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Abstract: The occurrence of fires in tropical peatlands poses significant threats to their ecosystems.
An Internet of Things (IoT) system was developed to measure and collect fire risk factors in the
Raja Musa Forest Reserve (RMFR) in Selangor, Malaysia, to address this issue. In this paper, neural
networks with different layers were employed to predict peatland forests’ Fire Weather Index (FWI).
The neural network models used two sets of input parameters, consisting of four and nine fire
factors. The predicted FWI values were compared with actual values obtained from the Malaysian
meteorological department. The findings revealed that the five-layer neural network outperformed
others in both the four-input and nine-input models. Specifically, the nine-input neural network
achieved a mean square error (MSE) of 1.116 and a correlation of 0.890, surpassing the performance
of the four-input neural network with the MSE of 1.537 and the correlation of 0.852. These results
hold significant research and practical implications for precise peatland fire prevention, control, and
the formulation of preventive measures.

Keywords: peatland; fire prediction; neural network; IoT measurement; machine learning

1. Introduction

Peatland forest resources are one of the most critical resources on Earth. They can
regulate the climate; maintain water and soil; mitigate or prevent natural disasters such
as drought, flood, sandstorm, and hail; and are an essential basis for ensuring sustainable
human development [1]. A fire will destroy the balance of the peatland forest ecosystem. It
is difficult to recover the forest ecosystem after a fire, especially because a high intensity
and large area forest fire will cause devastating damage to the entire forest ecosystem [2].
Therefore, realizing the timely, rapid, accurate, and effective prediction and suppression of
forest fires is the key to eliminating the hidden danger of forest fires.

Forest fires pose a significant threat to ecosystems and human lives worldwide. In
Malaysia, peatlands, which are carbon-rich ecosystems, are particularly vulnerable to fire
outbreaks due to their unique characteristics [3]. The occurrence and severity of forest
fires in Malaysia’s peatlands have been on the rise in recent years, resulting in substantial
environmental damage and economic losses [4]. To mitigate the impact of these fires,
accurate prediction and early detection systems are crucial.

However, the peatland forest fire is a natural disaster with strong suddenness, wide
occurrence, and significant harm, which can seriously damage the forest ecosystem [5].
A natural disaster refers to an extreme event or phenomenon that occurs in nature and
causes significant damage or loss of life and property [6]. Peatland forest fires meet this
definition because they can harm the environment, biodiversity, human lives, and property.
The rapid spread and intensity of forest fires can lead to the loss of valuable vegetation, the
destruction of habitats, the release of greenhouse gases, and the disruption of ecosystem
services [7]. Currently, large-scale forest fires have been listed by the United Nations as
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one of the eight natural disasters in the world [8]. For forest fire control, prevention is
more effective than fighting [9]. Forest fire prediction has always been the focus of relevant
scientific researchers and forest fire prevention workers. In addition, due to the particularity
of rainy weather in tropical areas, it is necessary to take the groundwater level caused by
rainfall into account to predict peatland forest fires in tropical areas [10]. Therefore, it is of
great research value and practical significance to carry out the risk prediction of peatland
forest fires in tropical areas and carry out accurate prevention and control accordingly.

Peatlands represent unique ecosystems with specific fire dynamics [11], posing chal-
lenges for traditional fire prediction methods. Existing approaches often face limitations in
capturing the complex relationships between atmospheric variables and fire occurrences in
these environments [12]. Hence, the need arises for novel techniques that can overcome
these challenges and improve prediction accuracy. In this paper, we propose the utilization
of machine learning, specifically neural network models, to address the shortcomings of
conventional methods. By leveraging the inherent capacity of neural networks to learn
complex patterns from data [13], our approach aims to enhance the predictive capabilities
for forest fire occurrence in peatland areas. The justification for employing machine learning
techniques in this context is supported by prior studies [14,15] demonstrating their efficacy
in capturing intricate relationships and achieving improved predictive performance in
various domains.

