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Abstract: Emotional responses are psychological responses produced by multiple stimuli. This
study aimed to clarify the effects of thermal comfort on emotions in green spaces with different
characteristics in summer. Four green spaces were selected in an urban park in Chongqing, China,
and 919 residents completed questionnaires. The questionnaire consisted of a thermal sensation
vote (TSV) and a Positive and Negative Affect Schedule (PANAS). Positive affect (PA) and negative
affect (NA) are two dimensions included in the PANAS, both with scores ranging from 10 to 50. In
parallel with the questionnaire, meteorological measurements were taken, and the collected data
were used for thermal environment simulation to obtain physiological equivalent temperatures (PET).
The results showed that the effect of thermal comfort in green spaces on PA far exceeded that of NA.
PET increased from 20 ◦C to 55 ◦C, the average PA decreased by 7.2 scores, and NA did not change
significantly. The negative effect of PET on PA was significant in less-shaded spaces, and the positive
effect on NA was significant in well-shaded spaces with a high visible green index. PET mainly
influences the emotions of being strong, proud, inspired, active, and attentive in PA and distressed,
irritable, and afraid in NA. Emotions became less susceptible to PET and TSV as individuals aged.
PET at 31–33 ◦C favored PA for people of all ages. This study provided practical information about
thermal comfort and the design of green spaces with the goal of promoting mental health.

Keywords: outdoor thermal comfort; emotional responses; Positive and Negative Affect Schedule
(PANAS); physiological equivalent temperature (PET); urban green spaces

1. Introduction

Rising global average temperatures, deteriorating urban thermal environments, and
frequent extreme heat events and heat waves are direct threats to human health [1]. The
summer heat wave in Europe caused tens of thousands of deaths in 2003 [2]. Heat-related
morbidity and mortality will continue to increase in the future [3]. The potential effects of
heat stress on mental health have been relatively poorly studied. It is known that heat stress
can trigger mood disorders, anxiety, depression, and other psychological disorders [4].
Emotions, as a major component of mental health [5], include positive and negative at-
tributes that provide real-time feedback on mental health. Positive emotions are associated
with reduced mortality and improved physical and psychological functioning [6], and
uncomfortable thermal environments can trigger fatigue, which affects emotional experi-
ences [7]. Some scholars have suggested that emotional well-being be considered a part of
public health at the national level [8].

Urban green spaces are the main space for residents’ outdoor activities and interac-
tions, which not only have the ecological function of improving the microclimate but also
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help to promote mental health and provide emotional value. Individuals can benefit psy-
chologically from regular contact with green spaces [9,10]. When compared to urban built
environments, walking in nature can significantly improve people’s mental health [11]. One
study suggested that lawn space clearly increased positive emotional responses compared
to tree spaces and non-vegetation spaces [12]. Nature parks can effectively reduce stress
due to their rich biodiversity, though this effect was less pronounced in pocket parks [13].
These studies were mostly focused on the emotional change resulting from the overall
effect of the green space environment on multiple senses without directly considering the
possible effect of changes in the thermal environment on emotions. Thermal comfort is
one of the key points that affect overall comfort and emotions. Different green spaces
have different thermal environments and thermal comfort levels [14–17], which may have
positive or negative effects on emotions.

A comfortable thermal environment in an outdoor space alleviates summer heat stress
and promotes human health [16,18,19]. Currently, a large number of studies involving
thermal comfort in green spaces have been mainly devoted to determining what effects
thermal comfort has, including physical, physiological, psychological, social, or behavioral
factors [14,16,17,20]. Niikolopoulou and Steemers [21] pointed out that microclimate pa-
rameters explain only about 50% of the variance in comfort evaluation, and researchers
are increasingly recognizing the importance of psychological components. Psychological
adaptation can alter thermal comfort experiences, such as thermal expectations and emo-
tions [22–25]. Under the same temperature conditions, people with a negative affect (NA)
may feel warmer than people with a positive affect (PA) [26]. Zhang et al. [27] showed that
PA drives thermal sensation towards neutrality, regardless of whether the current thermal
sensation is cold or hot. The authors proposed a method to improve the outdoor thermal
comfort sensation by increasing PA.

Nevertheless, the relationship between thermal comfort and emotions is more like a
loop [28]. Specifically, emotions influence thermal perception [26], and the thermal environ-
ment and thermal perception in turn directly or indirectly cause emotional responses [17].
Although some studies have paid attention to the effects of the thermal environment on
emotions, they have mainly focused on psychology and indoor environments and have
not been linked to thermal comfort. When the temperature exceeded 32 ◦C, the negative
emotional experience increased significantly, which could directly lead to mental illnesses
such as depression in severe cases [29]. In the United States, the PA of people decreased
while the NA increased after the ambient temperature rose above 21 ◦C [30]. These studies
only considered temperature variables and did not integrate thermal environmental factors
such as relative humidity, wind speed, and radiation. In studies of indoor environments, re-
searchers have used event-related potentials or electroencephalogram methods to quantify
changes in emotions due to thermal sensations [28,31]. However, both methods are limited
in outdoor applications due to the specific conditions of the measurement instruments.
There is insufficient research on the impact of changes in thermal comfort on mood in
outdoor green spaces.

