Effects of Heavy Metals on Nitrogen in Soils of Different Ecosystems in the Karst Desertification of South China
Abstract
:1. Introduction
2. Study Area and Sample
2.1. Study Area
2.2. Sample
3. Materials and Methods
4. Results
4.1. Descriptive Statistics of Soil Nitrogen and Heavy Metals
4.2. Evaluation of Soil Heavy Metal Pollution
4.3. One-Way ANOVA of Soil Nitrogen and Heavy Metals
4.4. Correlation Analysis of Soil Nitrogen and Heavy Metals
5. Discussion
5.1. Soil Nitrogen
5.2. Soil Heavy Metals
5.3. Soil Nitrogen and Heavy Metals
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, Y.; Qi, X.; Wang, K.; Liao, C.; Tong, X.; Brandt, M.; Liu, B. Large scale rocky desertification reversal in South China karst. Prog. Phys. Geogr. Earth Environ. 2022, 46, 661–675. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S.J. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. CATENA 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Pei, J.; Wang, L.; Wang, X.; Niu, Z.; Kelly, M.; Song, X.P.; Cao, J. Time series of Landsat imagery shows vegetation recovery in two fragile karst watersheds in southwest china from 1988 to 2016. Remote Sens. 2019, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, Y.; Xiong, K.; Yu, Y.; Min, X. Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors. Glob. Ecol. Conserv. 2020, 24, e01381. [Google Scholar] [CrossRef]
- Li, Q.; Song, A.; Yang, H.; Müller, W.E. Impact of rocky desertification control on soil bacterial community in Karst Graben Basin, Southwestern China. Front. Microbiol. 2021, 12, 636405. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Z.; Lu, S.; Zhong, J.; Zhu, L.; Chen, F.; Wu, L. Soil quality assessment via the factor analysis of karst rocky desertification areas in Hunan, China. Soil Use Manag. 2022, 38, 248–261. [Google Scholar] [CrossRef]
- Yan, X.; Cai, Y.L. Multi-scale anthropogenic driving forces of karst rocky desertification in Southwest China. Land Degrad. Dev. 2015, 26, 193–200. [Google Scholar] [CrossRef]
- Zeng, F.; Jiang, Z.; Shen, L.; Chen, W.; Yang, Q.; Zhang, C. Assessment of multiple and interacting modes of soil loss in the karst critical zone, Southwest China (SWC). Geomorphology 2018, 322, 97–106. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Yu, Y.; Wang, L.; Wei, B.; Tong, S.; Yang, L.S. Bioaccumulation and translocation of trace elements in soil-irrigation water-wheat in arid agricultural areas of Xin Jiang, China. Ecotoxicology 2021, 30, 1290–1302. [Google Scholar] [CrossRef]
- Miu, B.A.; Pop, C.E.; Crăciun, N.; Deák, G. Bringing life back into former mining sites: A mini-review on soil remediation using organic amendments. Sustainability 2022, 14, 12469. [Google Scholar] [CrossRef]
- Huang, X.; Hu, J.; Qin, F.; Quan, W.; Cao, R.; Fan, M.; Wu, X. Heavy metal pollution and ecological assessment around the Jinsha coal-fired power plant (China). Int. J. Environ. Res. Public Health 2017, 14, 1589. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, X.; Tu, C.; Huang, X.; Lin, C. Relationships between soil properties and the accumulation of heavy metals in different brassica campestris l. growth stages in a karst mountainous area. Ecotoxicol. Environ. Saf. 2020, 206, 111150. [Google Scholar] [CrossRef]