Machine learning techniques have shown great potential in various domains, includ-
ing environmental modeling and prediction. Leveraging the power of machine learning
algorithms, this paper aims to develop a robust predictive model for forest fire occurrences
in Malaysia’s peatlands. By harnessing the vast amount of available data on weather
conditions and land cover, this research contributes to the advancement of fire prediction
and prevention strategies in peatland areas. The outcomes of this research have significant
implications for fire management and prevention strategies in Malaysia’s peatlands. Ac-
curate fire prediction models can facilitate early warning systems, enabling authorities to
allocate resources effectively and implement preventive measures to minimize the impact
of forest fires. The main contributions of this paper are as follows:

• The neural network models are proposed for predicting the Fire Weather Index (FWI)
in peatland areas, utilizing both a four-input and a nine-input configuration. These
neural network models leverage atmospheric temperature, atmospheric humidity,
wind speed, rainfall, groundwater level, soil temperature, soil humidity, atmospheric
pressure, and solar radiation, all measured by the peatland IoT monitoring system.

• The feasibility of peatland fire prediction based on a neural network is verified by
comparing the predicted Fire Weather Index (FWI) with the actual value published by
the Malaysian meteorological department.

• The collection and compilation of a comprehensive dataset that includes historical
FWI values, weather conditions, and other relevant environmental variables specific
to peatland areas in Malaysia. This dataset serves as a valuable resource for training
and evaluating the neural network models, thus contributing to the advancement of
research in this domain.

By integrating these environmental variables into the neural network models, we
aim to capture the complex relationships and interactions between weather conditions
and the FWI. The four-input neural network model provides a concise representation of
the atmospheric factors, while the nine-input model incorporates a more comprehensive
set of environmental variables, enabling a more holistic understanding of fire risks in
peatland areas. These proposed models take advantage of real-time data collected through
IoT-based monitoring systems, allowing for timely and accurate predictions of the FWI. By
harnessing the power of machine learning, these models can provide valuable insights for
fire management and prevention strategies, facilitating early detection, resource allocation,
and proactive measures to mitigate the impact of forest fires.

The comparative analysis between the two neural network models allows for a deeper
understanding of the influence of additional environmental variables on fire risk predictions.



Forests 2023, 14, 1472 3 of 15

This comparative evaluation provides insights into the performance and effectiveness of the
different input configurations, aiding in the identification of key factors and their impact on
FWI predictions in peatland areas. The proposed neural network models serve as valuable
tools for fire risk assessment and management in Malaysia’s peatlands, contributing to the
advancement of predictive capabilities and facilitating proactive measures to protect these
vital ecosystems and surrounding communities.

2. Materials and Methods

This section introduces the peatland data monitored by the IoT system and the relevant
parameters of the neural network used to predict peatland fires in Malaysia.

2.1. Data Preparation

The meteorological data in this paper are all from the monitoring of the peatland IoT
system deployed in the Raja Musa Forest Reserve (RMFR), Selangor, Malaysia, as shown in
Figure 1.
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Figure 1. Peatland IoT system architecture.

The Raja Musa Forest Reserve (RMFR), located in Selangor, Malaysia, is the focal point
of our research on peatland forest fire prediction using machine learning techniques. The
RMFR is a significant peatland ecosystem encompassing a vast area of pristine tropical
forest [16]. The RMFR exhibits diverse vegetation compositions, covering an extensive
land area, including peat swamp forests characterized by the prevalence of peat soil
layers and unique plant adaptations [17]. The reserve’s topography features undulating
terrain interspersed with water bodies and intricate drainage patterns typical of peatland
ecosystems. In terms of climate, the RMFR experiences a tropical rainforest climate with
relatively high humidity and abundant rainfall throughout the year [18]. These climatic
conditions, coupled with the presence of peat soils, contribute to the elevated risk of
forest fires within the reserve. By conducting our research within the unique ecological
setting of the Raja Musa Forest Reserve, this paper aims to contribute to understanding
peatland forest fire dynamics and enhance the effectiveness of fire prediction and prevention
strategies in similar ecosystems globally.