In recent years, significant changes in urban climate have occurred with urbaniza-
tion [32,33]. As a developing country, China has undergone more than sixty years of
urbanization. Rapid urbanization and population growth have led to deteriorating urban
thermal environments, such as increased urban temperatures and solar radiation [34],
which increase thermal discomfort and affect mental health [35]. In addition, population
aging has become a global issue that attracts the attention of various countries. China
has become one of the most rapidly aging countries in the world and also has the largest
number of older adults in the world [36,37]. The mental health of older adults should also
receive more attention. Therefore, it is necessary to explore the effect of thermal comfort on
emotions in urban green spaces.

Existing studies generally agree that uncomfortable outdoor thermal environments
impair positive emotions and increase negative emotions. However, natural landscapes
tend to evoke positive emotions in green spaces. How do people’s emotions respond when
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the two are combined? Are positive or negative emotions affected more? According to
Watson’s theory [38], positive (or negative) emotions are made up of multiple emotional
states, so how does a specific emotion relate to thermal comfort? Does thermal comfort
affect emotional responses differently depending on age and gender? The harsh summer
thermal environment could increase residents’ mental health burden in Chongqing, China.
Enhancing positive emotions and decreasing negative emotions is a common strategy for
improving mental health. The answers to these questions will help clarify the role of green
space thermal comfort in emotional responses and inform the design of green spaces that
promote positive emotions.

We selected four green spaces in an urban park in Chongqing, China, to measure
how thermal comfort influences emotional perceptions. Survey respondents’ emotions
and thermal sensation status were assessed by the Positive and Negative Affect Schedule
(PANAS) and thermal sensation vote (TSV). We also collected meteorological data in the
field to simulate the thermal environment and determine the physiological equivalent
temperature (PET). Our main objectives were to: (1) clarify the effect of thermal comfort in
green spaces on positive and negative affect; (2) explore the relationship between emotions
(positive and negative) and the thermal comfort in different green spaces; and (3) identify
differences in emotional responses to changes in thermal comfort among people of different
genders and ages.

2. Methods
2.1. Climate and Sites

Chongqing is one of the megalopolises in China, with a population of more than
10 million in the main urban area. It is located in a mountainous region at the edge of the
Sichuan Basin. Chongqing has a subtropical, humid monsoon climate with hot summers
and cold winters. From 1999–2019, the monthly average air temperature from June to
September exceeded 24 ◦C with July having the highest monthly average (28.3 ◦C). The
highest summer air temperature in 2016 exceeded 42 ◦C. The monthly average relative
humidity is above 71% throughout the year [39].

We chose a highly visited urban park (106◦27′ E, 29◦33′ N) in the central city for the
field experiment, which covers an area of 17 hectares with a greening rate of 76%. This park
has been built over a long period, is easily accessible, and is surrounded by many older
communities [40]. In China, people generally retire at the age of 60 and can spend much
time visiting green spaces and pursuing hobbies. A large number of people in Chongqing
enjoy chess and card activities in the park to meet their social interaction needs.

The sky view factor (SVF) affects the thermal environment of space [41]. Green visual
stimuli may enhance emotions [42], and the visible green index (VGI) can evaluate the
coverage of green vegetation in the field of vision. Most people would sense a lot of green
when the VGI is over 50% [43]. SVF was calculated using fisheye photographs and the
pixel method [44], and VGI was calculated using panoramic images [45]. The spaces were
classified as: 0 < SVF ≤ 0.5, 0.5 < SVF ≤ 1 and 0 < VGI ≤ 50%, 50% < VGI ≤ 100%. Four
green spaces were selected and named: (1) open space (space OP, SVF = 0.69, VGI = 37.65%),
(2) multifunctional square (space MS, SVF = 0.64, VGI = 63.24%), (3) shaded square (space
SS, SVF = 0.28, VGI = 46.06%), and (4) tree-shaded space (space TS, SVF = 0.09, VGI = 70.60%)
(Figure 1).

