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Abstract: Tree growth is under the combined influence of abiotic and biotic factors. Trees with
different sizes may respond differently to these factors, implying that tree size heterogeneity may also
modulate the overall growth trend. To test this hypothesis, we focused on the radial growth trends of
natural subalpine forests on the Tibetan Plateau. We first extended the iterative growth model (IGM)
to the tree ring scale (IGMR) to test the applicability of the generalized metabolic growth theory to tree
growth. As predicted by the IGMR, the radial growth of trees at the aggregate scale is constrained by
a unimodal pattern. Using the IGMR, we reconstructed the historical best growth trajectory (HBGT)
of trees within the same community based on the tree with the largest radius and/or longest age
in the community. From the average difference between the HBGT and the current radial growth
rate of trees with different sizes, we constructed an indicator that can measure the overall variation
in tree radial growth. Based on this indicator, we found a negative effect of tree size heterogeneity
on the overall variability of tree growth across elevations. Further analysis also revealed that the
radial growth rate of trees on the Tibetan Plateau has increased significantly compared to the past,
where the growing season average temperature and annual minimum temperature were negatively
and positively correlated with tree growth below and above the treeline, respectively. Our study
not only confirmed that the overall variability of tree growth depends on tree size heterogeneity
but also proposed an indicator that reveals net changes in the tree radial growth rate relative to the
past. These theoretical advances are highly beneficial for understanding changes in the extent of
subalpine forests.

Keywords: tree radial growth; iterative growth model; Tibetan Plateau; coniferous forest; growth
variability; tree size heterogeneity

1. Introduction

It has been widely accepted that plant growth follows a “rise-and-fall” unimodal
curve [1–3]. However, some studies have suggested that very old trees may continue to
increase their biomass [4–6], which appears to contradict the classical unimodal growth
hypothesis. Although further studies have suggested that this may be related to the growth
heterogeneity and the mitigation of growth limits [7,8], it is still unclear what pattern
the growth trend follows at the community scale and what its variation mechanism is.
Furthermore, most growth models assume stable state variables [9], which limits our ability
to predict the effects of abiotic and biotic factors on tree growth.

Tree radial growth is an important indicator of tree growth that captures both climate
change and intrinsic growth trends. However, it is challenging to determine the overall
radial growth trends followed by trees in natural forests. On the one hand, climate,
competition, disturbance, and functional traits regulate the unimodal growth trajectory and
fluctuate or change over time [10]. On the other hand, trees with different sizes may respond
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differently to these influence factors and shape different growth trajectories [11]. Metabolic
growth theory, also known as the ontogenetic growth model (OGM) [12,13], provides a
promising basis for understanding tree growth. This theory dates back to observations of
animal metabolism in the early 19th century [14]. Its core can be summarized as follows:
the growth rate of an organism is proportional to the difference between its total metabolic
rate and maintenance metabolic rate, where the two metabolic terms are proportional to
the 0.75 and 1 power of the organism’s size, respectively (see Appendix B). This equation is
widely supported by the animal growth [12,13]. However, there is still insufficient evidence
to support its applicability to plant growth [3]. We found that this may be related to the
incompleteness of its core assumptions. To this end, we introduced the concept of unit
tissue “formation time” (T) and thus derived a more comprehensive iterative growth model
(IGM) [11,15]. This improvement highlights the second law of thermodynamics constraint
on organism growth and reveals the range in which growth trajectories occur [11,15]. Not
only that, evidence from plantations with similar tree sizes and stand ages supports this
unimodal growth model and suggests that climate can induce changes in the height and
length of unimodal radial growth curves [11]. We hypothesize that tree growth trajectories
in natural forests are still constrained by the single-peaked model and can be described by
the IGM.

Compared to planted forests, natural forests tend to have greater tree size heterogene-
ity. This means that the overall radial growth trend of trees in natural forests cannot be
considered as a simple scale-up of individual growth. In multi-aged stands, the causes
of size heterogeneity are related to repeated disturbances or silvicultural interventions
that regenerate these new age classes [16–18]. In single-aged stands, competition directly
drives tree size differentiation [19]. Obviously, to a large extent, tree size heterogeneity may
mediate the effects of competition and disturbance on tree growth. Under different climatic
conditions, how tree size heterogeneity influences the overall radial growth trend of trees
is still unknown.

