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Abstract: With global warming, the frequency, intensity, and period of extreme climates in more
areas will probably increase in the twenty first century. However, the impact of climate extremes on
forest vulnerability and the mechanisms by which forests adapt to climate extremes are not clear. The
eastern Tianshan Mountains, set within the arid and dry region of Central Asia, is very sensitive to
climate change. In this paper, the response of Picea schrenkiana and Larix sibirica to climate fluctuations
and their stability were analyzed by Pearson’s correlation based on the observation of interannual
change rates of climate indexes in different periods. Additionally, their ecological adaptability to
future climate change was explored by regression analysis of climate factors and a selection of master
control factors using the Lasso model. We found that the climate has undergone significant changes,
especially the temperature, from 1958 to 2012. Around 1985, various extreme climate indexes had
obvious abrupt changes. The research results suggested that: (1) the responses of the two tree species
to extreme climate changed significantly after the change in temperature; (2) Schrenk spruce was
more sensitive than Siberian larch to extreme climate change; and (3) the resistance of Siberian larch
was higher than that of Schrenk spruce when faced with climate disturbance events. These results
indicate that extreme climate changes will significantly interfere with the trees radial growth. At the
same time, scientific management and maintenance measures are taken for different extreme weather
events and different tree species.

Keywords: ecological adaptability; resistance indexes; lasso model; future prediction; tree-ring;
climate change

1. Introduction

Forest ecosystems are an important part of terrestrial ecosystems. Plants form a
long-term, relatively stable and dynamic balance with the regional climate during their
growth [1]. The occurrence of extreme climatic events has strongly disturbed the inher-
ent balance between trees and environmental factors, causing significant changes in the
phenological activities, productivity levels, and community succession statuses of forest
ecosystems and thereby increasing community survival pressure and the potential risk of
local extinction [2–4].

In the context of worldwide warming, the frequency, intensity, and period of maxi-
mum weather events still increase, and the impacts of climate on tree growth are growing
stronger [5,6]. Therefore, it is particularly important to study the response relationship
between extreme climate indicators and tree growth in order to explore tree growth strate-
gies and formulate management and protection measures under future climate change. At
present, in order to further strengthen forest management and protection and scientific
planning, climate change modeling tools such as the Forest Landscape Model (RCMs),
which includes the effects of climate and management on forest dynamics, have been
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used to predict the layout of forest growth under future climate impacts, especially in
forest areas with complex terrain [7]. At low latitudes in Bangladesh, the radial growth of
Chukrasia tabularis was reduced by 54% and 48.7% by the two extreme drought events in
1999 and 2006, respectively [8]. At an identical time, extreme precipitation events are more
likely to flood plants in tropical regions due to abundant water and heat resources, which
will lead to hypoxia of plant roots, reduced respiration, and eventually plant death [9].
At middle and high latitudes in the virgin forests of southern Europe, the sensitivity of
Picea abies and Abies alba to climatic and non-climatic disturbances increased due to atmo-
spheric warming and increased drought [10]. Compared to those in low-latitude regions,
trees in mid- and high-latitude regions were much more at risk of extreme drought and
freezing damage throughout the growing season [11]. Although the impact of extreme
precipitation on tree growth is not as direct and significant as the impacts of extreme high-
temperature and drought events, studies have shown that extreme precipitation events
affect forest carbon sinks and ecohydrological processes, thereby affecting the function and
structure of entire forest ecosystems [12–14].

Tree ring width is an important indicator for recording climate change, and its change
can truly and objectively reflect the impact of climate change on trees and the ecological
response of trees to climate change due to its high resolution, easy preservation, and long
time series [15,16].

Tree rings will appear with narrower, false, and missing rings when there are sudden
and dramatic variations in climate, such as extreme high temperature, high-intensity precip-
itation, and frost [17,18]. Specifically, these growth–climate relationships will significantly
change with a continuous decrease in the number of cold nights and continuous increases
in the frequency and intensity of drought [19,20]. For example, the development of unstable
responses of tree growth to temperature change has been documented worldwide [21–24],
and therefore, the responses of various tree species to temperature change are clearly varied
thanks to variations in physiological and ecological thresholds [9,25,26].

Ecological adaptability refers to the adjustment and recovery abilities of forest ecosys-
tems in the face of extreme climatic conditions. Resistance indexes have been widely used
to assess the dynamic changes of forests in response to extreme environmental disturbance
events in recent years based on tree rings [27,28]. In addition, a great number of studies
have found that differences in the resistance of trees to extreme weather events are affected
by many factors, such as age, tree species, and forest stand [23,29–31]. Fagus sylvatica in
southern Germany exhibited low resistance but high resilience to extreme frost events [32].
In addition, the resistance and resilience of trees are not only related to tree species but
are also related to the types of extreme weather events, according to an analysis of the
resistance differences of the five main European tree species to spring frost and summer
drought [33].