2.2. Experimental Design

The field experiment was conducted on six clear and cloudless days in August (22,
23, 24, 25) and September (7, 8) of 2020, typical of local summer weather. We collected the
respondents’ emotional and thermal sensation status through on-site questionnaires in the
four spaces from 7:00 to 19:00. The interviewees had all been in the venue for more than
15 min to adapt to the thermal environment, and people passing by were not included in
the interview. During the experiment, a set of meteorological data was collected at each
measurement point at every hour of the day. The thermal index was obtained by using
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ENVI-met to create a three-dimensional model of the park that simulated the thermal
environment for six days.
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2.2.1. Questionnaire

The questionnaire consisted of three parts: (1) general personal information; (2) a
thermal sensation vote; and (3) the Positive and Negative Affect Schedule (see Table S1).
Personal information included gender, age, and time spent living in the area. The thermal
sensation vote used a seven-level scale, where −3 = cold, −2 = cool, −1 = slightly cool,
0 = neutral, +1 = slightly warm, +2 = warm, and +3 = hot [46]. The PANAS is one of the
most widely used emotion scales available [27]. The scale is short and easy to use and
can reflect people’s subjective feelings of pleasure, excitement, displeasure, pain, etc. It
has been successfully applied in many research fields in numerous countries [47,48]. We
adopted a double-blind method for an English-Chinese translation and back-translation.
The scale is comprised of 20 adjectives: 10 for PA (e.g., active, proud, excited) and 10 for
NA (e.g., upset, guilty, afraid) [49]. Respondents were asked to respond to their current
emotional experience using a 5-point Likert scale for each emotion (1 = very slightly or not
at all; 2 = a little; 3 = moderately; 4 = quite a bit; 5 = extremely).

2.2.2. Meteorological Measurements

Meteorological parameters were acquired using four Kestrel 5500 handheld weather
stations (Nielsen-Kellerman, Boulder, PA, USA). Air temperature, relative humidity, wind
speed, and wind direction were measured 1.2 m above the ground. The measurement
ranges and accuracies were: air temperature: −29 ◦C–70 ◦C (±0.5 ◦C); relative humidity:
10–90% (±2%); wind speed: 0–40 m/s (±3%); wind direction: 0–360◦ (±5◦). Meteorological
data was collected once every hour for three consecutive minutes and recorded every 30 s,
yielding six sets of data per hour.

2.2.3. Thermal Index and ENVI-Met Simulation

PET was selected as the thermal index to evaluate outdoor thermal comfort. Its applica-
bility has been demonstrated in various climatic regions of the world, including numerous
outdoor thermal comfort studies in subtropical regions of China [50,51]. Researchers have
developed refined, grid-based models with ENVI-met, a software that uses computational
fluid dynamic principles to more accurately simulate complex thermal environments [52].

http://bzdt.ch.mnr.gov.cn/
https://map.baidu.com/
https://map.baidu.com/
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It has been applied in many studies of thermal environment simulations in urban green
spaces [53]. The limitation of its thermal resistance calculation for clothing can be overcome
by the fact that people are generally thinly dressed in the summer [54].

We used ENVI-met 5.0.0 to build a park model with 164 × 112 × 20 grids (see
Figure S1). The horizontal grid resolution was 4 × 4 m and the vertical grid height was
4 m, where the resolution below 4 m was 0.8 m. Google Maps and field site surveys were
used to model the park. Natural surfaces, water, roads, squares, buildings, and vegetation
were included in the model, and the materials used are listed in Table S2. The height of
street trees was set to 10 m based on the average actual tree height, and the material was
T1. The tree heights in other green areas were as close as possible to the actual situation,
with average tree heights of 10 m (T1) and 15 m (SK) in most areas and a few trees up to
20 m (SM). The height of each floor of the building was 3 m, and the tallest building in the
park was 9 m.

We simulated the thermal environment conditions for six days. Each simulation was
performed using simple forcing, setting the hourly air temperature and relative humidity.
The data source was the daily hourly air temperature and relative humidity averaged
from actual measurements. The measured wind speed in the field was stochastic, using a
wind speed of 1.6 m/s monitored by the nearest Shapingba Weather Station (~2.5 km) [55],
which was the perennial average wind speed in the region during summer. We organized
the wind direction measured on site as an octant wind direction, where the maximum
frequency wind direction was east, so the wind direction was set to 90◦. The cloud level
was set to 0 oktas, which corresponds with the clear weather. The radiation data in the
software was retrieved according to the geographical location. Each simulation ran from
01:00–19:00 (UTC = +8), with data exported for analysis from 7:00 to 19:00. The data output
interval was 60 min.

The BIO-met module calculated PET values, and we set the physiological parameters
of the human body to be male, 175 cm tall, 75 kg, 57 years old, and having a metabolic rate
of 164.49 W (average age and metabolic rate of the interviewees). The clothing’s thermal
resistance was set to 0.5 in line with the actual summer conditions. We recorded the grid
numbers corresponding to the four measurement points in the model and calculated the
average values of hourly PET for the four grids in the center of space.

2.2.4. Model Validation

The coefficient of determination (R2) describes the goodness of fit of the variance
between predicted and measured values, but it is usually independent of the magnitude of
the difference between predicted and measured values and does not indicate the accuracy
of the model [56]. The accuracy of the model should be reflected by the closeness of
the predicted value to the measured value, i.e., the difference measures [56]. The most
widely applied difference measures include root mean square error (RMSE), mean bias
error (MBE), mean average error (MAE), and index of agreement (d) [57]. The RMSE is
used to estimate the average magnitude of the errors, of which systematic (RMSEs) and
unsystematic (RMSEu) are components. The MBE reflects the average of all differences
between predicted and observed values [58], and the MAE indicates the average of the
absolute values of the residuals [57]. The dimensionless d describes the degree of error-free
predicted values of the model [53]. The higher the accuracy of the model, the closer the R2

and d values are to 1, the closer the value of RMSE is to 0, and the smaller the difference
between RMSEu and RMSE [53,56,57].