- Wan, P.; Xiong, K.; Zhang, L. Heterogeneity of spatial-temporal distribution of nitrogen in the karst rocky desertification soils and its implications for ecosystem service support of the desertification control—A literature review. Sustainability 2022, 14, 6327. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, K.; Wang, X.; Wan, P. Study of soil nitrogen in karst rocky desertification areas: A Literature review. Pol. J. Environ. Stud. 2022, 31, 5533–5547. [Google Scholar] [CrossRef]
- Li, M.; Ren, L.; Zhang, J.; Luo, L.; Qin, P.; Zhou, Y.; Chen, A. Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Sci. Total Environ. 2019, 651, 2166–2174. [Google Scholar] [CrossRef]
- Oliveira, A.; Pampulha, M.E. Effects of long-term heavy metal contamination on soil microbial characteristics. J. Biosci. Bioeng. 2006, 102, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jach, M.E.; Sajnaga, E.; Ziaja, M. Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils. Biology 2022, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Slosar, M.; Uher, A.; Andrejiova, A.; Juríková, T. Selected yield and qualitative parameters of broccoli in dependence on nitrogen, sulfur, and zinc fertilization. Turk. J. Agric. For. 2016, 40, 465–473. [Google Scholar] [CrossRef]
- Cao, Z.Z.; Qin, M.L.; Lin, X.Y.; Zhu, Z.W.; Chen, M.X. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environ. Pollut. 2018, 238, 76–84. [Google Scholar] [CrossRef]
- Feng, R.; Wang, L.; Yang, J.; Zhao, P.; Zhu, Y.; Li, Y.; Zheng, S. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J. Hazard. Mater. 2021, 402, 123570. [Google Scholar] [CrossRef]
- Wang, J.; Bao, J.; Su, J.; Li, X.; Chen, G.; Ma, X. Impact of inorganic nitrogen additions on microbes in biological soil crusts. Soil Biol. Biochem. 2015, 88, 303–313. [Google Scholar] [CrossRef]
- Wang, L.F.; Bai, Y.X.; Gai, S.N. Single-factor and nemerow multi-factor index to assess heavy metals contamination in soils on railway side of harbin-suifenhe railway in northeastern China. Appl. Mech. Mater. 2011, 71–78, 3033–3036. [Google Scholar] [CrossRef]
- Tokatl, C.; Varol, M.; Ustaolu, F. Ecological and health risk assessment and quantitative source apportionment of dissolved metals in ponds used for drinking and irrigation purposes. Environ. Sci. Pollut. Res. 2023, 30, 52818–52829. [Google Scholar] [CrossRef] [PubMed]
- Canion, A.; Ransom, K.M.; Katz, B.G. Discrimination of nitrogen sources in karst spring contributing areas using a bayesian isotope mixing model and wastewater tracers (Florida, USA). Environ. Eng. Geosci. 2020, 26, 291–311. [Google Scholar] [CrossRef]
- Renou-Wilson, F.; Farrell, E.P. The use of foliage and soil information for managing the nutrition of Sitka and norway spruce on cutaway peatlands. Silva Fenn. 2007, 41, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Walker, T.W.; Thapa, B.K.; Adams, A. Studies on soil organic matter: 2. influence of increased leaching at various stages of weathering on levels of carbon, nitrogen, sulfur, and organic and total phosphorus. Soil Sci. 1959, 87, 1–10. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, W.; Ye, Y.; Zhao, J.; Wang, K. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a karst ecosystem. Sci. Rep. 2017, 7, 41402. [Google Scholar] [CrossRef] [Green Version]
- Hess, L.; Austin, A.T.; Vries, F.D. Pinus ponderosa alters nitrogen dynamics anddiminishes the climate footprint in natural ecosystems of Patagonia. J. Ecol. 2014, 102, 610–621. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, H.; Wang, K.; Zhang, J.; Hou, Y. Spatial variability of soil nutrients on hillslope in typical karst peak-cluster depression areas. Trans. Chin. Soc. Agric. Eng. 2008, 24, 68–73. [Google Scholar] [CrossRef]
