sentinel-2 combined; graph of the OOB error for the RF model with
different hyperparameter combinations: (a) Landsat 8 (b) Sentinel-2 (c) Landsat 8 data and Sentinel-2
combined.
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3.2. Forest Volume Estimation Results Based on Landsat 8 and Sentinel-2 Imagery

Table 4 displays the results of the models that selected feature variable combinations
using the LSR method based on Landsat 8 images. The RF model exhibited the high-
est inversion accuracy, and both rRMSE and MAE values were minimized (R2 = 0.776,
RMSE = 14.488 m3 ha−1, rRMSE = 41.855%, MAE = 9.449 m3 ha−1). Conversely, the BP
model had lower precision with an R2 value of 0.704, while the MLR model had the
poorest performance with an R2 value of 0.595. The RF model continued to have the
highest inversion accuracy among those constructed with the feature variable combinations
selected by the RFE method, and both rRMSE and MAE values were also the lowest
(R2 = 0.782, RMSE = 14.317 m3 ha−1, rRMSE = 41.360%, MAE = 9.273 m3 ha−1). The BP
model had slightly lower precision with an R2 value of 0.779, while the MLR model had
the poorest performance with an R2 value of 0.602. When based on Sentinel-2 images
and constructed using the LSR method, the RF model again had the highest inversion
accuracy among the MLR, BP, and RF models, with minimized RMSE, rRMSE, and MAE
values (R2 = 0.796, RMSE = 13.826 m3 ha−1, rRMSE = 39.942%, MAE = 9.081 m3 ha−1).
The BP model, again, presented lower precision with an R2 value of 0.706, while the MLR
model had the poorest performance with an R2 value of 0.605. The RF model continued to
provide the highest inversion accuracy when constructed with the feature variable combina-
tions chosen by the RFE method (R2 = 0.799, RMSE = 13.743 m3 ha−1, rRMSE = 39.702%,
MAE = 8.899 m3 ha−1). In contrast, the BP model exhibited lower precision (R2 = 0.714,
RMSE = 16.385 m3 ha−1, rRMSE = 47.335%, MAE = 12.571 m3 ha−1), while the MLR
model’s performance was again the weakest with an R2 value of 0.684.

To study the ability to jointly retrieve the storage capacity using Landsat 8 and Sentinel-
2 remote sensing data, three models (MLR, BP, RF) were constructed using modeling factors
based on a screening of all the feature variables of Sentinel-2 and Landsat 8 remote sensing
data. The model constructed using the feature variables selected by the LSR method had
the highest accuracy, and the RF model had an R2 coefficient of 0.830. The model also
had the lowest RMSE, rRMSE, and Mean Absolute Error (MAE) values, which were
12.616 m3 ha−1, 36.448%, and 9.276 m3 ha−1, respectively. The BP model was slightly less
accurate with an R2 coefficient of 0.737, while the MLR model’s relatively least accurate
with an R2 coefficient of 0.613. Among the three models constructed based on the feature
variables combination selected by the RFE method, the RF model had the highest accuracy,
with an R2 coefficient of 0.831, RMSE of 12.604 m3 ha−1, rRMSE of 36.411%, and MAE of
9.366 m3 ha−1. The BP model had a lower accuracy with an R2 coefficient of 0.719, RMSE
of 16.228 m3 ha−1, rRMSE of 46.881%, and MAE of 13.088 m3 ha−1. The MLR model
had the least accuracy with an R2 coefficient of 0.627. In both variable selection methods,
the RF model performed better, and the RF regression accuracy based on RFE was more
superior to using LSR. The Random Forest method is based on sorting the importance of
all feature variables and can choose the feature variables that contribute the most to the
model, thereby significantly improving the model’s accuracy.

3.3. Comparison of the Predicted FSV Estimates among the MLR, BP and RF Methods

The accuracy of the model is validated using 70 sample data from the test set. The
estimated values of FSV are compared with measured values in (Figures 4–6). For the
same set of modeling factors, RF has the best prediction accuracy for FSV, followed by
the BP model, and finally the MLR model. This indicates that machine learning methods
have an advantage over traditional regression methods for FSV. Comparing the two sets of
modeling factors, the model accuracy based on the Sentinel-2 (Figure 5) modeling factor set
is better than that of the same type of model based on the Landsat 8 (Figure 4) modeling
factor set. This suggests that Sentinel-2 is more advantageous than Landsat 8, possibly due
to the high resolution and the red edge band that can reflect vegetation growth levels. The
accuracy of the forest accumulation estimation model established by using both Sentinel-2
and Landsat 8 data (Figure 6) is better than that based on single optical remote sensing
data. The determination coefficient R2 of the three forest accumulation estimation models
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is greater than 0.595, and the overall accuracy exceeds that of the forest accumulation
estimation model constructed based on single optical remote sensing data. Further analysis
of the model’s fitting effect is carried out through the scatter diagram of the estimated and
measured values of the three forest accumulation estimation models.

