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Abstract: Masson pine natural forests are ecologically and economically valuable forest ecosystems
extensively distributed across China. However, they have been subject to deforestation due to human
disturbance. Moreover, climate change affects the growth, mortality, and recruitment of forests, yet
available forest growth models do not effectively analyze the impacts of climate. A climate-sensitive
transition matrix model (CM) was developed using data from 330 sample plots collected during the
7th (2004), 8th (2009), and 9th (2014) Chinese National Forest Inventories in Hunan Province. To assess
model robustness, two additional models were created using the same data: a non-climate-sensitive
transition matrix model (NCM) and a fixed probability transition matrix model (FM). The models
were compared using tenfold cross-validation and long-term predictive performance analysis. The
cross-validation results did not show any significant differences among the three models, with the
FM performing slightly better than the NCM. However, the application of the CM for long-term
prediction (over a span of 100 years) under three representative concentration pathways (RCP2.6,
RCP4.5, and RCP8.5) revealed distinct dynamics that demonstrated enhanced reliability. This is
attributed to the consideration of climate variables that impact forest dynamics during long-term
prediction periods. The CM model offers valuable guidance for the management of Masson pine
natural forests within the context of changing climatic conditions.

Keywords: transition matrix growth model; Masson pine; natural forests; National Forest Inventory;
climate scenarios; forest dynamics

1. Introduction

Masson pine (Pinus massoniana Lamb.), an evergreen pioneer tree species [1,2], is one of
the most widely distributed native tree species throughout Southern China [3]. According
to the 8th Chinese National Forest Inventory (NFI), China’s existing Masson pine forests
cover 10.1 million ha, which corresponds to 6% of the total area in China. These forests
encompass a stocking of 590 million m3, constituting 4% of the overall stocking volume.
Among them, the area of Masson pine natural forests is 6.9 million hectares with a volume
of 419 million cubic meters, accounting for 69% and 71% of the total area and the volume
of Masson pine forests in China, respectively.

Masson pine, distributed across 17 provinces in China, exerts dominance over regional
forests and assumes a vital role in upholding the structure and functionality of forest
ecosystems within the entire subtropical zone [4]. Due to this, Masson pine is commonly
used in ecological restoration projects in poor site conditions [1]. It is also an important
industrial raw material wood with extensive commercial usage. It is also an important
species for oleoresin production [5], medicines [6], carbon sequestration, and storage [3,4].
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Masson pine natural forests cover a wide area, yet the forests are of very low quality.
This is mainly attributed to over-harvesting, extensive management, and limited tending
management. Research and practice have proven that the correct implementation of
scientific management measures will significantly improve the productivity and various
ecological functions of Masson pine forests [7].

The prediction of forest dynamics is crucial for the proposal of optimal approaches for
forest management in China, and forest growth and yield models have been extensively
constructed to facilitate the corresponding decision-making [8,9]. To further enhance the
ecological and economic functions of forests, China has implemented the “precision forestry
project”, which also necessitates accurate predictions of forest dynamics [10]. Three distinct
categories of forest growth and yield models exist, including whole-stand models, size-class
models, and individual-tree models, each with a different model unit resolution [11–13].
While whole-stand models are suitable for stands consisting of a single tree species and
uniform age distribution. [12,14], they are not appropriate for uneven-aged mixed-species
stands such as China’s Masson pine natural forests, as they fail to consider within-stand
variability in terms of size and species composition [15]. Individual-tree models are highly
accurate in predicting mixed-species forest dynamics [16–19], but necessitate specific data at
the individual level, including spatial positioning and competitive rankings, making them
expensive to develop [13,20]. Size-class models offer a compromise between whole-stand
and individual-tree models [21]. They use classes of trees as the basic modeling unit and can
effectively simulate the dynamics of uneven-aged, mixed-species forests [15,22]. Compared
to individual-tree models, size-class models are more cost-effective and easier to construct,
making them widely employed in uneven-aged, mixed-species forests [13,15,23]. Size-class
models can be categorized as either matrix models or stand table projection methods. [12,13].
While stand table projection methods exhibit potential for short-term predictions (less
than 10 years), their effectiveness diminishes for the long temporal dynamics of forests,
particularly in uneven-aged forests [13,24,25]. On the other hand, matrix models serve as a
logical and formalized extension of the stand table projection method, enabling long-term
predictions for complex forest structures. As a result, matrix models have found extensive
application in guiding the management of uneven-aged forests [26–28].