Figure 1 shows the architecture of the IoT system, which was deployed at RMFR, Kuala
Selangor, Malaysia, with the north latitude of 3◦27′58” and the east longitude of 101◦26′31”.
The IoT system mainly comprises sensor nodes, including humidity, temperature, and water
level sensors and LoRa antennas, which transmit the monitored peatland soil parameter
data to the LoRa gateway located in the observation tower. Furthermore, the weather
station is also located in the observation tower. Finally, LoRa transmission technology
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and LTE cellular network transmission display the peatland forest data monitored by
the IoT system on a GUI page. Moreover, it was put into use on 17 January 2020. More
information based on the IoT system has been described in detail in our team’s previous
publication [19–21]. The histogram of the data used in this paper is shown in Figure 2.
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The Internet of Things (IoT) monitoring system deployed in the Raja Musa Forest
Reserve (RMFR) encompasses a wide coverage area, extending throughout the entire
reserve. Within this system, sensors are strategically placed to enable real-time data
monitoring at a frequency of once per minute. The collected data are transmitted wirelessly
through LoRa antennas located on the sensor nodes to the LoRa gateway. Subsequently, the
data are transmitted via the LTE cellular network to a central server for storage and analysis.
A custom-developed dashboard allows for visualization and analysis of the collected data.
To ensure the integrity and reliability of the data, measures have been implemented to
protect the sensor nodes from external interferences, such as wildlife disturbances, by
enclosing them within a one-meter-high protective iron fence.

Figure 2 shows the distribution of the meteorological parameter data of fire risk factors
monitored by the IoT system. It is composed of nine sub-distribution maps of meteoro-
logical parameters in three rows and three columns, including atmospheric temperature,
atmospheric humidity, wind speed, rainfall, groundwater level, soil temperature, soil
humidity, air pressure, and solar radiation. Each subgraph’s abscissa represents the param-
eter’s value, while the ordinate represents the number of values. In addition, the number
of samples for the nine meteorological parameters is the same, namely 47,306 samples.

2.2. Neural Network for Predicting FWI

This paper uses a multi-layer neural network to predict the Fire Weather Index (FWI)
of peatland forests. The neural network has strong self-learning, self-organizing, and
adaptive capabilities [22]. It has obvious advantages in processing fuzzy, random, and
linear data [23], especially for systems with large-scale, complex structures and unclear
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information [24]. In a multi-layer neural network, each layer contains several neurons.
Through repeated learning and training of the available information, the method of gradu-
ally adjusting and changing the connection weight between each neuron is used to process
the relationship between information and analogue input and output [25]. It does not need
to know the exact relationship between input and output to obtain an accurate prediction
value [26].

In the Canadian Fire Weather Index (FWI) system proposed by Van Wagner [27] in
1987, the FWI is determined by four meteorological parameters: atmospheric temperature,
humidity, wind speed, and rainfall. According to the four meteorological parameters of the
Canadian Fire Weather Index model, a four-input N-layer neural network for predicting
the FWI is proposed in this paper, as shown in Figure 3.
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Figure 3 shows four basic meteorological parameters based on atmospheric tempera-
ture, humidity, wind speed, and rainfall as the input quantities. Then, each input neuron
in the input layer is transferred to the hidden layer through adaptive linear learning. The
hidden layer completes the final regression learning to match the corresponding output
layer result of the Fire Weather Index (FWI), which is used to assess the possibility of fires
in the peatland and provide correct guidance for fire prevention.

Multi-layer neural networks are composed of layers of interconnected nodes called
neurons. Each neuron in the input layer corresponds to one input feature, in this case,
temperature, humidity, wind speed, and rainfall. The values of these input features are fed
into the network, and they are multiplied by weights and passed through an activation
function. The hidden layer neurons receive the weighted inputs from the input layer and
apply an activation function to produce an output. The weights and activation functions
of the neurons in the hidden layer are learned through a training process, typically using
gradient descent optimization algorithms such as backpropagation. The purpose of the
hidden layer is to capture complex patterns and relationships between the input features.