The increase in temperature at the mid-high latitudes of the Northern Hemisphere
is considerably beyond the worldwide average attributable to the magnification of the
Arctic [34,35]. The forest ecosystems within the arid and dry regions of Central Asia are
particularly sensitive and at risk of global climate change thanks to the tough environmental
conditions in these regions [3].

As the largest mountain range in Central Asia, the Tianshan Mountains are the origin
of most inland rivers and support oasis development in Central Asia. The forest ecosystems
in the Tianshan Mountains, with water conservation functions, are of great significance to
the natural ecological environment and socioeconomic development in Central Asia [36].
To date, research on tree growth and climate relationships in the Tianshan Mountains
has mainly focused on climate reconstruction and conventional climate responses [37,38].
In these studies, the reconstruction of climate indicators using accurate long-sequence
tree-ring data is conducive to revealing long-term climate dynamics in different regions
of the world, and exploring the response relationship between tree growth and climate
is conducive to predicting forest growth patterns under future climate change. However,
the effect of extreme climate on forest vulnerability and the mechanisms of forest response
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and resistance to extreme climate remain unclear. Therefore, we constructed models of
the relationship between radial growth of the dominant tree species (Schrenk spruce and
Siberian larch) and extreme climate factors in the eastern Tianshan Mountains, an area with
more arid conditions. We aimed to compare the responses and resistances of the two tree
species to extreme climate.

2. Materials and Methods
2.1. Site Description

The study area is found on Barkol Mountain in the eastern Tianshan Mountains
(Figure 1). The Barkol region incorporates a typical temperate continental climate with
an outsized annual temperature variation. The annual mean temperature is 2.02 ◦C and
presents a significant increasing trend of 0.611 ◦C/10a (p < 0.001), and the annual total
precipitation is 220.33 mm, showing an increasing trend of 9.6 mm/10a (p < 0.05). The
increasing trend of temperature is more obvious than that of total precipitation (Figure 2).
The results of the Pettitt test show that the annual mean temperature in the Barkol area
underwent a significant abrupt change in 1985 (p < 0.001) (Figure 2).
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In panels a and b, the black dots are outliers; red triangles are average values; lower
dash is the minimum (excluding outliers); the bottom of the box demarcates 25% of the
data; the middle line of the box demarcates 50% of the data (median); the top of the box
demarcates 75% of the data; and the upper dash is the maximum (excluding outliers). The
dotted line in panels (c) and (d) indicates the interannual change trend of climate elements
according to local weighted regression.

2.2. Tree Ring Sample Collection and Processing

The sampling sites are settled within the original coniferous mixed forest close to
the upper forest line on the northeastern slope of Barkol Mountain with an altitude of
roughly 2550–2600 m (Table 1). The sampling sites were less affected by human activity
than surrounding areas, with relatively low forest canopy closure, large spacing between
trees, and less influence of density. In August 2013, a total of 120 core samples were
collected. After damaged and unidentifiable samples were excluded, there remained
60 and 58 sample cores of two species of trees.

Table 1. Sampling information of two species of trees.

Species Schrenk Spruce Siberian Larch

Altitude (m) 2552 2590
Latitude

Longitude
43◦32.100′ N 43◦32.085′ N
92◦56.329′ E 92◦56.662′ E

Slope 27◦ 33◦

Aspect Northeast (40◦ from North) North
Canopy closure 0.3 0.2

Average tree spacing (m) 3 4.5
Average breast diameter (cm) 32.4 33.8

Average Tree height (m) 12.3 9.7
Average Crown width (m) 2.7 3.7

In the laboratory, the core samples of the two tree species were air-dried naturally,
fixed in a wooden sample tank with latex, and sanded with mesh sandpapers until the tree
rings were visible and clear. First, we used the LINTAB measurement system to measure
the ring width of each core with a resolution of 0.001 mm, and then we used the COFECHA
program to determine the quality of the cross-dating [39]. Finally, the standard chronology
of the two species was obtained by ARSTAN procedure [40].

2.3. Chronological Statistical Parameter Calculation

The following statistical parameters of the chronologies, which could be used to
assess the reliability of the chronologies, were calculated through the ARSTAN program
(Table 2). The SD represents the fluctuation of the tree rings, MS reflects the richness of
climate information contained in the chronological sequences, AC1 indicates the influence
degree of the previous year’s climate on tree growth, R represents the similarity of the
chronological sequences, PC1 represents the common information in the tree core samples,
the SNR can indicate the amount of climate and environmental information shared by
the chronologies, and the EPS reveals the representativeness of the subsample for the
whole sample.
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Table 2. Statistical parameters of the STD of Schrenk spruce and Siberian larch (1958–2012).