Climate change is widely acknowledged to have a significant impact on various aspects
of forests, including stand structure, tree species composition, and forest dynamics [29–33].
For example, Boulanger et al. [34] conducted a study on the impacts of climate change
on forest landscapes along the transition zone of the Canadian southern boreal forest,
and found that climate-induced changes, such as alterations in the potential growth of
dominant tree species and an increase in the frequency and intensity of forest fires, are
expected to interact and exert significant effects on boreal forest landscapes. In a study on
the impacts of climate change on uneven-aged mixed-species oak forests in North China,
Du, Chen, Zeng, and Meng [32] revealed the impact of temperature and precipitation on tree
growth and mortality. Therefore, climate change significantly influences forest ecosystems,
shaping them and profoundly impacting their functioning. However, how changes in
the regional climate affect the growth and death of Masson pine in subtropical China
remains unclear, making it challenging to prepare for the potential consequences of climate
change [4]. In addition to climate change, forest stand diversity also plays a significant role
in shaping forest growth and dynamics [35–37]. For example, Danescu, et al. [38] observed
a positive correlation between forest productivity and diversity. These findings highlight
the importance of considering both climate change and stand diversity when studying and
managing forest ecosystems.

In recent years, the growth models of Masson pine in Southern China generally
focus on the individual tree approach [39]. For example, Wang, Bai, Jiang, Yang, and
Meng [1] produced an individual-tree basal area increment model for Masson pine in
Hunan Province using a linear mixed-effects approach. Fu et al. [40] employed a mixed-
effects modeling approach to develop individual-tree biomass models for Masson pine
for nine provinces in Southern China. Zeng et al. [41] constructed compatible single-tree
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biomass equations for Masson pine in Southern China using the dummy variable model
approach. However, research on the transition matrix growth models for Masson pine
forest in this area is limited.

Based on the gaps in the current literature, this study aimed to achieve the following
objectives: (1) develop a climate-sensitive, transition matrix growth model (CM) for Masson
pine natural forests in Hunan Province, Southern China; (2) analyze the effects of stand
factors, topographic factors and climate factors on forest growth, mortality, and recruitment;
(3) assess and contrast the effectiveness of the CM with a conventional fixed probability
transition matrix model (FM) and a non-climate-sensitive transition matrix model (NCM);
and (4) simulate the forest dynamics under three distinct climate scenarios using the CM.

2. Materials and Methods
2.1. Study Area and Data Pre-Analysis

To develop our transition matrix model, 330 Masson pine natural forests sample plots
with remeasurement were selected from 6615 sample plots at the 7th (2004), 8th (2009),
and 9th (2014) Chinese National Forest Inventories (CNFI) conducted in Hunan Province,
located in South-Central China. The CNFI plots were systematically distributed within
a 4 km × 8 km grid, each forming a square shape and covering an area of 0.067 hectares
(Figure 1). Individual-tree and plot information were recorded at each sample plot. The
individual-tree data encompassed tree species, the status of tree survival or mortality, and
diameter at breast height, while the plot information consisted of elevation, aspect, slope,
soil type, soil thickness, humus thickness, forest types, dominant tree species, and canopy
closure, etc. To ensure the preservation of natural growth, the chosen sample plots were
situated within forests where there was no discernible indication of human interference,
such as logging or artificial regeneration practices. Moreover, the model-fitting process
involved the utilization of all 330 sample plots.
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Figure 1. Distribution of the 330 Masson pine inventory sample plots in Hunan Province, China.

We categorized trees into Pinus massoniana, Quercus, Other conifers (Mainly
Cunninghamia lanceolata), Other hardwood broad-leaved species, and Other softwood
broad-leaved species (Table 1). Moreover, Tables 2 and 3 summarize the plot and individual
tree characteristics, respectively.
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Table 1. Species groups, main tree species and their survey frequency in the sample plots.

Species Group Main Species Frequency

Pinus massoniana (PM) Pinus massoniana Lamb. 31.80%

Quercus (QU) Quercus spp. 16.85%

Other conifers (OC)

Cupressus funebris Endl.

20.61%

Taxus chinensis (Pilger) Rehd.
Cryptomeria fortunei Hooibrenk ex Otto et Dietr.
Pinus elliottii Engelm.
Cunninghamia lanceolata (Lamb.) Hook.
Keteleeria fortunei (Murr.) Carr.