A comparison of observed and predicted values showed that the ENVI-met model in
this study was accurate and could adequately respond to the actual thermal environment of
the park during the experimental period. Air temperature was simulated more accurately
with R2 and d of 0.93 and 0.97, respectively. The RMSE and RMSEu were close, with
0.64 ◦C and 0.58 ◦C, respectively. The RMSEs were 0.54 ◦C, the MBE was −0.04 ◦C, and the
MAE was 0.71 ◦C. The R2 between the measured and predicted values of relative humidity
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was 0.85. The results of the difference measures also showed a good match (d = 0.87,
RMSE = 3.33%, RMSEu = 3.20%, RMSEs = 6.46%, MBE = 4.74%, MAE = 5.61%).

2.3. Statistical Analysis

All data were sorted, and mean values were calculated by MS-Excel 2019 (Microsoft,
Seattle, WA, USA). Statistical analyses were performed using SPSS 26.0 (IBM Corporation,
Armonk, NY, USA). The test of homogeneity of variances was performed before the signifi-
cance of differences test. If the data fit a normal distribution, we used a one-way ANOVA
or independent sample t-test. If not, we used the independent-samples Kruskal-Wallis test.
MS-Excel 2019 and Origin 2022b (OriginLab Corporation, Northampton, MA, USA) were
used for linear fitting and graph production.

3. Results
3.1. Descriptive Analysis
3.1.1. Respondents

A total of 919 respondents completed valid questionnaires. We excluded children
from the interviews because their thermal sensations and emotions may differ from those
of adults [59]. The proportion of males and females was relatively balanced, with males
accounting for 51.58% and females 48.42% (Table 1). We divided the respondents into three
age groups: (1) young adults (18–44 years old), (2) middle-aged adults (45–59 years old),
and (3) older adults (60 years of age and older). The older adult group had the highest
number of people (59.74%), and the middle-aged adult group was the smallest (19.48%).
Respondents who submitted valid questionnaires had lived in the area for more than one
year and could effectively and accurately assess the thermal environment.

Table 1. Attributes of respondents.

Spaces Gender Age (Years) Total

Male Female 18–44 45–59 60+

OP 135 113 65 41 142 248 (26.99%)
MS 86 70 17 24 115 156 (16.97%)
SS 111 85 36 46 114 196 (21.33%)
TS 142 177 73 68 178 319 (34.71%)

Total 51.58% 48.42% 20.78% 19.48% 59.74%

3.1.2. Thermal Environment and Thermal Comfort

The air temperature variation range in space OP was the largest. The maximum
relative humidity was highest in space TS with the best shade and abundant vegetation.
The wind speed for all spaces was less than 2 m/s. The PET distribution of the four spaces
was consistent with the SVF classification. The thermal environment of the space OP was
the worst, with a PET variation range of 33.8 ◦C. Less shade and large, hard-paved areas
were the main reasons for the high daily PET variability (Table 2).

Table 2. Meteorological parameters and PET ranges (from minimum to maximum values) and
percentage of TSV in the four spaces.

Spaces Meteorological Parameters and PET TSV

Air Temperature
(◦C)

Relative
Humidity (%)

Wind Speed
(m/s) PET (◦C) −1 0 +1 +2 +3

OP 24.2–37.5 39.4–85.3 0–1.9 20.6–54.4 15.3% 39.5% 23.8% 13.7% 7.7%
MS 24.8–37.0 41.6–82.9 0–1.9 21.1–51.2 23.1% 44.9% 22.4% 9.0% 0.6%
SS 24.8–36.2 38.2–85.9 0–1.6 22.5–37.6 15.8% 42.4% 28.1% 10.2% 3.6%
TS 24.2–36.3 39.7–89.1 0–1.4 20.45–46.2 36.1% 34.8% 17.9% 7.8% 3.4%
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Over 78% of the respondents felt slightly cool, neutral, or slightly warm (Table 2).
Only 5% of the respondents felt hot. The distribution of TSVs seemed to be correlated with
VGI in the four spaces. Spaces OP (SVF > 0.5) and SS (SVF < 0.5) both had VGIs below
50%, where the sum of the proportions of people whose thermal sensations were slightly
cool or neutral was about 22% lower than the spaces with high VGI. In the high VGI space,
people’s thermal sensations might be soothed by green visual stimulation.