Ongoing climate warming in mountain areas is amplified with elevation, and its
impact on forest distribution is still a major question in global change biology [20]. Range
shifts caused by warming have already been observed in some biomes, particularly those
subalpine forests close to the treeline [21]. Tree radial growth consists of age-dependent
low-frequency and climate-sensitive high-frequency signals. Although the high-frequency
signal is a result of the rapid response of tree radial growth to the climate, the age effects
and sampling strategies still affect the accuracy of tree growth assessments and climate
responses [20]. In fact, studies have found that trees along elevation gradients respond
divergently to warming [22–24], and the age or size effect profoundly affects tree growth.
Exploring the age effect, particularly the radial growth trajectory and its variability at the
community scale, will undoubtedly enhance the understanding of forest distribution across
different elevations.

The subalpine ecosystem occupies elevations just below the treeline between 2700
and 3500 m. They are not only widely distributed but also sensitive to global climate
change [17,25]. The Hengduan and Southern Qinghai Mountains, which run north–south
across the Southeastern and Northeastern Tibetan Plateau (TP), are rich in natural subalpine
forests, providing invaluable opportunities to study tree growth patterns and variability in
natural forests.

The aim of this study was to determine the effect of tree size heterogeneity on the
overall radial growth trend of trees in natural forests. The experiment consisted of three
steps. First, we extended the IGM to the tree ring scale (IGMR) and evaluated its constraints
on community-scale tree growth trends. Second, we developed a model-based measure to
assess the overall radial growth variability of trees. Finally, we focused on the effect of tree
size heterogeneity in communities under different climatic conditions on this variability
across elevations.
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2. Materials and Methods
2.1. Study Area and Data Collection

The study focused on coniferous forests in the Hengduan Mountains and South
Qinghai Mountains on the Tibetan Plateau (Figure 1). The Hengduan Mountains experience
the typical monsoonal climate, influenced by both the South Asian monsoon and the East
Asian monsoon [25]. The Southern Qinghai Mountains experience a continental climate
with large temperature fluctuations from day to night. The sample sites ranged in altitude
from 2500 to 4136 m, with an average annual temperature of 5.04 ◦C and an average
annual precipitation of 486.98 mm. Raw tree ring width data for 7 species were collected
from 45 natural forest sample sites distributed throughout the Tibetan Plateau region
through the International Tree ring Data Bank (https://www.ncdc.noaa.gov/data-access/
paleoclimatologydata/datasets/tree-ring, accessed on 25 May 2023), involving a total of
2500 tree cores (Figure 1 and Table 1).
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Table 1. Geographic description of the sample sites.

Species Name Abbreviated
Name Latitude Longitude

Average
Elevation

(m)

Number
of Sample
Sites/Tree

Cores

Species
Composition

Age
Structure

Average ±
SD/Maximum

DBH (mm)

Average ±
SD/Maximum

Age (y)

Abies forestii ABFO 27.33–29.28 99.27–100.08 3521 7/345 single species Single/mixed
age 202 ± 94/386 261 ± 121/463

Abies recurvata ABRC 28.04 99.02 3200 1/18 - Single age 276 ± 76/394 272 ± 88/394
Cupressus chengiana CUCH 31.78 101.9167 2500 1/39 single species - 218 ± 73/330 210 ± 88/358

Juniperus przewalskii JUPR 36.00–38.57 97.06–99.87 3741 16/1256 - Single/mixed
age 162 ± 80/294 552 ± 288/1046

Juniperus tibetica JUTI 28.37–33.80 91.52–100.27 4136 12/549 single species Single/mixed
age 178 ± 81/323 407 ± 200/795

Picea likiangensis PCLI 27.58–31.95 96.48–100.28 3520 6/195 - - 212 ± 83/341 232 ± 102/439
Tsuga dumosa TSDU 27.88–28.04 98.40–98.98 3125 2/63 - Single age 310 ± 44/362 293 ± 82/460