Other hardwood broad-leaved species (OH)

Robinia pseudoacacia L.

17.39%

Liquidambar formosana Hance
Betula spp.
Pyrus spp.
Schima superba Gardn. et Champ.
Phoebe zhennan S. Lee
Ulmus pumila L.
Cinnamomum camphora (L.) presl

Others softwood broad-leaved species (OS)

Sassafras tzumu (Hemsl.) Hemsl.

13.35%

Tilia tuan Szyszyl.
Melia azedarach L.
Salix spp.
Paulownia fortunei (Seem.) Hemsl.
Toxicodendron spp.
Populus spp.
Vernicia fordii (Hemsl.) Airy Shaw

Table 2. Summary statistics of sample plot data.

Variable Mean SD Max Min

N (trees ha−1) 1041.20 492.82 2460.00 165.00
Basal area (m2 ha−1) 12.23 7.53 54.45 1.55
Total stand diversity 1.84 0.54 2.94 0.00
Plot aspect (◦) 155.59 99.05 315.00 0.00
Plot slope (◦) 28.33 10.06 50.00 1.00
Elevation (m) 504.50 292.95 1500.00 40.00
Humus thickness (cm) 5.52 5.61 50.00 1.00
Soil thickness (cm) 59.09 20.91 150.00 14.00

2.2. Climate Variables

Numerous variables have been employed to examine the impact of climate change on forests,
notably the mean annual temperature (MAT) and mean growing season (April–September)
precipitation (GSP) [42–45]. For this study, the two variables were utilized based on
data obtained from ClimateAP, a specialized software application developed for dynam-
ically downscaling historical and projected climate data specifically in the Asia Pacific
region [46–48]. Thematic maps illustrating MAT and GSP in Hunan Province were gen-
erated (Figure 2). Sample plots were extensively distributed across Hunan Province,
encompassing diverse stand conditions and climatic variations (Figure 2). Both the MAT
and GSP exhibited considerable variations throughout Hunan Province (Figure 2). The
spatial variability of MAT and GSP increases our understanding of the dynamics exhibited
by uneven-aged, mixed-species Masson pine forests in Hunan Province across distinct
climatic variations.
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Table 3. Summary statistics of individual tree data. The diameter was measured at the initial inventory.
The diameter growth and mortality rate were based on data obtained from two inventories.

PM QU OC OH OS

Diameter (cm)
Mean 12.46 9.53 10.52 9.57 9.15
SD 6.42 5.08 4.35 5.03 4.42
Max 77.00 57.00 38.30 53.40 46.20
Min 5.00 5.00 5.00 5.00 5.00
n 7285 3859 4722 3983 3057
Diameter growth (cm year−1)
Mean 0.44 0.34 0.34 0.37 0.38
SD 0.34 0.30 0.31 0.31 0.33
Max 2.76 3.42 2.30 3.96 2.54
Min −0.18 −0.18 −0.16 −0.18 −0.16
n 6937 3636 4670 3759 2806
Mortality rate over 5 years
Mean 0.05 0.06 0.01 0.05 0.08
SD 0.21 0.23 0.09 0.23 0.27
Max 1.00 1.00 1.00 1.00 1.00
Min 0.00 0.00 0.00 0.00 0.00
n 7285 3859 4722 3983 3057

The statistics for diameter and diameter growth were calculated exclusively for live trees, while the statistics for
mortality encompassed both live and dead trees. n represents the number of records.
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Figure 2. Mean annual temperature and mean growing season (April–September) precipitation in the
initial two inventories in Hunan Province. (a) Mean annual temperature (MAT); (b) mean growing
season precipitation (GSP).

To predict the implications of MAT and GSP for forest dynamics throughout a sub-
stantial period, future climate data spanning the period from 2015 to 2100 were generated
using ClimateAP. The long-term predictions relied on the general circulation model (GCM)
CanESM2, developed by the Canadian Centre for Climate Modelling and Analysis. Our
analysis utilized climate change scenarios outlined in the IPCC Fifth Assessment Report,
encompassing three representative concentration pathways (RCPs): RCP2.6, RCP4.5, and
RCP8.5 [49]. RCP8.5 represents the “high” scenario, characterized by continuous increases
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in radiative forcing and CO2-equivalent. RCP4.5 corresponds to the intermediate sce-
nario, with radiative forcing and CO2-equivalent levels increasing until 2070, followed
by stabilization thereafter. Last, RCP2.6 depicts a low peak-and-decay scenario, in which
radiative forcing and CO2-equivalent levels peak approximately by 2050, followed by a
decrease [49–51].