3.1.3. PANAS Scores

Across all spaces, the median and mean of PA exceeded 27, and the median and mean
of NA were both below 15 (Figure 2). The PA was generally evoked in the park greenspaces,
which could be related to the fact that visitors’ initial emotional state was positive [42].
Non-parametric tests showed significant differences in PA between spaces OP and MS and
significant differences in NA between spaces OP and TS. Space OP was an open venue
where people frequently participated in collective activities such as dancing and aerobics,
which could result in high PA. In the multifunctional activity space MS, some people
used fitness equipment to exercise independently. The high air temperature and relative
humidity, as well as the overall noisy environment, may have influenced PA arousal, which
also corresponded to the high mean value of NA in the MS space. Space TS with low SVF
and high VGI had the lowest mean NA.
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3.2. Relationship between Emotions and PET and TSV

The Pearson correlation analysis was used to examine the relationship between PET
and PA/NA scores. PET was significantly negatively correlated with PA (r = −0.690,
p < 0.01) but not with NA (r = 0.250, p = 0.316). PA and NA scores were calculated for
each 2 ◦C PET interval, produced scatter plots, and performed a linear fit (Figure 3a). The
per capita PA would decrease by 0.2048 for every 1 ◦C increase in PET. Uncomfortable
thermal environments had a significant impact on PA evocation in the park’s green spaces.
In contrast, NA was always low, and PET changes had little effect on it.

From the results of the homogeneity of variance test, we performed one-way ANOVA
and non-parametric tests for PA and NA of different TSV groups, respectively. The results
revealed that the mean PA and median NA differed significantly across TSV groups (see
Tables S3–S6); that is, thermal sensation clearly affected PA and NA. PA decreased markedly
as thermal sensation increased, while NA increased slightly (Figure 3b). The PA and NA of
the slightly cool sensations differed significantly from the other groups. PA and NA did
not differ between TSV = 0 and TSV = +1, nor between TSV = +2 and TSV = +3.
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Figure 3. Correlation between PET and PA/NA scores (a) and variation of PA and NA with TSV (b)
(figure produced by Jiaqi).

3.3. Effect of Thermal Comfort on Emotions in Different Green Spaces

The negative effect of PET on PA was stronger where SVF was greater than 0.5. The
thermal stress classification of Chongqing is shown in Figure 4, obtained according to the
research of Qin et al. [40]. The fitted regression equation showed that the slopes of spaces SS
and TS were almost zero, with an average PA of about 29.5 for both. In the spaces OP and
MS, the PA score of 29.5 corresponded to PET of 39.29 ◦C and 35.88 ◦C, respectively, which
was slight heat stress. During the thermal comfort hours, people participated in physical
activities in spaces OP and MS, and the PA was higher. People likely left or reduced the
intensity of their activities as the thermal environment worsened and PA decreased.
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The effect of PET on NA was significantly positively correlated only in space TS
(r = 0.163, p < 0.01). The scatter distribution was more discrete for spaces OP and MS
(SVF > 0.5), which might be attributed to individual differences in the responses to a
drastically changing thermal environment. Although the relationship between NA and
PET was not statistically significant, changes in thermal comfort may have colored some
people’s emotions. There was no significant difference between PA and NA in each space
under the TSV groups.



Forests 2023, 14, 1512 9 of 18

3.4. Effects of PET on Each Emotion

As mentioned in Section 3.3, PET significantly influenced PA in spaces OP and MS, and
influenced NA in space TS. Thus, we analyzed each emotion in the three spaces separately
(Table 3). For PA, spaces OP and MS had nine and five emotion items, respectively, that
were significantly and negatively correlated with PET. When PET was low, each emotion
score was mostly four or five. When PET was raised, most respondents felt little or no
evocation of PA. Strong, proud, inspired, active, and attentive emotions were negatively
correlated with PET in both spaces.

Table 3. Correlations between PET and each emotion score in spaces OP, MS, and TS.

PA

Spaces interested excited strong enthusiastic proud inspired determined active attentive alert

OP −0.233 ** −0.228 ** −0.349 ** −0.130 * −0.169 ** −0.133 * −0.109 −0.173 ** −0.213 ** −0.136 *
MS −0.125 −0.115 −0.199 * −0.111 −0.219 ** −0.205 * −0.142 −0.168 * −0.308 ** 0.002

NA

Spaces upset scared guilty distressed hostile irritable ashamed nervous jittery afraid
TS 0.106 0.045 0.069 0.180 ** 0.052 0.171 ** 0.094 0.09 0.052 0.167 **

* Significant at the 0.05 level; ** Significant at the 0.01 level.

For NA, space TS (SVF < 0.5, VGI > 50%) had three emotion items that were signifi-
cantly and negatively correlated with PET. A small percentage of respondents felt slightly
or moderately distressed, irritable, and afraid. The space is low-lying and has a low level
of openness, and if people stayed in it for a long time, the excessive amount of greenery
could exacerbate their feelings of fear and distress.