Statistical Parameters Schrenk Spruce Siberian Larch

Sample depth (core/tree number) 60/30 58/29
Sequence length 1735–2012 (288) 1761–2012 (252)

Standard deviation (SD) 0.313 0.312
Mean sensitivity (MS) 0.196 0.214

AC1 0.681 0.712
Correlation coefficient ® 0.483 0.382

Mean correlation among trees (R1) 0.771 0.723
Mean correlation between trees (R2) 0.475 0.366

First principal comment (PC1) 0.507 0.435
Signal-to-noise ratio (SNR) 36.366 14.213

Expressed population signal (EPS) 0.973 0.934

2.4. Meteorological Data and Preprocessing

The meteorological data were obtained from the Barkol National Alpine Meteoro-
logical Station in Xinjiang (93◦05′ E, 43◦06′ N, 1677.2 m). The data set of main climatic
factors during 1958–2012 can be obtained from the China Meteorological Data Network
(http://data.cma.cn/, accessed on 18 June 2020).

Twenty-seven climate indexes were obtained through the RClimDex program (Table 3).
These indexes were developed by the Expert Group on Climate Change Detection, Monitor-
ing, and Indexes (ETCCDI) and the World Meteorological Organization (WMO) cooperative
proposal and formulation [41,42]. We further divided the extreme temperature indicators
into extreme warmth indicators and extreme cold indicators for better observation and
analysis [43]. Among the 27 indexes, 12 included both monthly and annual statistics, and
15 included only annual statistics.

Table 3. Extreme climate indexes.

Type Class ID Indicator Name Definitions Unit

Extreme
temperature

indexes

Extreme
temperature

warm indexes

TXx Max Tmax Monthly maximum value of daily maximum temp ◦C
TXn Min Tmax Monthly minimum value of daily maximum temp ◦C

TX90p Warm days Percentage of days when TX > 90th percentile d
TN90p Warm nights Percentage of days when TN > 90th percentile d

WSDI Warm spell
duration indicator

Annual count of days with at least 6 consecutive
days when TX > 90th percentile d

SU25 Summer days Annual count when TX (daily maximum) > 25 ◦C d
TR20 Tropical nights Annual count when TN (daily minimum) > 20 ◦C d

Extreme
temperature cold

indexes

TNx Max Tmin Monthly maximum value of daily minimum temp ◦C
TNn Min Tmin Monthly minimum value of daily minimum temp ◦C

TX10p Cool days Percentage of days when TX < 10th percentile d
TN10p Cool nights Percentage of days when TN < 10th percentile d

CSDI Cold spell duration
indicator

Annual count of days with at least 6 consecutive
days when TN < 10th percentile d

FD0 Frost days Annual count when TN (daily minimum) < 0 ◦C d
ID0 Ice days Annual count when TX (daily maximum) < 0 ◦C d

Other
temperature

indexes

GSL Growing season
length

Annual (1st Jan to 31st Dec in NH, 1st July to 30th
June in SH) count between first span of at least 6

days with TG > 5 ◦C and first span after July 1
(January 1 in SH) of 6 days with TG < 5 ◦C

d

DTR Diurnal
temperature range Monthly mean difference between TX and TN ◦C

http://data.cma.cn/
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Table 3. Cont.

Type Class ID Indicator Name Definitions Unit

Extreme
precipitation

indexes

Precipitation
frequency
indexes

R10 Number of heavy
precipitation days Annual count of days when PRCP ≥ 10 mm d

R20
Number of very

heavy precipitation
days

Annual count of days when PRCP ≥ 20 mm d

Rnn Number of days
above nn mm

Annual count of days when PRCP ≥ nn mm, nn is
user defined threshold d

CDD Consecutive dry
days

Maximum number of consecutive days with
RR < 1 mm d

CWD Consecutive wet
days

Maximum number of consecutive days with
RR ≥ 1 mm d

Precipitation
magnitude

indexes

RX1day
Max 1-day

precipitation
amount

Monthly maximum 1-day precipitation mm

Rx5day
Max 5-day

precipitation
amount

Monthly maximum consecutive 5-day
precipitation mm

R95p Very wet days Annual total PRCP when RR > 95th percentile mm

R99p Extremely wet
days Annual total PRCP when RR > 99th percentile mm

PRCPtot
Annual total

wet-day
precipitation

Annual total PRCP in wet days (RR ≥ 1 mm) mm

Precipitation
intensity index SDII Simple daily

intensity index

Annual total precipitation divided by the number
of wet days (defined as PRCP ≥ 1.0 mm) in

the year

mm/
day

2.5. Data Analysis
2.5.1. Climate Data Analysis

First, one-variable linear regression was used to observe the interannual change rates
of the 28 climate indexes (annual mean temperature and 27 extreme climate indexes), and
then local polynomial regression was used to fit the climate indexes to further observe local
changes in the data. The Pettitt test was then used to test for changes in each climate index
sequence. Among all the climate indexes (18) that passed the significance test, 12 indexes
displayed change years in the mid-1980s, and 6 displayed change years in the mid-1990s.
Observing these six indicators, we found that although the change times detected by the
test were in the mid-1990s, the increases (or decreases) detected by the test began in the
mid-1980s (Figure 3). Therefore, we set the year of abrupt change to 1985 in all cases.