Finally, the output neuron takes the weighted outputs from the hidden layer and
applies an activation function to produce a single output value, which is the predicted
FWI (Fire Weather Index) in this case. The activation function used for the output neuron
might depend on the nature of the prediction task, such as a linear activation function for
regression or a sigmoid activation function for binary classification. During the training
phase, the neural network adjusts the weights based on the error between the predicted
FWI and the actual FWI from the training data. The training process iterates over multiple
epochs, continually updating the weights to minimize the error. Once the training is
completed, the neural network can be used to predict FWI values for new input data.

However, for the prediction of peatland fires in tropical areas, soil parameters need to
be considered, namely, groundwater level [28], soil temperature [29], soil humidity [30], etc.
In addition, according to the actual theoretical situation, atmospheric pressure and solar
radiation should also be considered factors in predicting peatland fires [31]. Therefore,
in this paper, a multi-layer neural network considering nine potential factors leading to
peatland fires is proposed to predict the occurrence of peatland fires, as shown in Figure 4.
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Figure 4 shows a multi-layer neural network structure with nine-input parameters
for predicting peatland fires in Malaysia. It is formed by adding five additional potential
factors affecting the occurrence of fire based on the neural network structure shown in
Figure 3. While the existing Fire Weather Index (FWI) model calculates fire risk based on
meteorological parameters such as temperature, humidity, rainfall, and wind speed, it is
indeed beneficial to consider additional parameters for a more comprehensive assessment
of fire risk in peatlands. In addition to the existing meteorological parameters, incorporat-
ing the following factors—solar radiation, soil temperature, soil humidity, pressure, and
groundwater level—can provide valuable insights into fire risk assessments in peatlands:

a. Solar Radiation: Solar radiation represents the amount of energy received from the
sun and influences the drying potential of vegetation and fuel moisture content.
Higher solar radiation levels contribute to increased evaporation rates and can
accelerate the drying of peatland vegetation. Including solar radiation data in the
fire risk assessment helps capture the impact of sunlight on fuel moisture and the
overall flammability of the ecosystem.

b. Soil Temperature: Soil temperature plays a crucial role in determining fuel moisture
content and the ignition potential of peatlands. Elevated soil temperatures can lead
to drier conditions and more favorable conditions for ignition and fire spread. By
monitoring the soil temperature, the model can identify areas with higher thermal
stress and increased fire susceptibility, providing early warning signs of potential fire
outbreaks.

c. Soil Humidity: Soil humidity, specifically moisture content in the upper layers of the
soil, is a critical parameter for assessing fire risk. Dry soil conditions contribute to
reduced moisture availability for vegetation, increasing the potential for fire ignition
and spread. Including soil humidity data allows for a better understanding of
local moisture conditions and their influence on fire behavior within the peatland
ecosystem.

d. Atmospheric Pressure: Atmospheric pressure affects weather patterns and airflow,
which can impact fire behavior and fire spread. Changes in atmospheric pressure can
influence wind patterns, the availability of oxygen for combustion, and the overall
stability of the atmosphere. By considering atmospheric pressure as a parameter,
the fire risk assessment model can capture the influence of pressure systems on fire
dynamics and the potential for rapid fire development.

e. Groundwater Level: Groundwater level is a critical parameter for understanding the
moisture conditions in peatlands. High groundwater levels indicate a higher avail-
ability of water for fire suppression and can serve as a natural firebreak. Monitoring
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groundwater levels helps identify areas with a lower fire risk due to the presence of
sufficient moisture. Additionally, changes in groundwater level can affect peatland
hydrology and contribute to variations in fire behavior.

By considering the correlation between these factors and existing meteorological data,
the model can provide a more accurate and holistic assessment of the fire risk. This paper
compares the performance of neural network structures with different numbers of layers
from 3 to 7 for peatland fire prediction.

2.3. Performance Evaluation

The Fire Weather Index (FWI) system is an important tool for assessing the risk of
forest fires. However, the accuracy of the FWI system depends on various factors, such as
the inputs used, the algorithm used, and the calibration of the system. Therefore, evaluating
the performance of the FWI system is essential to ensure its reliability and effectiveness in
predicting forest fire risk. In this paper, the performance evaluation of the FWI system will
be performed by using machine learning techniques. Specifically, the performance of the
FWI system will be evaluated by using the mean squared error (MSE), root mean squared
error (RMSE), mean absolute error (MAE), and R-squared (or correlation or coefficient of
determination) (R2) metrics. These metrics are commonly used in machine learning to
evaluate the accuracy and precision of predictive models [10].