Future MAT and GSP were projected for three different RCPs (Figure 3). The mean
annual temperature exhibited an overall upward trajectory across the next 100 years under
all three RCPs (Figure 3a). More specifically, the predictions indicated temperature increases
of 1.6 ◦C, 3.5 ◦C, and 6.0 ◦C for RCP2.6, RCP4.5, and RCP8.5, respectively, over the next
100 years. Similarly, the mean growing season precipitation demonstrated an overall
upward trend, with some fluctuations (Figure 3b).
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2.3. Model Structure

The general expression for the transition matrix growth can be formulated as follows:

yt+1 = Gt(yt − ht) + Rt + εt, (1)

where yt = [yijt] is a column vector that represents the number of live trees in species group
i (i = 1, 2, 3, . . ., sp) and diameter class j (j = 1, 2, 3, . . ., dc) at time t. Similarly, ht = [hijt]
denotes the number of trees harvested in species group i and diameter class j at time t,
where ht = 0 if there is no harvest at time t. The transition matrix Gt describes the growth
or mortality of trees between time t and t + 1. Additionally, Rt signifies the number of trees
recruited in the smallest diameter class of each species group between time t and t + 1,
while εt represents a vector of random errors.

Matrices G and R are defined as follows:

G =


G1

G2
. . .

Gm

, Gi =


ai1
bi1 ai2

. . . . . .
bi,n−2 ai,n−1

bi,n−1 ain

,

R =


R1
R2
...

Rm

, Ri =


Ri
0
...
0


(2)
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The survival probability αij indicates the likelihood of a tree in species group i and
diameter class j remaining alive and staying in the same diameter class between time t and
t + 1. The subscript m and n represent the total number of species groups and diameter
classes, respectively. The transition probability bij signifies the chance of a tree surviving
and growing into the next diameter class (j + 1) within species group i and diameter class
j. Additionally, Ri represents the number of trees that advance to the smallest diameter
class between time t and t + 1 for species group i. It is worth noting that recruitment is
assumed to be zero in the higher diameter classes. The calculation of αij is based on the
following formula:

aij = 1 − bij − mij. (3)

The transition probabilities of survivorship (αij), growth (bij), and mortality (mij) play a
crucial role in the matrix models. In fixed probability matrix models, these probabilities are
presumed to be state-independent, maintaining their constancy over time [15,52]. However,
this assumption often proves challenging to fulfill and can introduce potential issues,
particularly in long-term projections [53,54]. Consequently, variable-parameter matrix
models that account for stand state have emerged as a more dependable alternative [52]. In
line with this, the present study adopted the variable-parameter method, rendering Gt a
state-dependent transition matrix.

The probability bij was determined by dividing the annual tree diameter growth gij
by the width of the diameter class. In our analysis, gij was modeled as a function of
several stand variables, based on the assumption that these factors influenced the transition
probability. Thus, gij was calculated as follows:

gij = βi1 + βi2·DBH j + βi3·DBH j
2 + βi4·BA + βi5·Hsd + βi6·HT + βi7·ST + βi8·SLcosASP + βi9·cosASPlnEL

+βi10·MAT + βi11·GSP + µij,
(4)

where DBHj is diameter at breast height (cm); BA is basal area (m2·ha−1); Hsd is the total
stand diversity in the Shannon index; HT is humus thickness (cm); ST is soil thickness (cm);
SLcosASP = Slope × cos(Aspect) [55]; cosASPlnEL = cos(Aspect) × ln(Elevation) [37,55];
MAT is mean annual temperature (◦C); GSP denotes mean growing season precipitation
(mm); βs are parameters; and µij is the error.