2.5.2. Analysis of the Relationships between Tree Rings and Climate Factors

The correlation coefficients between each climate index and the STDs of the two
tree species before climate change (1958–1985) and after climate change (1986–2012) were
analyzed by Pearson’s correlation. The stability and climate responses of the two tree
species were observed when the climatic conditions of the study area change significantly.
The climate data from September of the previous year to October of the current year were
selected because the radial growth of trees was restricted not only by the climatic factors of
the current year but also affected by those of the previous year [15].
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2.5.3. Pointer Year Selection

We used the STDs to screen the narrow-ring years of the two tree species before and
after climate change and used the basal area increment (BAI, cm2/year) for verification.
BAI was calculated based on non-standardized raw measurement ring width data as the
following equation (Monserud and Sterba, 1996):

BAIt = π
(

r2
t − r2

t−1

)
where rt is a given annual ring corresponding to radial radius at t year and rt−1 is a given
annual ring corresponding to radial radius at t − 1 year.

The two tree species generally returned to the growth state observed before the
environmental disturbance two years after the appearance of the narrow ring. We chose
two years as a window to calculate the 2-year moving average of the chronological sequence
to avoid overlap with other disturbance events. In addition, we set two narrow-ring levels
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at 80% and 75% of the average of the previous two years and then integrated the screening
results of the two chronologies for the tree species. Finally, the years in which both tree
species had narrow rings without other narrow rings in the previous two years were
selected as pointer years.

2.5.4. Resistance Index Calculation

The resistances of the two tree species to interference events were reflected by their
resistance, recovery, and resilience. The calculation formula is as follows (Lloret et al., 2011):

RT = TRWi/TRWi−2;

RC = TRWi+2/TRWi;

RS = TRWi+2/TRWi−2;

where TRWi represents TRW in the year of environmental stress, TRWi−2 represents the
average TRW 2 years before the environmental stress, and TRWi+2 represents the average
TRW 2 years after the environmental stress. RT characterizes the ability of a tree to resist
disturbance. RC indicates the degree of recovery of a tree after being disturbed by the
environment. RS can measure the growth of a tree after being disturbed and after a period
of recovery. Instances of two consecutive drought years were regarded as drought events
(for example, 1984 and 1985 in the following text). Afterwards, one-way analysis of variance
was used to evaluate the significance of the differences in resistance indexes (RT, RC, and
RS) of the two tree species in pointer years before and after the climatic conditions changed.

The above data analyses were all performed in R using the packages “statas”, “trend”,
“car”, and “ggplot2”.

3. Results
3.1. Climate Change Characteristics in the Study Area

One-variable linear regression of the 27 climatic factors revealed a very obvious
trend of increasing temperature (Figure 3). According to the interannual variations of
various extreme climate indicators, the growing season length and extreme temperature
warmth index except for tropical night showed a significant increasing trend (p < 0.05).
The annual diurnal temperature range and the rest of the extreme climate cold indexes
showed significant decreasing trends (p < 0.05) expect for Max Tmin and Min Tmin. All
extreme precipitation indexes showed increasing trends; specifically, the number of heavy
precipitation days, number of very heavy precipitation days, very wet days, extremely wet
days, and simple daily intensity index showed significant increasing trends (p < 0.05).

Pettitt tests of the 27 extreme climate indicators revealed obvious points of abrupt
change in the extreme temperature indexes, except for Min Tmax and TR20 (p < 0.05)
(Table 4). The only extreme precipitation indexes with abrupt change points were R10,
R95P, and SDII (p < 0.05). The abrupt climate change mainly manifested as a significant
increase in temperature, providing evidence that the magnitude and significance of the
variation in each precipitation index were smaller than those of the temperature indexes.
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Table 4. Unary linear regression and Pettit test of 28 climate indexes.