MSE =
∑N

i

(
ypredicted (i) − yactual

)2

N
(1)

RMSE =

√√√√∑N
i

(
ypredicted (i) − yactual

)2

N
(2)

MAE =
∑N

i

∣∣∣ypredicted (i) − yactual

∣∣∣
N

(3)

where N is the number of samples in the dataset; ypredicted (i) is the i-th predicted value;
yactual is the mean of the actual values.

The MSE value is always positive, and a smaller value indicates a better fit between
the predicted and actual values. However, the MSE has the disadvantage of being sensitive
to outliers, as the squared differences amplify their effects on the overall error. The RMSE
is a popular performance metric used in a regression analysis to measure the difference
between predicted values and actual values. It is similar to the MSE but takes the square
root of the average of the squared errors, making it more interpretable in the same unit as
the target variable. The dimensions of the error indicators calculated by the RMSE and
MAE are consistent with the target variable, but after obtaining the results, it will be found
that the RMSE is slightly larger than the MAE. This is because the RMSE first accumulates
the squared errors before the square root, which actually amplifies the difference between
larger errors.

The coefficient of determination (R-squared or correlation), denoted as R2, is a sta-
tistical measure that represents the proportion of the variance in the dependent variable
that is explained by the independent variables in a regression model. It ranges from 0 to 1,
where a value of 1 indicates a perfect fit and 0 indicates no linear relationship between the
dependent and independent variables. The formula for R2 is:

R2 = 1−
∑N

i

(
yactual (i) − ypredicted (i)

)2

∑N
i

(
yactual (i) − yactual

)2 (4)
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where N is the number of samples in the dataset; yactual (i) is the i-th actual value; ypredicted (i)
is the i-th predicted value; yactual is the mean of the actual values.

In general, an R2 value of 0.8 or higher is considered to be a good fit for a regression
model, indicating that 80% or more of the variance in the dependent variable can be
explained by the independent variables.

3. Results and Discussion

In this section, the FWI published by the Malaysian meteorological department and
80% of the data measured by the IoT system in Section 2.1 are imported into the two
neural network structures proposed in Section 2.2 for training (i.e., 37,844 samples). Then,
the remaining 20% (i.e., 9462 samples) dataset is used to test the performance of the two
structural training models. The performance is compared from four aspects: mean square
error (MSE), root mean square error (RMSE), mean absolute error (MAE), and correlation
(R2), as shown in Figures 5 and 6.
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Figure 5 compares the FWI predicted value and the actual value obtained by machine
learning based on the four-input and nine-input neural networks in three and four layers.
The results show that the prediction structure of the four inputs and three layers in Figure 5a
can reach the MSE of 1.573, the MAE of 0.992, the RMSE of 1.254, and the correlation of 0.845.
The prediction structure of nine inputs and three layers in Figure 5c performs better and
achieves the MSE of 1.144, the MAE of 0.833, the RMSE of 1.069, and the correlation of 0.889.
The performance comparison of the peatland fire prediction based on four-layer (four-input
and nine-input) neural networks is shown in Figure 5b,d. The overall performance of
four inputs does not reach the nine-input neural network structure. Compared with the
three-layer structure in Figure 5a,c, the prediction performance of the four-layer neural
network could be better.

Figure 6 compares the fire prediction performance of peatland with different input
layers of five-layer, six-layer, and seven-layer structures. The results show that the five-layer
structure achieves the most accurate match between the predicted value and the actual
value, which is not achieved by the other layers of the prediction structure. The results
show that the prediction structure of four inputs and six layers has an MSE of 1.599, the
MAE of 1.006, a correlation of 0.846, and an RMSE of 1.265. The nine-input prediction
structure performs better and achieves the MSE of 1.147, the MAE of 0.826, the RMSE of
1.071, and the correlation of 0.886. As for seven-layer neural networks, the results show
that compared with other layers of structure, the performance of layer seven is the worst,
which signals that we will not continue to develop prediction models with more layers
for machine learning. For limited datasets, blindly increasing the number of layers of the
neural network will not only increase the processing complexity of machine learning and
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reduce the learning efficiency, but also reduce the accuracy due to the limited allocation of
data resources due to the increase in layers.