Hsd can be expressed as follows:

Hsd = −∑m
i=1 ∑n

j=1

BAij

BA
ln(

BAij

BA
), (5)

where BAij is the basal area of the trees of diameter class j in species group i; and BA is
the total stand basal area. Hsd describes the overall diversity of the tree species and size
of a stand. It is a joint entropy of species evenness and size evenness, and is an effective
indicator of the overall stand structural diversity [37,56]. The trees were classified into five
species groups, namely, PM, QU, OC, OH, and OS (Table 1). Within each species group,
all individual trees were grouped into 15 5-cm diameter classes, namely, 7.5, 12.5, 17.5, . . .,
72.5, and 77.5+ cm.

Stand recruitment is bounded, non-normally distributed, and constrained to positive
values and zeros [57,58]. In order to address the distinct attributes of stand recruitment as
a continuous variable, we utilized the Tobit model [59] to estimate recruitment Ri:

Ri = Ω
(

γixi
σi

)
γixi + σiω

(
γixi
σi

)
, (6)

γixi = γi1 + γi2·Ni + γi3·BA + γi4·Hsd + γi5·HT + γi6·ST + γi7·SLcosASP
+γi8·cosASPlnEL + γi9·MAT + γi10·GSP + vi,

(7)

where Ni represents the number of trees per hectare in species group i; Ω and ω denote
the standard normal cumulative and density functions, respectively; and σi corresponds to
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the standard deviation of the residuals, vi, acquired during the estimation process of the
γ parameters.

In order to account for the dependence of tree mortality (mij) on the stand state, we
utilized the Probit model [60,61] to express the annual probability of mortality as follows:

mij =
Mij
T = 1

T Ω(δ i1 + δi2·DBH j + δi3·DBH j
2 + δi4·BA + δi5·Hsd + δi6·HT + δi7,

ST + δi8·SLcosASP + δi9·cosASPlnEL + δi10·MAT + δi11·GSP + εij
)
.

(8)

Mij represents the probability of mortality for a tree in species group i and diameter
class j within a time span of T years.; δs are parameters; and ξij is the error. Table 4
provides a detailed description of the variables involved in the models described using
Equations (4)–(8).

Table 4. The variables utilized in the models for tree diameter growth, recruitment, and mortality.

Variable Definition

g Annual growth in tree diameter over a 5-year period (cm yr−1)

r Recruitment, the count of trees that progress to the smallest diameter class
within a year (trees ha−1 yr−1)

M Mortality rate of living trees over a 5-year period, a value of 0 indicates the
state of being alive and a value of 1 indicates mortality

DBH Diameter at breast height (cm)
N Number of trees per hectare (trees ha−1)
BA Overall stand basal area of trees exceeding 5 cm in diameter (m2 ha−1)
Hsd Total stand diversity in the Shannon index
MAT Mean annual temperature (◦C)
GSP Mean annual growing season (April–September) precipitation (mm)
Aspect Plot aspect, north as 0, west as 90, south as 180, and east 270 (◦)
Slope Plot slope (◦)
EL Elevation (m)
HT Humus thickness (cm)
ST Soil thickness (cm)

2.4. Parameter Estimation and Variable Selection

The parameters of diameter growth (Equation (4)) were estimated through the uti-
lization of generalized least squares (GLS) estimator. The Tobit recruitment equation
(Equation (6)) was fitted using the maximum likelihood method with plot data. Likewise,
the Probit equation for mortality (Equation (8)) was computed, employing the maximum
likelihood method. The dependent variable was dichotomously defined, with a value of
one indicating tree mortality between two inventories, and a value of zero indicating the
tree’s survival. During the model selection procedure, caution was exercised to prevent
compromised type-I error rates and the occurrence of severe artifacts [62]. To minimize
these adverse effects, the independent variables were chosen based on three key criteria: ex-
pected biological responses, statistical significance, and parsimony in terms of the number
of parameters [37,57].

2.5. Model Comparison and Validation

In order to assess the impact of climate variables on the model accuracy, we constructed
three different models using the same 330 sample plots: a climate-sensitive, transition
matrix growth model (CM); a non-climate-sensitive transition matrix model (NCM); and
a fixed probability transition matrix model (FM). We employed the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) to compare the goodness-of-fit of
these models.