- Karimipoor, Z.; Rashtian, A.; Amirkhani, M.; Ghasemi, S. The effect of grazing intensity on vegetation coverage and nitrogen mineralization kinetics of steppe rangelands of Iran (case study: Nodoushan rangelands, Yazd, Iran). Sustainability 2021, 13, 8392. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.F.; Hu, J.W.; Xiong, K.N.; Duan, S.M. Accumulation of heavy metals by wetland plants with different root systems in a karst mountainous area. Adv. Mater. Res. 2013, 788, 460–465. [Google Scholar] [CrossRef]
- Hu, N.; Li, H.; Tang, Z.; Li, Z.; Li, G.; Jiang, Y. Community size, activity and c:n stoichiometry of soil microorganisms following reforestation in a karst region. Eur. J. Soil Biol. 2016, 73, 77–83. [Google Scholar] [CrossRef]
- Guo, Z.; Gan, Y. Ecosystem function for water retention and forest ecosystem conservation in a watershed of the Yangtze river. Biodivers. Conserv. 2002, 11, 599–614. [Google Scholar] [CrossRef]
- Long, J.; Juan, L.I.; Wang, J.R. Effects of land use and management on soil fertility in the middle karst region of Guizhou province. Chin. J. Soil Sci. 2006, 37, 249–252. (In Chinese) [Google Scholar]
- Wang, J.; Chen, J.; Jin, Z.; Guo, J.; Liu, Y. Simultaneous removal of phosphate and ammonium nitrogen from agricultural runoff by amending soil in lakeside zone of karst area, southern China. Agric. Ecosyst. Environ. 2019, 289, 106745. [Google Scholar] [CrossRef]
- Lopes, M.M.; Salviano, A.; Araujo, A.; Nunes, L.; Oliveira, M.E. Changes in soil microbial biomass and activity in different brazilian pastures. Span. J. Agric. Res. 2010, 8, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.R.; Guo, F.; Jiang, G.H.; Bian, H.Y. Application of 15N and 18O to nitrogen pollution source in karst water in eastern Guilin. China Environ. Sci. 2014, 34, 2223–2230. (In Chinese) [Google Scholar]
- Gao, R.; Dai, Q.; Gan, Y.; Peng, X.; Yan, Y. The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region. Environ. Sci. Pollut. Res. Int. 2019, 26, 26900–26911. [Google Scholar] [CrossRef]
- Hungate, B.A.; Duval, B.D.; Dijkstra, P.; Johnson, D.W.; Ketterer, M.E.; Stiling, P. Nitrogen inputs and losses in response to chronic CO2 exposure in a subtropical oak woodland. Biogeosciences 2014, 11, 3323–3337. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, H.; Iqbal, M.; Javed, A.; Jehan, S. Nitrification dynamics in soil due to variation in CO2 level. Russ. J. Agric. Socio-Econ. Sci. 2015, 38, 15–19. [Google Scholar] [CrossRef]
- Wehrle, R.; Welp, G.; Pätzold, S. Total and hot-water extractable organic carbon and nitrogen in organic soil amendments: Their prediction using portable mid-infrared spectroscopy with support vector machines. Agronomy 2021, 11, 659. [Google Scholar] [CrossRef]
- Goodale, C.L.; Fredriksen, G.; Weiss, M.S.; McCalley, C.K.; Sparks, J.P.; Thomas, S.A. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment. Ecology 2015, 96, 2653–2668. [Google Scholar] [CrossRef]
- Samec, P.; Magda, E.; Pavel, C. Norway spruce (Picea abies/L./Karst.) health status on various forest soil ecological series in Silesian Beskids obtained by grid or selective survey. Beskydy 2017, 10, 57–66. [Google Scholar] [CrossRef]