From Table 1, the results show that increasing the number of layers from three to five
generally improves the model’s performance, as indicated by the decreasing values of MSE,
RMSE, and MAE and increasing values of R2. However, increasing the number of hidden
layers from six to seven results in a slight decrease in performance, as evidenced by the
slight increase in MSE and RMSE and the decrease in R2. This indicates that there may be a
point of diminishing returns in adding more layers to the model beyond a certain threshold.
In addition, increasing the number of layers beyond a certain threshold can also lead to
overfitting. Therefore, it may be better to use a neural network model with a moderate
number of hidden layers for the FWI prediction.

Table 1. Performance comparison of four-input and nine-input neural networks with different
numbers of layers for FWI prediction.

Four-Input Neural Networks Nine-Input Neural Networks

Layers 3 4 5 6 7 3 4 5 6 7

MSE 1.573 1.543 1.537 1.599 1.605 1.144 1.122 1.116 1.14 1.162
RMSE 1.254 1.242 1.239 1.265 1.267 1.069 1.059 1.056 1.071 1.078
MAE 0.992 0.989 0.975 1.006 1.003 0.833 0.826 0.815 0.826 0.833

R2 0.845 0.848 0.852 0.846 0.845 0.889 0.889 0.890 0.886 0.886

Moreover, the performance of the neural network model with six and seven layers
is slightly worse than the model with five layers in terms of all evaluation metrics. This
observation suggests that increasing the number of layers beyond a certain threshold may
not always result in a better model performance. In fact, adding too many layers can
lead to overfitting, where the model becomes too complex and starts to fit the noise in the
data, resulting in poor generalization performance on new data. Therefore, it is important
to carefully balance the number of layers and other neural network hyperparameters to
achieve the best possible performance.

In order to more conveniently and intuitively compare the performance of the pre-
dicted structures with different layers, the four aspects of mean square error, root mean
square error, mean absolute error, and correlation are selected to draw a histogram to
compare the accuracy of the peatland fire prediction, as shown in Figure 7.

Figure 7 compares the performance of different layers (ranging from three to seven
layers) of two input modes (namely, four inputs and nine inputs) for predicting the FWI.
The results indicate that the performance of predicting the Fire Weather Index (FWI) using
neural networks is better with nine inputs compared to four inputs, regardless of the
number of layers. The evaluation metrics, including mean squared error (MSE), root
mean squared error (RMSE), mean absolute error (MAE), and R-squared (R2), consistently
demonstrate the superiority of the nine-input models over the four-input models. Figure 7a
shows that with the increase in the number of layers, the mean square error of the two
input modes starts to decrease, and the lowest point reached by the five layers is 1.537
for the four inputs and 1.147 for the nine inputs. However, the mean square error of the
structure starts to increase from the five layers to the seven layers, which is a manifestation
of the lower prediction accuracy. The same performance trend occurs in the correlation of
different layers shown in Figure 7d. At the five layers, four inputs and nine inputs reach
the highest correlation, namely 0.846 for four inputs and 0.886 for nine inputs.