3.5. Effect of Thermal Comfort on Emotions in Different Age Groups

No differences in PA and NA scores were observed between genders, but significant
differences between age groups were noted (Figure S2). Older adults had the highest PA
and the lowest NA. The 18–44 age group had the lowest PA and the highest NA. The
PA of young adults (18–44 years) was most susceptible to increasing PET, followed by
middle-aged adults, and then older adults. According to the fitted quadratic function,
the per capita PA of the 18–44-year-old and 45–59-year-old groups reached maximums at
PET of 31.5 ◦C and 32.4 ◦C, respectively. The thermal environment was more comfortable
when PET was 20–31 ◦C, and PA might be more influenced by activities and the spatial
environment. PA remained relatively high at a PET of 31–33 ◦C, and then the 18–44-year-old
group was first to show a rapid decline in PA. The change in NA with increasing PET was
not significant for any of the three age groups, although it was greater in young adults
(Figure 5a,b).

PA decreased slowly in the older adult group as TSV increased, while mean PA
decreased significantly and NA increased in the 18–44-year-old group (Figure 5c,d). Two
possible explanations for the lack of significant PA changes in the older adult group were
their adaptation to the thermal environment and their physiological insensitivity to changes
in the thermal environment [60,61]. The differences in PA and NA scores for the three age
groups were investigated under different TSV groupings. Only when TSV was slightly
warm did a significant difference in PA between young and older adults emerge. When
TSV was −1 or +2, significant differences in NA were observed between young adults and
older adults.



Forests 2023, 14, 1512 10 of 18Forests 2023, 14, x FOR PEER REVIEW  10  of  18 
 

 

   

(a)  (b) 

   

(c)  (d) 

Figure 5. Emotions in the different age groups: relationship between PET and PA (a), relationship 

between PET and NA (b), PA in different TSV categories (c), NA in different TSV categories (d) (* 

significant at the 0.05 level; ** significant at the 0.01 level; figure produced by Jiaqi). 

PA decreased slowly in the older adult group as TSV increased, while mean PA de-

creased significantly and NA  increased  in  the 18–44-year-old group  (Figure 5c,d). Two 

possible explanations for the lack of significant PA changes in the older adult group were 

their  adaptation  to  the  thermal  environment  and  their  physiological  insensitivity  to 

changes in the thermal environment [60,61]. The differences in PA and NA scores for the 

three age groups were investigated under different TSV groupings. Only when TSV was 

slightly warm did a significant difference in PA between young and older adults emerge. 

When TSV was  −1 or +2,  significant differences  in NA were observed between young 

adults and older adults. 

4. Discussion 

4.1. Effect of Thermal Environment and Thermal Comfort on Emotions 

Outdoor thermal environments and thermal comfort can indeed cause emotional re-

sponses. High temperatures reduced residents’ feelings of pleasure, brought more stress 

and fatigue, and increased feelings of depression, anger, pain, and hostility [29]. Noelke 

et al. [30] concluded from telephone interview data across the United States that when the 

Figure 5. Emotions in the different age groups: relationship between PET and PA (a), relationship
between PET and NA (b), PA in different TSV categories (c), NA in different TSV categories (d)
(* significant at the 0.05 level; ** significant at the 0.01 level; figure produced by Jiaqi).

4. Discussion
4.1. Effect of Thermal Environment and Thermal Comfort on Emotions

Outdoor thermal environments and thermal comfort can indeed cause emotional
responses. High temperatures reduced residents’ feelings of pleasure, brought more
stress and fatigue, and increased feelings of depression, anger, pain, and hostility [29].
Noelke et al. [30] concluded from telephone interview data across the United States that
when the air temperature rose above 21 ◦C, people’s PA (e.g., happiness, enjoyment) de-
creased, NA (e.g., anger, sadness) increased, and fatigue increased. When the temperature
decreases, both NA and fatigue are relieved [62]. Differences in PA and NA between the
seasons also reflect the effect of thermal comfort on emotions. In Xi’an, China, the per
capita PA score in autumn was about five scores higher than in summer, and NA was about
2.5 scores lower [27]. In this study, a unit decrease in PA corresponded to a 4.88 ◦C increase
in PET, but PET did not have an effect on NA. Uncomfortable thermal environments are
widely acknowledged to lead to lower PA.

Although these studies showed that uncomfortable thermal stimuli can trigger an
increase in NA, in our study, such changes were not dramatic. This is in line with Watson’s
view that in daily life, people’s NA levels are relatively low most of the time and that only
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when they encounter a sudden threat do they experience a spike in NA, and then they
recover [38,63,64]. In addition, many studies have shown that exposure to green spaces is
associated with lower NA. Brief recreational activities in the forest may effectively reduce
stress [65]. Walking in the countryside or forest makes participants feel relaxed physically
and mentally [66]. The vegetation in Chongqing is dominated by evergreen tree species,
with rich vegetation types and levels and little seasonal variation. People can obtain better
emotional value when visiting parks and green spaces throughout the year, keeping NA at
a low level.