- Villa, P.M.; Martins, S.V.; Monsanto, L.D.; de Oliveira Neto, S.N.; Mota Cancio, N. Agroforestry as a strategy for the recovery and conservation of carbon stocks in Amazon forests. Bosque 2015, 36, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Courrat, A.; Lobry, J.; Nicolas, D.; Laffargue, P.; Amara, R.; Lepage, M. Anthropogenic disturbance on nursery function of estuarine areas for marine species. Estuar. Coast. Shelf Sci. 2009, 81, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Otten, P.; Injuk, J.; Grieken, R.V. Vertical sulfur dioxide, ozone, and heavy metal concentration profiles above the southern bight of the North sea. Isr. J. Chem. 2013, 34, 411–424. [Google Scholar] [CrossRef]
- Miura, N.; Jones, S.D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens. Environ. 2010, 114, 1069–1076. [Google Scholar] [CrossRef]
- Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 1999, 80, 1455–1474. [Google Scholar] [CrossRef]
- Mccann, K.S. The diversity-stability debate. Nature 2000, 405, 228–233. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Srivastava, D.S.; Duffy, J.E.; Wright, J.P.; Downing, A.L.; Sankaran, M.; Jouseau, C. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 2006, 443, 989–992. [Google Scholar] [CrossRef]
- Naeem, S.; Li, S. Biodiversity enhances ecosystem reliability. Nature 1997, 390, 507–509. [Google Scholar] [CrossRef]
- Loreau, M.; Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 2001, 412, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Ives, A.R.; Carpenter, S.R. Stability and diversity of ecosystems. Science 2007, 317, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.; Li, P.; Zhou, Z.; Lv, T.; Lan, A. The Typical Study on RS-GRS of Karst Desertification with a Special Reference to Guizhou Province, 1st ed.; Geology Press: Beijing, China, 2022; pp. 15–27. (In Chinese) [Google Scholar]
- Xiong, K.; Chen, Q. Discussion on karst rocky desert evolution trend based on ecologically comprehensive treatment. Caisologica Sin. 2010, 29, 50–56. (In Chinese) [Google Scholar]
- Xiong, K.; Li, J.; Long, M. Features of soil and water loss and key issues in demonstration areas for combating kasrt rocky desertification. Geogr. J. 2012, 67, 878–888. [Google Scholar] [CrossRef]
- Xiong, K.; Chi, Y. The problems in Southern China karst ecgosystem in Southern of China and its countermeasures. Ecol. Econ. 2015, 31, 23–30. (In Chinese) [Google Scholar]
- Xiong, K.; Zhu, D.; Peng, T.; Yu, L.; Xue, J.; Li, P. Study on ecological industry technology and demonstration for karst rocky desertification control of the karst plateau-gorge. Acta Ecol. Sin. 2016, 36, 7109–7113. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Liu, G.; Xiong, K.; Cai, L. Dynamic variations in soil moisture in an epikarst fissure in the karst rocky desertification area. J. Hydrol. 2020, 591, 125587. [Google Scholar] [CrossRef]
- Liu, Z.; Li, K.; Xiong, K.; Li, Y.; Wang, J.; Sun, J.; Cai, L. Effects of zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area. Agric. Water Manag. 2021, 257, 107125. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Xiong, K.; He, Q.; Li, Y.; Li, K.P. Characteristics and controlling factors of soil dissolved organic matter in the rainy season after vegetation restoration in a karst drainage area, South China. CATENA 2022, 217, 106483. [Google Scholar] [CrossRef]
- Cai, L.; Xiong, K.; Liu, Z.; Li, Y.; Fan, B. Seasonal variations of plant water use in the karst desertification control. Sci. Total Environ. 2023, 885, 163778. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xiong, K. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of rocky desertification control. Sci. Total Environ. 2022, 852, 158538. [Google Scholar] [CrossRef] [PubMed]