2.2. Quantification of Tree Radial Growth Pattern and Its Overall Variability

We have extended the IGM to the tree ring scale (IGMR) [11] (See Appendix A).
Assuming that f (r)T is the ring width formed during time T, the relationships between the
tree growth rate (f (r)), metabolic exponent (b), current radius (r), and potential maximum
radius (R) can be expressed as follows:

f (r) =
1
T

(T
mr

gr
r2/b

((
R
r

)2/b−2
− 1

)
+ r2/b

)b/2

− r

 (1)

where gr is the relatively stable respiration cost required to produce a unit of tissue, and mr
is the variable maintenance respiration rate per unit of tissue [26]. The value of T is related
to the thermodynamic significance of respiration and ranges between 0 and gr/mr [15].
To counteract natural degradation (entropy increase), organisms must continuously use
negative entropy to maintain the complexity, variety, and order of their components. During
time T, the growth energy proportional to gr decreases the entropy of a new unit tissue
relative to that of their free precursor monomers [27]. Meanwhile, the maintenance energy,
which is proportional to Tmr, maintains a low entropy state of an existing unit tissue and
indicates its entropy accumulation during this time. Assuming the old and new units of
tissue are identical, the synthesis of a new unit of tissue is possible only if Tmr is less than
gr; that is, T < gr/mr.

Mathematically, the limits T→ 0 and gr/mr provide us with upper and lower bound-
aries for f (r). Usually, b is considered equal to 0.75 [28,29], but some evidence suggests that
it may be equal to 0.85 [30]. Since the following results support the former, we give here
only two growth boundaries at b = 0.75:

f (r) =
3
8

mr

gr

(
R2/3r1/3 − r

)
(2)

f (r) =
mr

gr

(
R1/4r3/4 − r

)
(3)

In theory, the more rapidly a unit of tissue grows (T→ 0), the closer f (r) approaches
Equation (2). Otherwise, (T → gr/mr), the closer f (r) is to Equation (3) [15]. We termed
Equations (2) and (3) as the thermodynamic lower (IGMR-L) and upper (IGMR-U) bound-
aries of the IGMR. It is worth noting that the mathematical form of extending the OGM
(T→ 0 and b = 0.75) [17] to the tree ring scale (OGMR) is consistent with Equation (3).

On the basis of Equations (2) and (3), we can establish a historical best growth trajectory
(HBGT) based on the maximum radius and ages of the trees in the community, which can
be expressed as:

f (r)HBGT =
2k + 2
1− k

1
TGT

(
R1−krk − r

)
(4)
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where 1/3 < k < 3/4. Moreover, according to the IGM, the total growth time (TGT) of an
organism is gr/mr × (2b + 2)/(1 − b). However, the TGT for Equation (2) is 32/3 × gr/mr.
It is also likely that the pattern that tree radial growth follows will shift from Equation (2) to
Equation (3) over time, therefore ensuring that the TGT of tree radial growth is consistent
with that of biomass growth. We speculated that the k value is closer to 3/4 due to T→
gr/mr. This also means that the actual f (r) distributed along the r gradient will be more
distributed below Equation (3), as shown in Figure 2. Note that the other case is when b =
0.85 and T→ gr/mr, k = 0.85.
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Figure 2. Classical metabolic growth theory (OGM) vs. generalized metabolic growth theory (IGM).
f (r) and r represent the actual tree ring growth rate and tree radius, respectively. Here, we show the
best growth trajectory of trees within the same forest, so we assume that the actual f (r) (gray dots) is
below the curve. It is worth noting that the IGMR-U is more common, indicating that the gray dots
tend to appear more often below this curve.

Assuming that trees with the largest radius (R) and age (TGT) have the best growth
trajectory and are more determined by historical factors, we can further quantify the overall
average growth variability (OVG) relative to HBGT for the same community based on
Equation (4) as follows:

OVG =
∑(c(ri)− f (ri)HBGT)

∑ f (ri)HBGT
(5)

where c(ri) and f (ri)HBGT denote the current average growth rate over the past five years
and estimate the historical best growth rate, respectively, for the tree i. When the OVG is
greater than 0, it means that the overall growth trend of the trees is better than the historical
one; otherwise, this trend may decline or maintain the status quo.

2.3. Data Processing and Analysis

We conducted statistics on growth information for each chronology, including the
current diameter (rc), age (L), and average growth rate over the past five years (f (r)c), for
each tree core. Additionally, we extracted the average tree ring growth rate (f (r)m) for trees
of the same species within each site. To ensure the robustness of our findings, we only
analyzed chronologies with a minimum of 30 samples. We assumed that tree TGT is the
95th percentile of the L values of all trees of the same species within that site. However,
this estimation tends to overestimate TGT for most trees because of growth heterogeneity.
Mathematically, we can still assume that TGT is accurate, but f (r)m is overestimated.
Therefore, the actual relationship between the normalized tree diameter (r/R) and the
normalized growth rate (f (r)c/f (r)m) should be lower than the normalized Equation (4).
Note that R here is equal to TGT × f (r)m. The normalized Equation (4) is obtained by
assuming R = 1 and mr/gr = 1. Afterwards, we calculated the coefficient of variation of
the tree radius (CVR) at each site and tested whether the tree radial growth trajectories
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conformed to Equation (4) (where k = 0.75). Based on the test results, we estimated the
HBGT and CVR of each site using Equations (4) and (5).