ID Unary Linear Regression
Equation R2 p Value of

Equation Mutation Year p Value of Pettitt
Test

Temp y = 0.3100 + 0.0611x 0.6200 1.3 × 10−12 ** 1985 9.3 × 10−9 **
TXx y = 30.700 + 0.0308x 0.1100 0.011 * 1996 0.01202 *
TXn y = −22.100 + 0.0707x 0.0940 0.023 * 1979 0.0843

TX90p y = 6.5800 + 0.11x 0.1900 0.001 ** 1995 0.0004654 **
TN90p y = −1.3800 + 0.382x 0.6900 2.9 × 10−15 ** 1984 4.415 × 10−9 **
WSDI y = 0.5050 + 0.127x 0.1200 0.0085 ** 1995 0.03846 *
SU25 y = 35.600 + 0.412x 0.2600 6.9 × 10−5 ** 1995 4.995 × 10−5 **
TR20 y = −0.0034 + 0.0032x 0.0490 0.1000 1987 1.501

TNx y = 13.6000 + 0.1060x 0.5400 1.6 × 10−10 ** 1984 3.522 × 10−8 **
TNn y = −38.6000 + 0.1450x 0.3200 5.5 × 10−6 ** 1984 1.931 × 10−5 **

TX10p y = 13.50–0 − 0.1170x 0.2800 3.2 × 10−5 ** 1993 0.0007737 **
TN10p y = 21.20–0 − 0.3750x 0.7000 2.4 × 10−15 ** 1985 4.002 × 10−9 **
CSDI y = 10.40–0 − 0.2040x 0.1700 0.0016 ** 1988 0.002104 **
FD0 y = 2–6 − 0.7110x 0.7200 3.4 × 10−16 ** 1985 7.16 × 10−9 **
ID0 y = 1–8 − 0.2310x 0.0770 0.0400 * 1985 0.03497 *

GSL y = 175 + 0.2910x 0.1400 0.005 ** 1994 0.02881 *
DTR y = 16.70–0 − 0.0662x 0.7500 1 × 10−17 ** 1984 3.232 × 10−9 **

R10 y = 3.8900 + 0.0597x 0.1700 0.0016 ** 1982 0.006723 **
R20 y = 0.7330 + 0.0212x 0.1000 0.016 * 1986 0.05441
Rnn y = 0.3660 + 0.0071x 0.0320 0.1900 1985 0.3658
CDD y = 53.7000 + 0.0521x 0.0013 0.7900 1981 0.4919
CWD y = 3.0100 + 0.00491x 0.0066 0.5600 1966 0.6511

RX1day y = 22.5000 + 0.1420x 0.0560 0.0820 1985 0.06505
RX5day y = 31.8000 + 0.1710x 0.0420 0.1300 1982 0.1928

R95p y = 24 + 0.769x 0.1200 0.0080 ** 1986 0.0333 *
R99p y = 1.8800 + 0.4070x 0.0960 0.0210 * 1983 0.1893

PRCPtot y = 194 + 0.9600x 0.1200 0.0100 * 1983 0.07576

SDII y = 4.6100 + 0.0279x 0.2000 0.0006 ** 1981 0.001395 *

* means significant, ** means extremely significant.

3.2. Statistical Parameters of Tree-Ring Width Chronologies for the Two Tree Species

First, the SNR and EPS values of chronologies for Schrenk spruce and Siberian larch
were relatively high, indicating that the two chronologies were reliable and suitable for
studying the response of tree radial growth to climate change (Table 2). Moreover, the high
values of SD, MS, and AC1 also indicated that the chronologies contained much climate
information for the two tree species. However, Schrenk spruce exhibited higher consistency
between core sequences and was more sensitive to climate change than Siberian larch due
to its higher R and PC1 values.

3.3. Relationships between Radial Growth and Climatic Factors for the Two Species

The responses of radial growth of the two tree species to climatic factors significantly
differed before and after the abrupt temperature change, based on the Pearson’s correlation
results between the STDs of the two tree species and the annual indexes of 28 climatic
factors (Figures 4 and 5). Before the abrupt temperature change, the correlations between
Schrenk spruce indexes and the annual climatic factors were poor. However, the STD of
Schrenk spruce had a significant negative correlation with summer days (SU25) (p < 0.05)
and significant positive correlations with cool days (TX10p) and frost days (FD0) (p < 0.05)
after the abrupt temperature change. The STD of Siberian larch had significant positive
correlations with annual mean temperature (Temp), TXn, and TNn (p < 0.01) and significant
negative correlations with TX10p (p < 0.01) before the abrupt temperature change. However,
the STD of Siberian larch had a significant positive correlation with FD0 (p < 0.05) and a
significant negative correlation with R10 (p < 0.01) after the abrupt temperature change.
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The correlation results between the indexes of the two tree species and seasonal factors
showed that the STD of Schrenk spruce had a significant correlation with previous autumn
temp, spring temp, TX10p, autumn TXx, and TX90p before climate change (1958–1985).
That of Schrenk spruce had significant relationships with temp, TXN, TNX, TNN, and
TX10P in the autumn of the previous year; TXx, TX90p, and TNn in the spring; and Temp,
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TX90p, TN90p, TNn, and TX10p in the summer of the current year after abrupt climate
change (1986–2012). The STD of Siberian larch was significantly correlated with only
TXn, TX10p in winter, TXx, TX90p, and DTR in summer during the period of 1958–1985.
That of Siberian larch had significant correlation with TXX; TNX in the autumn; RX1day,
RX5day, and PRCPtot in the winter of the previous year; TX10p in the summer; and TN90p,
TNx, DTR, RX5day, and PRCPtot in the autumn of the current year during the period of
1958–1985.