Following this, we adopted the 10-fold cross-validation approach to evaluate the
accuracy of the final CM, NCM, and FM. Model accuracy was assessed by comparing the
predicted basal area of trees (by size and species category) with the actual basal area at the
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second inventory. The coefficient of determination (R2), root mean square error (RMSE) and
mean absolute error (MAE), which can be directly calculated from prediction errors, were
computed for each fold and employed as the quantitative measures of accuracy [63]. The
average of the 10 resampled validation measurements for assessing the model performance
was calculated as follows [63]:

Coefficient of determination (R2
CV):

R2
CV =

1
k

k

∑
j=1

(R2
j ) =

1
k

k

∑
j=1

1 −
∑

nj
i=1

(
Oij − Pij

)2

∑
nj
i=1

(
Oij − Oj

)2

. (9)

Root mean square error (RMSECV):

RMSECV =
1
k

k

∑
j=1

(RMSEj) =
1
k

k

∑
j=1


√√√√ 1

nj

nj

∑
i=1

(
Oij − Pij

)2

. (10)

Mean absolute error (MAECV):

MAECV =
1
k

k

∑
j=1

(MAEj) =
1
k

k

∑
j=1


√√√√ 1

nj

nj

∑
i=1

∣∣Oij − Pij
∣∣, (11)

In the equations, k represents the number of folds—here, we use k = 10; Oij denotes
the i-th observed value of the j-th fold; Pij represents the i-th predicted value of the j-th fold;
−
Oj represents the average observed value of the j-th fold; nj corresponds to the number of
samples in the j-th fold; and R2

j , RMSEj, and MAEj represent the R2, RMSE, and MAE of
the j-th fold, respectively.

2.6. Long-Term Prediction

The long-term predictive performance of CM, NCM, and FM was compared. To
demonstrate the influence of climate on the long-term projections of the models, the plots
with CNFI numbers 3329, 5465, 6128, and 6476 in Hunan Province were selected for long-
term prediction. Plots 3329 and 6128 had similar mean growing season precipitation
(GSP) between 2009 and 2014 (1122.0 and 1119.0 mm, respectively), yet their mean annual
temperatures (MAT) are different (14.3 and 17.3 ◦C). The MAT of plots 5465 and 6476 were
identical between 2009 and 2014 (12.3 and 12.3 ◦C), but different GSP (1177.4 mm and
1344.0 mm). Figure 4 presents the corresponding diameter distribution and tree species
composition of the aforementioned plots.
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3. Results
3.1. Estimates of Parameters

Table 5 reports the estimated diameter growth model parameters (Equation (4)) and
their corresponding lack-of-fit statistics. The diameter growth was observed to significantly
decline with BA but increased with DBH for all species groups (p < 0.01). Furthermore,
the diameter growth of all species groups exhibited a significant decrease as the DBH2

increased (p < 0.01), with the exception of OC. The diameter growth exhibited a significant
negative relationship with Hsd for all the species groups (p < 0.01), with the exception
of QU. HT presented a significant positive relationship with diameter growth for PM
and OH (p < 0.01), and significant negative relationship with QU and OC (p < 0.01). In
addition, ST exhibited a positive relationship with diameter growth for all species groups
(p < 0.1). SLcosASP exhibited a significant negative impact on diameter growth for all
species (p < 0.01), with the exception of OC, while cosASPlnEL exerted a notable beneficial
impact on diameter growth for all species groups (p < 0.01) apart from OC. Note that the
climate change variables (i.e., MAT and GSP) were observed to have a significant impact on
the growth of tree diameter (p < 0.01). For example, MAT was associated with a significantly
reduced diameter growth for PM and OC (p < 0.01), and a significantly greater diameter
growth for QU, OH, and OS (p < 0.01). Moreover, GSP was associated with a significantly
reduced diameter growth for PM and QU (p < 0.05) and a significantly greater diameter
growth for OC (p < 0.01).
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Table 5. Parameter estimates and the associated lack-of-fit statistics for the tree diameter
growth model.

PM QU OC OH OS

Intercept 7.13 × 10−1 *** 9.85 × 10−2 7.91 × 10−1 *** −2.23 × 10−1 ** −2.56 × 10−2

DBH 3.01 × 10−2 *** 2.07 × 10−2 *** 7.93 × 10−3 ** 2.55 × 10−2 *** 3.01 × 10−2 ***
DBH2 −3.85 × 10−4 *** −3.55 × 10−4 *** 4.57 × 10−5 −4.20 × 10−4 *** −5.72 × 10−4 ***
BA −1.65 × 10−2 *** −9.28 × 10−3 *** −1.11 × 10−2 *** −6.73 × 10−3 *** −7.01 × 10−3 ***
Hsd −7.90 × 10−2 *** 3.76 × 10−2 ** −8.30 × 10−2 *** −5.26 × 10−2 *** −7.14 × 10−2 ***
HT 2.56 × 10−3 *** −2.72 × 10−3 *** −3.38 × 10−3 *** 2.49 × 10−3 *** −9.25 × 10−4