Figure 4. Scatter plots of the observed and predicted FSV values by: (a) Landsat 8 LSR-MLR
(b) Landsat 8 RFE-MLR (c) Landsat 8 LSR-BP (d) Landsat 8 RFE-BP (e) Landsat 8 LSR-RF (f) Landsat
8 RFE-RF.

Figure 5. Scatter plots of the observed and predicted FSV values by: (a) Sentinel-2 LSR-MLR
(b) Sentinel-2 RFE-MLR (c) Sentinel-2 LSR-BP (d) Sentinel-2 RFE-BP (e) Sentinel-2 LSR-RF (f) Sentinel-
2 RFE-RF.
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Figure 6. Scatter plots of the observed and predicted FSV values by: (a) Landsat 8–Sentinel-2 LSR-
MLR (b) Landsat 8–Sentinel-2 RFE-MLR (c) Landsat 8–Sentinel-2 LSR-BP (d) Landsat 8–Sentinel-2
RFE-BP (e) Landsat 8–Sentinel-2 LSR-RF (f) Landsat 8–Sentinel-2 RFE-RF.

3.4. Map of the FSV Estimation

Firstly, using Google Earth Engine (GEE) to download the 10 m land use classification
data, the forest area of Huairou District, Beijing was extracted. Then, based on the variables
selected from the combined Landsat 8 and Sentinel-2 data and the best model RFE-RF
(R2 = 0.831), the FSV in the study area was estimated and the spatial distribution map of
FSV in the study area was obtained, as shown in the (Figure 7). According to (Figure 7),
areas of high forest stock volume concentration are predominantly in the northern, central,
and northwestern parts of the research area, with the estimated values mostly ranging
from 150 to 200 m3 ha−1. Conversely, regions with lower forest stock volumes are con-
centrated in the southern and southeastern parts with estimated values mostly ranging
from 0 to 50 m3 ha−1. The variation in forest stock volume resulted from the relatively high
terrain with dense vegetation and fewer anthropogenic activities in the northern, central,
and northwestern parts and the relatively flat terrain with more human activities in the
southern and southeastern parts. The forest stock volume inversion map of the study area
corresponds to actual survey results, accurately reflecting the spatial distribution of the
actual forest stock volume in the researched area (Figure 7).
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Figure 7. Land use classification map and predicted FSV map by: (a) the GEE land use classification
forest/non-forest map in 2016; (b) predicted FSV map of the study area in 2016.

4. Discussion

In this study, we used the Forest Inventory Data (FID) to obtain actual survey data.
We combined Landsat 8 and Sentinel-2 derived variables with remote sensing data before
and after the joint variable, then studied FSV estimation by combining these data with
ground sample plot data. We analyzed three data sources using Pearson correlation
coefficients, combined with LSR and RFE methods to screen variables and construct three
FSV estimation models (MLR, BP, and RF). The results of the regression models showed
that the single data sources have strong forest stock volume estimation ability. However,
the joint performance of the two data sources demonstrated a stronger capability of FSV
estimation. Through precision analysis and evaluation, we determined that the RFE-RF
model of the joint Landsat 8 and Sentinel-2 image was the optimal model for estimating
forest stock volume. We then performed remote sensing inversion of forest stock volume in
the study area and analyzed its spatial distribution characteristics.

The results show that among all the modeling factors, the one with the highest correla-
tion with FSV is Sentinel-2’s red-edge band 1 (B5). The correlation between Sentinel-2 and
FSV is generally higher than that of Landsat 8, and the correlation between red-edge band 1
(B5) and FSV is generally higher. The correlation between Sentinel-2A’s red-edge band 1
(B5) and FSV is more significant than the other variables used, and features derived from
the red-edge band are prioritized in reducing model error. The most efficient predictive
band was the red-edge 1 (B5), performing exceptionally well in both the machine learning
methods and the MLR method, as validated by recent studies on forest prediction [66]
and tree species classification [67]. In the domain of gross primary productivity (GPP), Lin
et al. discovered the usefulness of the red-edge band in evaluating GPP. They also pointed
out that the red-edge reflectance was sensitive to the chlorophyll content in leaves [68].
Additionally, the leaf chlorophyll content was a crucial variable to consider in forest anal-
ysis. While the machine learning models and the MLR did not select the same variables,
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B5 stood out as a critical variable for estimating FSV. Despite the differences in modeling
variables, the accuracy results from the model verification were not significantly dissimilar,
emphasizing B5’s advantage. Chrysafis et al. found a different result on using the RF
algorithm and Sentinel-2 images for estimating FSV in a Mediterranean forest ecosystem.
They highlighted B11 (SWIR 1) as the most critical variable [26]. Our study was congruent
with Astola et al., where they identified B5 as the most crucial variable for predicting
FSV [9].