The correlation results between the radial growth of the two tree species and
13 monthly climate indexes from September of the previous year to October of the current
year are shown in Figure 5. The STD of Schrenk spruce had significant correlations with
P9-TNn (month-climatic factors), P9-TX10p, P9-TN10p, P11-TX90p, C5-Temp, C5-TNx, C5-
DTR, C6-RX1day, C7-TXn, and C10-Txx (p < 0.05) during the period of 1958–1985. The STD
of Schrenk spruce had significant correlations with 25 climatic factors during the period
of 1985–2012. The STD of Siberian larch had significant correlations with P10-PRCPtot,
P12-TX10p, C1-Temp, C1-TX10p, C1-TN10p, C3-TXn, C7-RX5day, C8-TXx, C10-RX1day,
and C10-PRCPtot during the period of 1958–1985. The STD of Siberian larch had significant
correlations with 14 climatic factors during the period of 1985–2012. In addition, the nega-
tive correlations between the radial growth of Siberian larch and the three precipitation
indexes (RX1day, RX5day, and PRCPtot) were significantly enhanced. Schrenk spruce was
strongly restricted by the temperatures at the end of the growing season of the previous
year and in the early and middle growing seasons of the current year after 1985. However,
Siberian larch was mainly affected by the temperatures in the middle and late growing
seasons of the current year.

3.4. Comparison of the Resistance Indexes of the Two Tree Species to Climate Change

Both Schrenk spruce and Siberian larch were detected in 9 low-value years (Schrenk
spruce: 1958, 1974, 1978, 1981, 1995, 1998, 2003, 2008, and 2012; Siberian larch: 1966, 1976,
1981, 1984–1985, 1998–1999, 2003, and 2008) defined as narrow-ring years with a value
20% lower than the average value of the previous two years based on the STDs and BAI,
(Figure 6). Schrenk spruce showed only 4 low-value years (STDs: 1974, 2003, 2008, and
2012; BAI: 1998, 2003, 2008, and 2012) and Siberian larch showed 7 low-value years (STDs:
1966, 1976, 1984–1985, 1998–1999, and 2003; BAI: 1966, 1984–1985, 1998–1999, 2003, and
2008) defined as narrow-ring years with a value 25% lower than the average value of the
previous two years. The results suggested three years (1981, 1998, and 2003) that were
narrow-ring years for both tree species. Since the Siberian larch showed narrow rings in
both 1998 and 1999, we chose 1981 and 2003 as pointer years to compare resistance to
environmental disturbances between the two tree species.

Figure 7 shows the results of one-way analysis of variance (ANOVA) for the three
resistance indicators of the two tree species in 1981 and 2003. In 1981, the resistance
indicators of Siberian larch were significantly higher than those of Schrenk spruce (Schrenk
spruce: RT = 1.063, RC = 1.06, and RS = 1.128; Siberian larch: RT = 1.1354, RC = 1.1354,
and RS = 1.3046, p < 0.05). In 2003, the three resistance indicators of Siberian larch were
still higher than those of Schrenk spruce (Schrenk spruce: RT = 1.028, RC = 1.033, and
RS = 1.063; Siberian larch: RT = 1.05, RC = 1.041, and RS = 1.094, p < 0.05). However, the
difference between the two tree species in terms of resistance to environmental disturbances
gradually decreased after the temperature changed. The resistance indexes of both tree
species declined in 2003 compared with 1981, especially those of Siberian larch.
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4. Discussion
4.1. Evaluation of the Responses of the Two Tree Species to Extreme Climate

The processes of tree leaf emergence and development, carbon accumulation, and
xylem growth are all affected by climate, especially unstable extreme climate, which will
have a more significant effect on tree-ring growth [44]. TRW includes abundant environ-
mental change signals, which are direct and clear data that represent the responses of tree
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radial growth to climate change [18]. Therefore, TRW can be used to accurately analyze the
impact of climate change on forest ecosystems and evaluate the ecological response of tree
growth to climate change.