Emotions are also affected by thermal sensations. In the summer in Chongqing, PA
was highest and NA was lowest, in conjunction with the respondents’ slightly cool feelings.
In contrast, indoor studies revealed that people had more PA when the TSV was neutral or
slightly warm [28]. This differed from our results and could be attributed to differences in
the respondents’ environmental adaptations due to age (college students vs. a wide range
of ages), cultural background (Korea vs. China), or experimental conditions (indoor vs.
outdoor). Comparing the results of PET and TSV effects on emotions in our study may
demonstrate that the PET model is more useful in predicting emotional responses. Many
researchers have obtained locally modified PET thermal stress intervals in different climatic
zones [50,67,68], which makes PET more likely to predict emotional responses. TSV is
the thermal sensation of people at that moment and is subjective. The TSV of people in
different climatic zones is unique, diminishing the possibility of widespread application
of TSV.

Emotions are responses of the nervous system when stimulated by the external envi-
ronment [69]. Physiological research, such as the brown adipose theory and the serotonin
theory, could explain why thermal environments can affect mood (Figure 6). Brown adipose
tissue is the main source of non-shivering thermogenesis in mammals [70]. An increasing
temperature would activate brown adipose tissue, impairing heat tolerance [71]. Simulta-
neously, the neural activity of the brain corresponding to the brown adipose tissue would
be altered, leading to the production of abnormal emotions or behaviors [72,73]. Serotonin,
as a mediator of information transmission between nerve cells in the brain, has been shown
to have an important effect on emotional regulation [74]. Summer high temperatures
can activate the serotonin 5-HT2A receptor [75], which exacerbates brown adipose tis-
sue thermogenic activity after heat stress [76]. Such internal chemical mechanisms could
cause emotional responses that lead to depression or even suicidal tendencies in severe
cases [73,77,78].
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4.2. Other Factors Affecting the Relationship between Thermal Comfort and Emotions in
Green Spaces

Emotional responses to the environment are context-dependent and not simply domi-
nated by one sensation or stimulus [79]. People’s emotional responses to thermal comfort
can also be influenced by their physical activities, the SVF and VGI of the space, and their
ages (Figure 6).

Physical activities promote the release of neurotransmitters such as dopamine and
norepinephrine [80,81], which improve emotions and mental health [82]. Numerous studies
have confirmed that green physical activity has a greater impact on emotional improve-
ment [83], leading to calmer and more positive emotions [84]. In the present study, many
people performed leisure physical activities in spaces OP and MS. The PA scores were
higher than those of spaces SS and TS with small SVF when the PET was below 39.29 ◦C
and 35.88 ◦C, respectively. After the PET continued to rise, people preferred to be sedentary,
and thermal comfort affected emotions more. Nevertheless, not all physical activities were
beneficial. The mean PA was significantly higher in space OP compared to MS, and NA
was higher in MS. People regularly engaged in group physical activities in space OP, while
in space MS, they engaged in individual physical activities. More social activities and
moderate intensities of physical activity tended to promote emotional well-being [85]. Ex-
tending the duration of thermal comfort in open spaces can encourage physical activity and
enable people to feel more pleasant. The specific way is to add large canopy trees [86,87].
Trees with broad canopies can provide shade while using less ground area and having less
impact on ventilation.

Spatial characteristics also influenced the relationship between thermal perception and
emotion. Han [85] found that VGI had a greater effect on emotions than physical activity.
Both our study and the study in Xi’an were conducted in the summer with similar changes
in the thermal index, but Zhang et al. [27] found that the mean PA was 19.02 in the summer,
which was lower than the mean PA (29.53) in our study. This might be explained by the
different types of landscape and ages of the subjects. Zhang et al.’s study was conducted on
campus with regular landscapes and an average VGI of 23.1% (and 97% of the respondents
were college students). Our study was conducted in a park with richer landscapes, with
an average VGI of 54.4% (and more middle-aged and older adult respondents). A more
natural landscape could increase PA when the thermal environment is similar. An increase
in VGI is not necessarily better, in fact, it should match the overall environment. The
space MS had a high VGI, which gave the impression of coolness. Higher SVF, however,
made people feel brighter and contradicted the cooler visual perception. Inconsistencies in
multiple sensory stimuli could restrain PA arousal and raise NA production [79].