After obtaining the current CVR value for each site, we analyzed its relationship with
tree size heterogeneity and climate. Tree size heterogeneity is characterized by CVR, and
the meteorological factors used, such as the mean annual temperature (MAT) and the
mean annual precipitation (MAP), were extracted from WorldClim (2.5 min) (https://www.
worldclim.org/data/worldclim21.html#, accessed on 25 May 2023). These meteorological
factors were annual averages from 1970 to 2000. The hierarchical partitioning method was
employed to determine the individual contribution of climate variables, CVR, and elevation
to OVG via the rdacca.hp package in R version 4.0.2 [31]. To analyze the direct and indirect
effects of CVR and meteorological factors on OVG, we fitted a structural equation model
(SEM). The sample size used here was 45. Since structural equation modeling requires a
sample size of at least ten times the number of observed variables [32], we only included
five observational variables in this study. The overall fit of the SEM was evaluated using
the p-value, GIF, and RMSEA from the SEM package. In addition, we used the Wilcoxon
signed-rank test to analyze the differences between the best historical growth rates and
the current growth rates of trees at different elevation ranges. The Wilcoxon test is the
nonparametric version of the paired t-test, which is appropriate for any distribution of data
and especially for small sample sizes.

3. Results
3.1. Tree Radial Growth Follows the IGMR-U

We first determined the distribution of CVR and tested whether the radial growth of
trees within different CVR ranges was constrained by the IGMR. The results showed that
CVR conforms to a normal distribution with a mean value of 0.375 and a variance of 0.143.
Additionally, the tree relative radius (r/R) was normally distributed below CVR < 0.375
(gray bars in Figures 3A and A1). This means that a smaller CVR can filter the effects
of competition and disturbance. When CVR < 0.375, the boundary (95th percentile) of
the normalized radial growth rate conforms to the normalized Equation (3) (Figure 3B),
where the fitted value of k is 0.736 ± 0.10, which supports our theoretical prediction, i.e.,
k = b = 0.75. On the other hand, the normalized Equation (3) still constrains these growth
rates (Figure 3C) when the CVR is larger (CVR > 0.375, white bars in Figure 3A). Not only
that, the coefficient of variation of the radial growth rate for the last 5 years is also lower
than the average normalized growth trend (i.e., half of the normalized curve) (Figure 3D).
Note that the reason for using the average curve here is that the coefficient of variation
is determined based on the mean value. From these results, it is evident that unimodal
patterns limit tree radial growth following the IGMR-U.

3.2. Effect of Tree Size Heterogeneity on Overall Growth Variability

Using the IGMR-U, we reconstructed the HBGT for each site and assessed the overall
variation in the current radial tree growth. The results indicated a significant negative
correlation between CVR and OVG (R = 0.24, p < 0.01), as presented in Figure 4A. Further-
more, the hierarchical partitioning analysis suggested that CVR had a higher independent
contribution to OVG than climate factors (Figure 4B). To further clarify the direct and
indirect effects of climatic variability and/or CVR on OVG, we used SEM to fit the data,
as shown in Figure 4C. The SEM indicates that, except for annual precipitation and the
ratio of tree average to maximum age, which have certain direct positive and negative
effects on OVG (0.33 and −0.52), OVG is mainly mediated by CVR. The precipitation of
the warmest quarter and the ratio of tree average to maximum age can indirectly affect
OVG through CVR, but they can only explain 31% of the variation in OVG. Most of the
variations in OVG are independent of climate and forest age and directly affect OVG. The
standardized direct effects of climate, forest development, and CVR on OVG are 0.335,
−0.521, and −0.672, respectively. The standardized indirect effects are 0.193, 0.301, and 0,
respectively. Collectively, they can explain 61% of the variation in OVG.