Since the end of the last century, the trend of global warming has been obvious. The
eastern Tianshan Mountains, located in the middle latitude of the Northern Hemisphere
and central Asia, has a particularly significant interannual variation, especially the trend of
the temperature rising and the abrupt change of the most extreme climate index in the 1980s
(Figure 3; Table 4). After the temperature changed, the extreme warmth indexes (TXx, TX90P,
TX10P, and SU25) and the minimum temperature indexes reflecting extreme cold (TNx and
TNn) showed clear increasing trends, and the negative responses of Schrenk spruce and
Siberian larch to those climate factors significantly strengthened (Figures 3 and 4). Under
natural conditions, extreme high-temperature events are often accompanied by decreasing
precipitation and increasing vapor pressure deficit (VPD), which further induce drought
and aggravate drought stress on tree growth [1,45,46]. Extreme high temperature and
drought damage the hydraulic structure of trees by cavitating the xylem and increasing
duct embolism and can also cause tree “carbon starvation” by stimulating the closing of the
stomata and inhibiting photosynthesis [47,48]. Decreasing trends could extend the growing
season of plants (Figure 3). However, the probability of trees suffering from freezing
damage has also increased with the extension of the growing season [33,49]. Specifically,
trees in high-latitude areas have a narrower safety threshold for frost and greater risks than
those in low-latitude areas [11]. Moreover, increasing temperatures before the growing
season would increase the melting of snow and evaporation, which would aggravate
the restriction of subsequent tree radial growth by limited water availability [19,50]. In
addition, an increase in minimum temperature in the winter could reduce the overwintering
mortality of pathogens and pests, thereby increasing the probability of pests and diseases
in the coming year and ultimately affecting the radial growth of trees [48].

We also detected large differences in the times and types of responses of Schrenk
spruce and Siberian larch to extreme climatic factors. After the temperature change during
1986–2012, the responses of Schrenk spruce to the extreme temperature indicators in the
autumn of the previous year and the spring and summer of the current year became more
significant (Figure 5). However, Siberian larch was more restricted by the extreme cold
temperature indexes and extreme precipitation in the winter of the previous year and
climatic factors in the autumn of the current year (Figure 5). Compared with Siberian larch,
which is drought-tolerant and low-nutrient-tolerant, Schrenk spruce prefers a more humid
and richer growth environment [51,52]. Therefore, Schrenk spruce is more susceptible to
the obvious impact of climate change under significant increases in temperature and the
frequency of extreme weather events (high temperature, drought, and frost) [53]. Moreover,
Schrenk spruce, with shallow roots, is more susceptible to drought restrictions during the
growing season due to its limited capacity for water storage and access to deep soil water
resources [54]. In addition, evergreen Schrenk spruce was more significantly affected by
climatic factors at the end of the growing season of the previous year than was deciduous
Siberian larch because evergreen tree species continue to photosynthesize at the end of
the growing season in order to maintain aboveground biomass [55,56]. However, the
radial growth of Siberian larch is very sensitive to extreme precipitation variation in winter
(Figure 5). The precipitation in winter is mostly in the form of snow in high-altitude areas
at mid-to-high latitudes. Evergreen Schrenk spruce still retains a large number of branches
and leaves in winter, and the amount of snow under the forest is correspondingly reduced
since its canopy can intercept most of the snow. However, the amount of snow under larch
forest is larger, and it takes longer for the snow to melt, which can delay the initiation of
tree growth [57–59].
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4.2. Comparison of the Resistances of the Two Tree Species to Extreme Climate

The frequency of narrow rings in the STDs and the resistance, recovery, and resilience
of Schrenk spruce and Siberian larch were significantly different when the trees faced
environmental disturbances, according to the occurrence of narrow rings and the resistance
indicators reflecting radial growth (Figure 7). The narrow-ring years appearing in the STD
of Schrenk spruce were all low-value years (1974, 1978, 2003, 2008, 2012, etc.), while Siberian
larch was prone to consecutive low-value years. Schrenk spruce was more susceptible to
occasional environmental disturbances, but the impact was relatively weak, while Siberian
larch was more susceptible to sustained strong environmental stress, and the impact
was relatively strong (Figure 6). High-frequency environmental interference might cause
Schrenk spruce to develop strong tolerance in the face of subsequent interference [44].
Therefore, evergreen tree species and deciduous tree species may adopt different biomass
allocation strategies under environmental stress conditions, with evergreen trees potentially
choosing to preserve more aboveground biomass in order to maintain growth but larch
choosing to abandon its leaves and branches and increase carbohydrate reserves in the
rhizomes for subsequent recovery [60,61]. In addition, many studies have found that the
growth rate of deciduous tree species is generally higher than that of evergreen tree species,
and extreme climate events have more sudden and profound effects on deciduous tree
species [62–64].