- Istanbullu, S.N.; Sevik, H.; Isinkaralar, K.; Isinkaralar, O. Spatial distribution of heavy metal contamination in road dust samples from an urban environment in Samsun, Türkiye. Bull. Environ. Contam. Toxicol. 2023, 110, 78. [Google Scholar] [CrossRef] [PubMed]
Type | Main Vegetation | Latitude and Longitude | Altitude |
---|---|---|---|
Grassland | Grass | 105°5′23″ E 27°15′02″ N | 1931.29 m |
Forest | Walnut and Thorn pear | 105°5′48″ E 27°14′52″ N | 1836.26 m |
Agroforestry | Masson’s pine | 105°5′24″ E 27°14′16″ N | 1700.12 m |
Ecosystem | Parameter | TN | AN | SMBN | Cr | Cu | Fe | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Grassland | max | 1.94 | 105.45 | 13.90 | 171.90 | 69.68 | 38.73 | 80.34 | 47.25 | 169.70 |
min | 1.39 | 77.39 | 11.90 | 121.60 | 31.43 | 20.45 | 43.33 | 26.15 | 120.30 | |
mean | 1.73 | 91.63 | 12.80 | 143.30 | 51.09 | 25.72 | 59.21 | 30.85 | 142.58 | |
SD | 0.20 | 9.04 | 0.63 | 18.24 | 11.83 | 7.87 | 14.44 | 6.02 | 17.93 | |
SE | 0.06 | 2.86 | 0.20 | 5.77 | 3.74 | 2.49 | 4.57 | 1.90 | 5.67 | |
CV | 0.11 | 0.10 | 0.05 | 0.13 | 0.23 | 0.31 | 0.24 | 0.20 | 0.13 | |
Forest | max | 2.04 | 117.77 | 14.40 | 155.90 | 58.97 | 22.08 | 58.03 | 37.41 | 143.90 |
min | 1.43 | 82.22 | 12.90 | 108.80 | 17.63 | 19.61 | 35.35 | 13.43 | 107.80 | |
mean | 1.81 | 103.87 | 13.50 | 135.42 | 32.97 | 20.51 | 44.42 | 28.82 | 130.73 | |
SD | 0.21 | 12.27 | 0.43 | 13.71 | 17.73 | 0.96 | 8.38 | 9.17 | 12.98 | |
SE | 0.07 | 3.88 | 0.14 | 4.33 | 5.61 | 0.30 | 2.65 | 2.90 | 4.10 | |
CV | 0.12 | 0.12 | 0.03 | 0.10 | 0.54 | 0.05 | 0.19 | 0.32 | 0.10 | |
Agroforestry | max | 2.95 | 185.77 | 11.60 | 192.40 | 87.94 | 23.87 | 113.50 | 43.15 | 125.30 |
min | 2.45 | 113.28 | 10.12 | 145.60 | 17.63 | 20.61 | 45.45 | 31.32 | 101.30 | |
mean | 2.68 | 146.92 | 10.62 | 165.47 | 52.01 | 22.38 | 73.26 | 38.10 | 109.83 | |
SD | 0.16 | 22.23 | 0.51 | 18.44 | 27.63 | 1.06 | 26.76 | 4.69 | 8.32 | |
SE | 0.05 | 7.03 | 0.16 | 5.83 | 8.74 | 0.34 | 8.46 | 1.48 | 2.63 | |
CV | 0.06 | 0.15 | 0.05 | 0.11 | 0.53 | 0.05 | 0.37 | 0.12 | 0.08 |
Ecosystem | Pi | Pmax | Pave | P | |||||
---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Fe | Ni | Pb | Zn | ||||
Grassland | 0.96 | 0.05 | 0.51 | 0.99 | 0.10 | 0.14 | 0.99 | 0.46 | 0.77 |
Forest | 0.90 | 0.03 | 0.41 | 0.74 | 0.10 | 0.13 | 0.90 | 0.39 | 0.69 |
Agroforestry | 1.10 | 0.05 | 0.45 | 1.22 | 0.13 | 0.11 | 1.22 | 0.51 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Xiong, K.; Wan, P. Effects of Heavy Metals on Nitrogen in Soils of Different Ecosystems in the Karst Desertification of South China. Forests 2023, 14, 1497. https://doi.org/10.3390/f14071497
Zhang L, Xiong K, Wan P. Effects of Heavy Metals on Nitrogen in Soils of Different Ecosystems in the Karst Desertification of South China. Forests. 2023; 14(7):1497. https://doi.org/10.3390/f14071497
Chicago/Turabian StyleZhang, Le, Kangning Xiong, and Panteng Wan. 2023. "Effects of Heavy Metals on Nitrogen in Soils of Different Ecosystems in the Karst Desertification of South China" Forests 14, no. 7: 1497. https://doi.org/10.3390/f14071497
APA StyleZhang, L., Xiong, K., & Wan, P. (2023). Effects of Heavy Metals on Nitrogen in Soils of Different Ecosystems in the Karst Desertification of South China. Forests, 14(7), 1497. https://doi.org/10.3390/f14071497