https://www.worldclim.org/data/worldclim21.html#
https://www.worldclim.org/data/worldclim21.html#
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are from the data belonging to the gray and white bars in (A), respectively. The green curve in
(B) is obtained from the 0.95th quantile fit of the data by Equation (4), where b = k = 0.736 ± 0.10.
This curve, along with its half, is also plotted in (C,D). The red curve (A) is the normal distribution
curve. (B–D) Dot density is represented by different colors, with warmer colors representing a higher
density and cooler colors representing a lower density. The quartiles for the blue, red, and orange
borders are 0.95, 0.75, and 0.55, respectively.
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Figure 4. Correlation (A), hierarchical partitioning (B), and structural equation model analyses
(C) between explanatory variables and OVG. (A) Normalized growth rate: ratio of the average growth
rate of tree cores over the past five years to the average growth rate of all tree cores (f (r)c/f (r)m).
(B) ele: elevation; Temp: mean annual temperature; Maxtwm: max temperature of warmest month;
Mentwq: mean temperature of warmest quarter; Mentcq: mean temperature of coldest quarter;
Ap: annual precipitation; Pwq: precipitation of wettest quarter; Pcq: precipitation of driest quarter.
(A) Red line is linear regression. (C) Solid red and green arrows represent significant (p < 0.05) positive
and negative paths, respectively; double arrow solid lines indicate a correlation. The numbers near
the lines indicate the standard path coefficients or correlation coefficients. R2 represents the amount of
variation of the variable explained by corresponding paths. The red and green lines indicate negative
and positive effects, respectively.
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3.3. Tree Radial Growth Assessment

On the basis of OVG, we further assessed the tree radial growth at different elevations.
We found that the current growth rate is generally higher than the historical best, calculated
by HBGT, when the growth rate is small. However, the opposite is true when the growth
rate is large, as shown in Figure 5A. This difference may be related to elevation, as shown
in Figure 5B,C. The tree radial growth rates greatly increase at lower elevations. Conversely,
the current growth rate of trees situated above the treeline (uppermost elevation of an
individual tree, >2 m height, typically >3600 m elevation for TB) [33] is generally lower
than the historical best value. If we assume that the average radial growth rate is only
half of the ideal, then we can calculate the historical average growth rate. We define the
difference between the current average growth rate and the historical average growth rate
as the net increase in the radial growth rate. In the low elevation region, there is a strong
negative correlation between this net increase rate and the mean temperature of the wettest
quarter (Figure 5D). On the other hand, at the upper treeline, the minimum temperature of
the coldest month is positively correlated with this net change (Figure 5E).
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4. Discussion
4.1. Tree Size or Radius Constrains Its Radial Growth and Growth-Climate Sensitivity

The radial growth of trees is usually considered to be influenced by age (or size)
and climatic factors, showing an age-dependent low-frequency (with a stable trend) and
a climate-sensitive high-frequency (rapid change) signal [11,34,35]. After removing the
modulations of the age effect trend, this signal typically exhibits stable climate sensitivity,
termed stationarity assumptions or uniformity principles [34,35]. Based on this principle,
it is possible to obtain high-resolution global information on tree species’ responses to
global change, forest carbon and water dynamics, and past climate variability and extremes
from tree ring dynamics [36]. However, our research indicated that there is no essential
difference between high-frequency and low-frequency growth signals. Mathematically, the
high-frequency signal is the limited fluctuation of the low-frequency signal, and both are
mediated by tree size or radius, mr/gr, and the potential maximum size or radius, where
environmental and resource intakes could significantly affect the mr and the maximum size
or radius. Some evidence supports this conclusion. For example, age effects and sampling
strategy affect the accuracy of a tree growth assessment and its climate response [20,37,38].
Moreover, changes in tree physiological status [34] result in different climate-growth
relationships [37,38] and inevitably feed back into the size-to-growth constraint [17,39,40].
In fact, size has a greater effect than cellular senescence on age-related declines in relative
growth and net assimilation rates [41]. Our model highlights that tree size, specifically the
radius, determines the radial growth trend and climate sensitivity (Figure 3D). That is, the
variation coefficient of the radial growth rate still shows a single-peaked pattern on the
radius gradient.