The radial growth of Schrenk spruce and Siberian larch was significantly lower in 1981
and 2003 than in other years (Figure 6). We first checked the historical data and ruled out
the occurrence of biological interference in the two years [65]. For 1981, the warm autumn
of the previous year may have allowed the trees to remain more active at the end of the
growing season, consume more photosynthetic nutrients, and reduce the resource reserves
for growth in the coming year. Therefore, the spring drought in 1981 (C3–C7) further
aggravated the effect of water stress on tree growth during the growing season [19]. Before
the abrupt climate change, Schrenk spruce was obviously restricted by the temperatures
of the previous autumn and the spring of the current year, while Siberian larch was less
restricted by the climate during these periods (Figures 4 and 5). Therefore, Schrenk spruce
was more constrained by drought caused by high temperature and thus exhibited lower
resistance and resilience in 1981. In 2003, the temperature was low throughout the year,
especially in spring, and the precipitation in the previous winter increased significantly
(Figure 2). The large amount of snow in winter and the low temperature at the beginning
of the growing season slowed the increase in soil temperature, affected the emergence
of new leaves, delayed growth, and shortened the growth period, thereby affecting the
radial growth of trees [59,66,67]. After the abrupt temperature change, Siberian larch
exhibited a significant negative correlation with the precipitation of the previous winter
(Figure 5). Evergreen coniferous species usually use nonstructural carbohydrates from
old leaves for bud burst, and it takes longer for new evergreen leaves to emerge [68,69].
However, the bud burst period of deciduous trees is earlier and is more affected by the
low temperatures and frost in spring because these trees rely on the NSC from stems and
branches for leaf development [70,71]. Therefore, the low temperature in the spring of
2003 had a significant impact on the early budding and radial growth of Siberian larch. In
addition, the fluctuations in climate in 2003 were more obvious than those in 1981. Studies
have shown that the resistance of trees to climate change is closely related to the intensity of
extreme climate events [28]. This might be one of the important reasons why the resistance
difference between Schrenk spruce and Siberian larch decreased. On two occasional climate
disturbance events, Siberian larch showed better resistance and resilience, so we believe
that Siberian larch may be better at adapting to extreme environmental events in the context
of climate warming.

The frequency and intensity of extreme climate events have increased significantly
since the beginning of the 21st century. The occurrence of extreme climate events has
significantly disrupted the growth, death, and regeneration of trees, thereby affecting the
structure and function of entire forest ecosystems [72]. Especially in arid and semiarid
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regions, trees have shown significant declines in growth rates and increased mortality due
to drought and climate warming [73]. Evergreen Schrenk spruce and deciduous Siberian
larch are dominant species in the eastern Tianshan Mountains. The adaptations of these
two tree species to climate change exhibit obvious variation due to significant differences
in genetic physiology and ecological thresholds between the species [74]. According to our
research results, Schrenk spruce is more sensitive to climate and more affected by extreme
climatic changes, while Siberian larch exhibits better resistance and a greater recovery
ability when faced with the same climate disturbances. Moreover, extreme climate events
do not occur in isolation. For example, extreme high temperature and heat wave events
are often accompanied by drought, extreme precipitation events are often accompanied by
hurricanes or storms, and extreme low-temperature events may also be accompanied by
cold waves and hail [75]. The response of trees to extreme climate events is also affected by
factors such as tree species and the type and intensity of the extreme event [76]. Therefore,
we should pay more attention to the effects of extreme climate on tree growth and the
adaptation of tree growth to climate change in ecologically fragile and sensitive areas. We
also need to conduct more research to assess the adaptability of different tree species to
extreme climatic events under future climate change.

5. Conclusions

The growth of trees and the structure and stability of forest ecosystems have been
disturbed by the more frequent occurrence of extreme climatic events with global warming.
Schrenk spruce and Siberian larch are the most dominant mountain conifers in the arid
and semiarid regions of central Asia. Therefore, studying their growth patterns and
responses to extreme climate in this region can provide importance references. Our research
results showed that Schrenk spruce and Siberian larch had strong responses to 27 extreme
climatic indexes. Specifically, the correlations between characteristics of the two tree
species and the extreme climatic indexes increased after the temperature changed. This
confirmed that the restrictive effect of extreme climate on forest ecosystems gradually
increased with the intensification of climate change. Therefore, it is necessary to further
strengthen the dynamic monitoring of extreme climate and forest ecosystems and research
on their impact mechanisms. In addition, our study also revealed that the evergreen spruce
species was more susceptible to extreme climate, while the deciduous species (Siberian
larch) had stronger resistance and a greater recovery ability after being disturbed by the
extreme environment. Therefore, forest ecosystems should be protected and managed
more specifically according to differences in the responses and resistances of tree species to
extreme climatic events under future climate change.
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