ST 1.50 × 10−3 *** 5.36 × 10−4 * 1.14 × 10−3 *** 1.62 × 10−3 *** 8.56 × 10−4 ***
SLcosASP 1 −2.03 × 10−3 *** −1.27 × 10−3 2.55 × 10−3 *** −2.75 × 10−3 *** −3.11 × 10−3 ***
cosASPlnEL 2 6.62 × 10−3 *** 8.51 × 10—3 ** −1.21 × 10−2 *** 1.33 × 10−3 *** 1.59 × 10−2 ***
MAT −1.48 × 10−2 *** 1.52 × 10−2 *** −2.47 × 10−2 *** 2.76 × 10−2 *** 2.75 × 10−2 ***
GSP −7.91 × 10−5 ** −1.10 × 10−4 *** 1.48 × 10−4 *** 3.73 × 10−5 −4.60 × 10−5

R2
Na

3 0.33 0.27 0.28 0.26 0.23
AIC 3492.31 1220.12 1755.46 1492.94 1390.87
BIC 3574.45 1294.50 1832.85 1567.72 1462.14
logLik 4 −1734.16 −598.06 −865.73 −734.47 −683.43
df 5 6926 3625 4659 3748 2795

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01. 1 SLcosASP = Slope × cos (Aspect). 2 cosASPlnEL =
cos(Aspect) × ln(Elevation). 3 R2

Na: Nagelkerke’s pseudo r-squared. 4 logLik: log-likelihood value. 5 df: Degrees
of freedom in model fitting.

Table 6 reports the results of the recruitment model (Equation (6)). The recruitment
of all species groups exhibited a significant increase with N (p < 0.01), while a significant
decrease was observed with BA (p < 0.01). Hsd exerted a significant positive impact on
recruitment for QU and OS (p < 0.05), and a negative impact for PM (p < 0.01). A positive
correlation exerted between the recruitment and HT for OH (p < 0.01). Moreover, ST
exerted a positive impact on recruitment for OC (p < 0.1). No significant relationships
were observed between recruitment and SLcosASP and cosASPlnEL for all species groups
(p > 0.1), apart from PM. MAT showed a negative relationship with recruitment for PM
(p < 0.1), and a positive relationship for the QU (p < 0.05). GSP exhibited a significant
positive impact on recruitment for OH (p < 0.05).

Table 6. Parameter estimates and the corresponding lack-of-fit statistics for the recruitment model.

PM QU OC OH OS

Intercept 9.54 × 101 * −1.16 × 102 ** −7.28 × 101 −7.19 × 101 ** 2.92 × 100

N 4.10 × 10−2 *** 5.83 × 10−2 *** 6.84 × 10−2 *** 5.31 × 10−2 *** 6.28 × 10−2 ***
BA −1.91 × 100 *** −1.89 × 100 *** −1.86 × 100 *** −1.26 × 100 *** −1.03 × 100 ***
Hsd −1.92 × 101 *** 1.91 × 101 *** 7.21 × 100 6.19 × 100 8.10 × 100 **
HT −6.68 × 10−2 −1.02 × 10−1 −3.03 × 10−1 9.58 × 10−1 *** 2.50 × 10−1

ST 1.61 × 10−1 1.34 × 10−1 2.85 × 10−1 * 1.23 × 10−1 5.10 × 10−2

SLcosASP 6.01 × 10−1 ** 2.15 × 10−1 1.78 × 10−2 −1.41 × 10−1 −2.43 × 10−1

cosASPlnEL −3.96 × 100 *** −7.08 × 10−1 1.18 × 100 4.96 × 10−1 1.45 × 100

MAT −3.80 × 100 * 4.74 × 100 ** 8.14 × 10−1 1.88 × 100 −7.01 × 10−1

GSP −1.05 × 10−2 6.68 × 10−3 2.38 × 10−2 3.15 × 10−2 ** 1.50 × 10−4

logSigma 1 3.35 × 100 *** 3.60 × 100 *** 3.79 × 100 *** 3.26 × 100 *** 3.31 × 100 ***
R2