Different combinations of feature variables can result in different modeling accura-
cies, and selecting appropriate variable selection methods can significantly improve the
estimation accuracy of forest stock volume (FSV). The original spectral bands, vegetation
indices, texture features, and terrain factors are commonly used feature variables for esti-
mating FSV [10,69]. In this study, variables that are significantly correlated with FSV were
extracted, and six feature variable combinations were formed using two variable selection
methods, linear stepwise regression (LSR) and recursive feature elimination (RFE). The
retained feature variables were used with multiple linear regression(MLR) models , back
propagation neural(BP) network models , and Random Forest(RF) models for estimating
forest stock volume in the study area. The study found that the LSR method provides the
optimal linear combination of feature variables but requires the variables to be non-collinear.
However, due to the complexity of forest ecosystems, the relationship between FSV and
feature variables may not be linear, which limits the estimation accuracy of the model
[34]. The RFE method can assess the importance of feature variables based on non-linear
relationships, enabling the selection of highly important variables to be used for modeling.
Unlike the LSR method, which is based on linear correlations, the RFE method selects
variables based on their importance ranking, improving the selection process. However,
the importance evaluation is relative, and the importance of individual variables can also
vary across different feature variable combinations [70].

Therefore, we propose the RFE method for selecting appropriate combinations of
feature variables. In this method, we first use the importance ranking determined with
the entire dataset as a reference, and then, as the number of feature variables increases, we
select suitable combinations based on changes in the error. Finally, we find that the variable
combinations determined by the RFE method have the highest estimation accuracy and can
effectively reduce estimation errors. Variable selection was performed using LSR and RFE.
Ultimately, six variable combinations were selected, and MLR, BP, and RF models were
constructed to estimate FSV. The models consisted of six variable combinations, including
those with texture features and those without texture features. As shown in Table 4, overall,
the models with texture features exhibited higher accuracy than the models without texture
features. However, regardless of the presence of texture features, the accuracy of the
forest stock volume estimation models constructed using Landsat 8 and Sentinel-2 data in
combination was superior to that of using a single optical remote sensing data. Among
them, the Landsat 8-Sentinel-2 RFE-RF model achieved the best estimation performance,
with the highest coefficient of determination (R2 = 0.831) and the lowest RMSE, rRMSE,
and MAE. The results indicate that the RFE variable selection method achieved the best
estimation performance in both single optical remote sensing data and combined remote
sensing data selection processes. Additionally, after incorporating texture features in the
modeling of the optimal Landsat 8-Sentinel-2 RFE-RF model, the rRMSE significantly
decreased by 3.7% compared to the combined remote sensing RFE-RF model without
texture features. The variable selection results of each model suggest that the principal
components of texture features are more sensitive to the forest stock volume estimation.

As shown in Figure 4, both Landsat 8 and Sentinel-2 data have the potential to estimate
FSV. When using a single data source to estimate FSV, the Landsat 8 data predicted an R2 of
0.782 and the Sentinel-2 predicted an R2 of 0.796. This demonstrates that using both remote
sensing data sources for the inversion of forest stock volume is feasible. This conclusion is
consistent with the findings of Astola H, Häme T, Sirro L, et al. [9]. The innovation of this
article is that, by combining the person correlation coefficient method with the RFE method
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to select feature variables, the dimensionality of the data can be reduced without losing the
original data, and the accuracy of the stockpile estimation model can be improved. MLR, BP,
and RF models established through RFE feature variable selection method are all superior
to LSR method. The RFE method is based on the importance ranking of all feature variables,
which can select the feature variables with the greatest contribution to the model and
effectively improve the model accuracy. This conclusion is consistent with Attarzadeh R et
al. [71]. This article shows that the average accuracy of models constructed using combined
data from Landsat 8 and Sentinel-2 variables is improved to varying degrees compared to
models constructed using single remote sensing data. This conclusion is consistent with
the study by Poortinga, Ate, Tenneson, and Karis [72]. The RF model constructed by using
the Pearson correlation coefficient method and the recursive feature elimination (RFE)
method of Random Forest to screen the feature variables achieved the best results, with R2

= 0.831, RMSE = 12.604 m3 ha−1, rRMSE = 36.411%, MAE = 9.366 m3 ha−1. Compared to
the optimal model constructed using a single data source, the root mean square error of the
best model constructed using combined data has decreased by 2–4 m3 ha−1.

5. Conclusions

Machine learning algorithms are currently widely applied in forest biomass estimation,
but there is relatively less research on estimating FSV. In this study, Landsat 8 and Sentinel-2
data were selected as remote sensing data sources. A new data source was created by
combining the two satellite datasets as variables. Three FSV estimation models (MLR, BP,
RF) were constructed using two variable screening methods LSR and RFE, respectively.
Overall, both machine learning models outperformed the traditional MLR model. Among
them, the RF model performed the best, and the BP model also achieved good estimation
results. In this study, the method of using Person correlation coefficient combined with
RFE as a variable screening method was found to be more effective than the LSR variable
screening method. However, this study only systematically compared the model accuracy
of the Person-combined RFE method and the LSR variable screening method constructed
in the same research area. In the future, this variable screening method can be applied
to different research areas to better serve operational forest management practices. The
current general method of combining multiple sources of remote sensing data is to use
active remote sensing data combined with single optical remote sensing data. However,
active remote sensing data are relatively expensive compared to optical remote sensing
data. The limitation is that this study only combined remote sensing variables, and in
future experiments, combining different bands of the two data sources can be attempted
for image fusion, which may yield better FSV estimation results.
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