In summary, among the different configurations evaluated, the nine-input, five-layer
neural network structure demonstrates the best performance for predicting the Fire Weather
Index (FWI). This model exhibits superior accuracy and precision compared to other
configurations with varying numbers of inputs and layers. These results suggest that
the inclusion of nine-input features and the utilization of a five-layer neural network
architecture provide the optimal balance between complexity and predictive performance
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for the FWI estimation. Researchers and practitioners can rely on the nine-input, five-layer
model as a robust and reliable tool for FWI prediction in forest fire risk assessment and
management.
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Figure 8 compares the Fire Weather Index (FWI) predicted by a nine-input, five-
layer neural network and the FWI published by METMalaysia between 17th January and
31st March 2020. The upper subplot displays the distribution of the FWI published by
METMalaysia, while the lower subplot shows the FWI predicted by the neural network.
The color bar in the middle of the figure represents the FWI risk level, with blue indicating
low risk (0–2), green indicating moderate risk (2–7), yellow indicating high risk (7–13), and
red indicating extreme risk (>13). Overall, the color zones in the upper and lower subplots
are similar, except for some discrepancies on 25th and 27th January, where the predicted
FWI shifted from green to yellow, and on 6th March, where a blue risk level was predicted
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as green. This suggests that the neural network can effectively predict the FWI levels and is
in agreement with the published data.
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The prediction of the Fire Weather Index (FWI) is a critical task for forest management
and fire prevention. Furthermore, the predicted FWI values were compared to the FWI
data published by METMalaysia for the period of 17 January to 31 March 2020. The
comparison revealed a high degree of similarity between the predicted and actual FWI
values, with the exception of a few discrepancies in the color-coded risk categories. Overall,
this study demonstrates the effectiveness of using a neural network machine learning
approach for predicting the FWI and its potential for supporting forest management and
fire prevention efforts.

A forest fire has substantial harm, so it is of great significance to predict the occurrence
of the forest fire. This paper takes the research object of the peatland forest in Raja Musa
Forest Reserve (RMFR) in Selangor, Malaysia. It uses two different neural network struc-
tures, four inputs and nine inputs, to cooperate with the real-time data monitored by the
IoT system and the actual Fire Weather Index published by the Malaysian meteorological
department in the same period for machine learning and compares the predicted Fire
Weather Index with the actual value, which helps to verify the reliability of the proposed
neural network structure for peatland fire prediction.

The proposed method for predicting peatland forest fires in Malaysia demonstrates
distinct advantages compared to the existing approaches [32,33]. It exhibits real-time
capability and automation, setting it apart from traditional methods [34,35] reliant on
manual data collection and analysis. By leveraging IoT technology, the method acquires
real-time data on atmospheric temperature, humidity, wind speed, rainfall, groundwater
level, solar radiation, air pressure, soil temperature, and soil humidity, thereby capturing
the dynamic and rapidly changing environmental conditions that contribute to fire risk
in peatland areas. Additionally, the utilization of machine learning algorithms facilitates
the automatic processing and analysis of the collected data, enabling the efficient and
timely prediction of the Fire Weather Index (FWI). The accuracy and reliability of the
predictions are validated by comparing them with the actual values published by the
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Malaysian Meteorological Department during the corresponding period. This rigorous
comparison reinforces the credibility of the method in accurately forecasting the FWI in
peatland areas. Through the integration of real-time monitoring, automated analysis, and
reliable validation, this method significantly enhances the accuracy and responsiveness
of peatland forest fire prediction, thereby facilitating timely interventions and effective
mitigation strategies.

4. Conclusions

The prediction of forest fires holds significant importance due to their devastating
impact. This study focused on the peatland forest in the Raja Musa Forest Reserve (RMFR)
in Selangor, Malaysia. By leveraging two different neural network structures, namely four
inputs and nine inputs, in conjunction with real-time data collected by an IoT system and
the actual Fire Weather Index from the Malaysian meteorological department, we developed
machine learning models for peatland fire prediction. The reliability of the proposed neural
network structures for peatland fire prediction was validated by comparing the predicted
Fire Weather Index with the actual values.

The results demonstrate the favorable performance of both the four-input and nine-
input structures, with the nine-input structure outperforming the four-input structure.
Notably, employing a five-layer neural network yielded the best performance for both
structures. The four-input structure achieved a mean square error of 1.537, mean absolute
error of 0.975, root mean square error of 1.239, and correlation of 0.852. Similarly, the
nine-input structure achieved a mean square error of 1.116, mean absolute error of 0.815,
root mean square error of 1.056, and correlation of 0.890.

This finding has important guiding significance for the future fire prevention de-
partment to accurately evaluate the probability and risk of forest fires and formulate
corresponding preventive measures. In the actual production and life process, it has a
specific application value for careful supervision, effective fire prevention, and active risk
resolution.
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