4.2. Limited Influence of Climate on Tree Size Heterogeneity of Subalpine Forests

Overall, warm season precipitation contributed to the size convergence of trees in
subalpine forests (Figure 4C). Concurrently, forest growth or development can also spon-
taneously reduce tree size heterogeneity. At lower elevations, increased precipitation can
promote radial growth by reducing water stress and accelerating xylem activity during
the growing season [42]. This boost will be more pronounced for smaller trees that grow
faster, thus reducing CVR. However, at higher elevations with lower temperatures, in-
creased precipitation may cause trees to experience more snowfall events and physical
disturbances, resulting in increased CVR. Thus, significant negative (r =−0.79, p < 0.01) and
positive (r = 0.44, p < 0.01) correlations were observed between CVR and the precipitation
of the coldest quarter at low and high elevations, respectively (see Appendix B, Figure A2).
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However, the role of precipitation and forest growth or development in regulating size
heterogeneity is relatively limited, suggesting the repeated effects of disturbance and com-
petition on forests. These results suggest that precipitation plays a key role in shaping the
location and structure of a treeline [43,44].

4.3. Forest Range Response to Tree Size Heterogeneity and Climate Change

Our research suggests that treeline expansion may be related to both tree size hetero-
geneity and temperature in different seasons. On the one hand, size inequality may cause
an overall decrease in tree growth. We found that tree CVR was significantly lower in the
low elevation region (<3600 m) than in the high elevation region (>3600 m) (see Appendix B,
Figure A3), while the radial growth rate of low elevation trees was also overall higher than
the estimated historical best value (Figure 5B,C). This difference can be attributed to the
negative effect of CVR on OVG (Figure 4). We speculated that competition and disturbance
may be the main causes of increased CVR and decreased OVG. Usually, in natural forests,
smaller trees are more vulnerable to asymmetric competition, whereas larger trees are prone
to being affected by disturbance [17,39,40]. For subalpine forests, this pattern also broadly
applies, but the proportion of large individuals decreases significantly with increasing
elevation (see Appendix B and Figure A4), implying that disturbance may be related to
treeline formation. On the other hand, net changes in the tree radial growth rates at low
and high elevations may be differentially affected by temperature in different seasons. In
the subalpine forest belts, precipitation tends to be more abundant during the growing
season. Nevertheless, rising temperatures may lead to an increase in respiration rates,
which can lead to a decrease in the allocation of photosynthetic products to growth [45].
Consequently, we can observe a significant negative correlation between net changes in
tree radial growth rates and the mean temperature of the wettest quarter (Figure 5D). At
higher elevations, low temperatures limited tree growth, showing a positive correlation
between the minimum temperature and this change (Figure 5E). These results imply that
global warming affects tree growth variability differently in the high and low elevation
subalpine ranges.

4.4. Tree Growth Assessment Based on Generalized Metabolic Growth Theory

Understanding how abiotic and biotic factors contribute to tree growth has been
a longstanding challenge in global ecology. Our study introduces a new indicator for
measuring radial growth variability based on a generalized metabolic growth theory. The
theoretical framework underlying this indicator not only considers the variability in state
variables such as b but also incorporates an iterative growth mechanism, making it highly
suitable for modeling and predicting plant growth [17]. The differences in tree lifespan
and average growth rate under different environments will be captured by the growth
model [11]. Therefore, our method of measuring the overall tree growth variability is highly
applicable. However, sampling strategies can affect the accuracy of tree growth assessments
and the response to the climate [37,38]. Traditional sampling methods may introduce bias
into the growth trend [46]. Therefore, in future studies, it is worth considering the different
age classes of the trees at the time of sampling. We recommend choosing as many trees of
different sizes as possible so that the overall fit appears as a unimodal trajectory in theory.

5. Conclusions

We revealed a single-peak pattern of radial growth in natural forest trees by expanding
the IGM, thereby quantifying the overall average difference in radial growth of trees
in subalpine forests relative to the historical best estimate. Further analysis showed that
precipitation and tree size heterogeneity have positive and negative effects on this difference,
respectively. At lower elevations, precipitation can reduce tree size heterogeneity, but with
increasing elevation, precipitation evolves into snowfall disturbance and increases size
heterogeneity. In addition, our results suggest a constraining effect of tree size on growth-
climate sensitivity.
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Glossary

Symbol Meaning Unit
f (r) tree ring growth rate mm/y

T
The formation time of unit tissue is primarily controlled genetically

yand by physiological activities, with the intrinsic or developmental
growth rate independent of organism size