Among the different age groups, the young people (18–44-year-old group) may spend
more time indoors with air conditioning in the summer; they may be less adaptable to
hot green spaces, and higher temperatures could affect their emotions to a greater extent.
The older adults’ emotions were least influenced by thermal comfort. They were less
stressed at work, and their physical activities in the park were spontaneous, so their PA was
higher [42]. They prefer natural ventilation and spending more time in the park over indoor
air conditioning. The more time they spend outdoors in natural environments, the more
they are exposed to social interactions, and the better their psychological condition [88]. In
this study, more than half of the respondents were older adults, which fits with the current
demographic situation in China. By the end of 2021, the number of older adults aged 60 and
above in China had reached 267 million, accounting for 18.9% of the total population [89].
Older adults are a special group, both psychologically and physically. With the increasing
standard of living and the gradual deterioration of their physiological functions, their
ability to adapt to the environment is weakened [90,91]. Therefore, providing a healthy
and comfortable outdoor environment for older adults is very important for their physical
and mental health. Improving the landscape and function of a space can improve thermal
sensation [92] and increase PA. Plant colorful ornamental plants. Tables and chairs can be
placed under the trees in the spaces to encourage gatherings and conversation.
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Emotional responses to thermal environments and thermal comfort are a combination
of physiological and psychological factors. People gain information from the physical
environment in green spaces, and the sensory system converts physical information into
chemical information, which is passed on to the central nervous system to be further pro-
cessed into human cognition and awareness [93]. Differences in emotional responses to
thermal comfort in different age groups may be related to changes in human physiolog-
ical mechanisms. As people age, their vascular reactivity and cardiovascular flexibility
decrease, their thermoregulatory response decreases, their cold/heat defense mechanisms
become less sensitive [60,94], changes also occur in thermal perception and thermal sensi-
tivity [95]. Many older adults suffer from chronic diseases such as diabetes, cardiovascular
disease, or respiratory diseases [91], which may influence the relationship between their
mood and thermal comfort. To protect the health of people of all ages, drinking water
facilities should be provided in public spaces. Install first-aid kits and alarm systems for
handling emergencies.

4.3. Limitations

Although PANAS is a well-established methodological framework that is relevant
to research involving emotions. However, according to the findings, emotions such as
shame and guilt rarely come up when people are in green Spaces. Therefore, targeted
improvements can be made to PANAS by excluding factors with low factor loads through
explanatory factor analysis in future research.

Second, the subjects in our study had all been in the space for more than 15 min and
their metabolic rate and thermal perception were already in a relatively stable state [96–98].
But people’s thermal comfort was also influenced by short- and long-term thermal his-
tory [99] and thermal expectations, all of which may have influenced the emotional response.
The likelihood of cardiovascular problems increases with age. People encounter increased
pulmonary distress under the influence of air pollution and COVID-19, and health distress
may influence emotional responses. Therefore, in the future. we can increase access to re-
spondents’ thermal histories and, with the help of physicians or public health experts, study
in depth the physiological processes underlying the relationship between thermal comfort
and emotion in different user groups in a reliable manner. To gain a more comprehensive
understanding of the effects of thermal comfort on emotional response.

Third, people in different climate zones have adapted to their local climates over time,
and a large number of studies have confirmed differences in the neutral temperature of
people in different climates [15,100]. Therefore, the range of PET that is most effective for
positive mood enhancement in a city with a hot and humid summer such as Chongqing may
be different from other climate zones. Extensive research on the effects of thermal comfort
on mood in different climate zones should be conducted in the future to complement the
outdoor thermal comfort database, allowing the results of thermal comfort on mood to be
more applicable to green space design.

Moreover, in the future, we will integrate the research results of various aspects
such as thermal environment, physical activity, emotions, and human physiological and
psychological responses, propose the optimization and improvement of the existing green
space, and verify the optimizing effect through computer simulation to guide the planning
and design.

5. Conclusions

Our findings provide evidence that the thermal comfort of green spaces in summer has
a greater effect on PA than NA. The increase in PET and TSV caused a significant decrease
in PA. NA significantly increased when TSV was hot. Spaces with diverse landscape
characteristics perform differently in terms of thermal comfort, which affects people’s
moods. In less shaded spaces, PA was more affected by PET, especially regarding emotions
that were described as strong, loud, inspired, active, and attentive. In well-shaded spaces,
emotions remained at a relatively stable level regardless of PET. Nevertheless, if the space
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had too much dense greenery, the deterioration of thermal comfort would instead easily
stimulate NA with emotions such as fear. Designers should consider extending the thermal
comfort time as much as possible and increasing shading and cooling facilities as keys
to promoting positive emotions. Sports and social activities, landscape diversity, and
multisensory comfort all contribute to the stimulation of PA.

Young people had more dramatic emotional responses. Older adults had less variable
emotional responses, even though they tended to be weaker physically and at greater risk
for their thermal health. On the one hand, it should be considered for all age groups when
planning and designing green spaces; on the other hand, it is important to increase the
opportunities for social contact among older adults to enhance positive emotional responses.
Given the reality of the increasing aging process in China, it is relevant to focus on older
adults in planning and design. In addition, the actual planning can refer to the method
of this study by computer simulation of thermal comfort in order to predict emotional
responses and adjust the design scheme over time. Today, with the abundance of our
material lives, more emphasis should be placed on psychological wealth. Both policymakers
and managers of urban planning should carefully consider how to fundamentally improve
the mental health of citizens.

Supplementary Materials: The following supporting information can be downloaded at: https://
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Results of Analysis of Variance (ANOVA) for PA scores for all samples in different TSV categories;
Table S4: Results of the Independent-Samples Kruskal-Wallis Test for NA scores for all samples in
different TSV categories; Table S5: Post–hoc Tukey’s test for different pairs of TSV categories for the
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