R Tree maximum radius mm
r Tree current radius mm
mr Rate of maintenance respiration per unit of tissue mg g−1 y−1

gr Cost of respiration needed to produce a unit of tissue mg g−1

b Metabolic exponent, taken here as 0.75 1
TGT Total growth time y
f (r)HGBT Growth rate of historical best growth trajectory mm/y
OVG overall average growth variability 1
c(ri) current average growth rate over the past five years, for tree i. mm/y
f (ri)HBGT Estimated historical best growth rate for tree i mm/y
f (r)c average growth rate over the past five years mm/y
rc Statistical current diameter mm
L Statistical tree age y
f (r)m Statistical average tree ring growth rate mm/y
k Pending parameter 1
CVR coefficient of variation of the tree radius 1

Appendix A. Iterative Growth Model (IGM)

Tree respiration involves the transport, release, and use of energy stored in photo-
synthetic carbohydrate products. This supports tree growth, maintenance, and longevity.
These energy-demanding processes also follow the first and second laws of thermodynam-
ics and the allometric scaling laws of metabolism. Based on these rules, we constructed a
general kinetic framework for organism growth [15]:

f (m)

T
=

mr

gr

(
M1−b(m− o)b −m + o

)
(A1)

where f (m) is the total biomass of new tissue created during the formation time T of a unit
of tissue, and hence, f (m)/T represents the average growth rate over this formation time,
as well as the growth rate; b is the metabolic scaling exponent, related to a space-filling
fractal (self-similar)-like network; gr is the cost of respiration needed to produce a new
unit of tissue; and mr is a unit of tissue’s rate of maintenance respiration (per unit of time).
Generally, gr is stable, and mr is sensitive to the environment and is driven by temperature,
with its trend following the Arrhenius equation. Mathematically, Equation (A1) highlights a
growth iterative mechanism. Namely, growth can be described as a series of spontaneously
iterated feedbacks, each of length T. At each iteration, the organism moves from the initial
biomass m0 (slightly larger than the threshold biomass for growth, o) and approaches
the final mass M. Thus, we refer to Equation (A1) as an iterative growth model (IGM).

https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring
https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring
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Mathematically, classical metabolic growth theory, also known as the ontogenetic growth
model (OGM), is a special case of IGM at b = 0.75 and T→ 0.

Moreover, the IGM contains two implicit thermodynamic and mathematical con-
straints. The first constraint is that T < gr/mr. We derive this from the thermodynamic
significance of respiration. To counteract natural degradation (entropy increase), organisms
must continuously use negative entropy to maintain the complexity, variety, and order of
their components. Usually, organisms obtain useful energy (e.g., chemical energy stored in
photosynthetic products or food) from the environment and return equivalent amounts
of energy to the environment in less useful forms, such as dissipated energy or heat. In
this process, energy provides negative entropy or the required order to organisms. Thus,
from an entropy perspective, during time T, the growth energy proportional to gr decreases
the entropy of a new unit of tissue relative to that of their free precursor monomers [27],
causing free monomers to achieve an appropriate ordered state. At the same time, the
maintenance energy proportional to Tmr contributes the negative entropy to maintain the
low entropy state of a unit of old tissue, and mr and Tmr are also proportional to the entropy
increase rate and entropy accumulation of a unit of old tissue during time T, respectively.
Assuming there is no difference between the new and old units of tissue, the new unit
tissue can be synthesized only when Tmr must be less than gr, i.e., T < gr/mr. When T→
0 and gr/mr, integrating or iterating Equation (A1) will produce two smooth functions
driven by time (t), i.e., the Richards and Gompertz equations [15].

m = M(1− L exp(−rt))1/−b (A2)

m = M·(m0/M)bn
(A3)

where L = 1 −Mb−1 × m0
1−b, r = mr/gr (1 − b), m0 is the first biomass observed, and n is

the number of iterations and is equal to t × mr/gr. These results indicate that the actual
growth dynamics lie somewhere between these equations (Equations (A2) and (A3)) and
may not be an explicit analytic solution in most cases.

Second, from a mathematical perspective, M maintains a strict relationship with the
other parameters.

M =
D
T

gr

mr

2b + 2
1− b

(A4)

where D is the average f (m), mainly determined by the ability of plants to absorb resources
and the supply of resources, and TM/D or gr/mr × (2b + 2)/(1 − b) represents the total
growth time. The basis for this equation is an integral transform from f (m) to M [15].

Due to the tree radius (r) ∝ mb/2 [29], we can then derive Equation (1).
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