Na 0.39 0.23 0.20 0.29 0.19
AIC 1426.08 2119.95 1788.56 2292.43 2206.14
BIC 1467.87 2161.74 1830.35 2334.22 2247.93
logLik −702.04 −1048.98 −883.28 −1135.21 −1092.07
n 2 132,330 193,330 154,330 228,330 214,330

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01. 1 logSigma: Log of standard deviation of residuals.
2 n: number of plots with recruitment, total number of plots.
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Table 7 reports the maximum likelihood estimates of the mortality model parameters
(Equation (8)). DBH exhibited a pronounced negative correlation with mortality across all
species groups, apart from OS (p < 0.05), while no significant correlation was found between
DBH2 and mortality. BA had a pronounced positive correlation with mortality for OH
(p < 0.01). For PM, QU, and OC groups, Hsd exhibited a positive relationship with mortality
(p < 0.05), whereas for OH, a negative relationship was identified (p < 0.05). HT had a
positive effect on mortality for QU (p < 0.01) and ST exerted a negative effect on mortality
for PM and OH (p < 0.05). SLcosASP was observed to be significantly positively related to
mortality for OC and OH (p < 0.05), while cosASPlnEL was significantly negatively related
to mortality for PM and OH (p < 0.05). Moreover, MAT exhibited a significant positive
association with mortality for OH and OS (p < 0.01). GSP exerted a positive association
with mortality for OC (p < 0.05).

Table 7. Parameter estimates and other statistics from the mortality equations.

PM QU OC OH OS

Intercept −2.61 × 100 *** −1.57 × 100 ** −5.99 × 10−1 9.76 × 10−1 2.03 × 100 **
DBH −1.00 × 10−1 *** −1.56 × 10−2 *** −1.52 × 10−1 *** −4.91 × 10−2 ** 5.97 × 10−2

DBH2 4.84 × 10−4 −3.05 × 10−4 2.91 × 10−3 8.77 × 10−4 −4.22 × 10−3 *
BA −4.47 × 10−4 −1.08 × 10−2 * 6.40 × 10−3 1.94 × 10−2 *** −3.47 × 10−3

Hsd 1.30 × 100 *** 2.56 × 10−1 ** 4.19 × 10−1 ** −2.28 × 10−1 ** −1.22 × 10−1

HT 1.02 × 10−2 1.80 × 10−2 *** −1.39 × 10−2 −1.30 × 10−4 −9.27 × 10−3

ST −9.19 × 10−3 *** 5.29 × 10−5 2.58 × 10−3 −5.00 × 10−3 *** 5.35 × 10−4

SLcosASP −5.02 × 10−3 −3.64 × 10−3 3.19 × 10−2 *** 1.27 × 10−2 ** −8.49 × 10−3

cosASPlnEL −4.29 × 10−2 ** 2.69 × 10−2 −1.41 × 10−1 −5.88 × 10−2 ** 4.57 × 10−2 *
MAT −1.29 × 10−2 −4.32 × 10−2 −1.77 × 10−1 −8.70 × 10−2 *** −1.69 × 10−1 ***
GSP 3.82 × 10−4 3.56 × 10−4 1.06 × 10−3 ** −3.10 × 10−4 −4.44 × 10−4 *
AIC 2061.14 1663.27 403.56 1642.82 1689.46
BIC 2136.97 1732.11 474.62 1712.01 1755.74
logLik −1019.57 −820.64 −190.78 −810.41 −833.73
df 7274 3848 4711 3972 3046

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01.

3.2. Model Comparison and Validation

In order to assess the impact of the addition of the climate variables on the model
performance, we developed two further models: the non-climate-sensitive transition matrix
model (NCM) and the fixed probability transition matrix model (FM). Appendix A provides
details of the estimated parameters for both the NCM and FM models. Table 8 reports
the goodness-of-fit for CM and NCM in terms of the Akaike information criterion (AIC)
and Bayesian information criterion (BIC). The results reveal that CM exhibited a superior
performance compared to NCM for the diameter growth predictions. However, limited
differences were observed between the results of the two models for recruitment and
mortality. This is indicated by the almost identical AIC and BIC values determined across
most species groups.

To assess the accuracy of the CM, NCM, and FM, we employed the 10-fold cross-
validation approach. The R2, RMSE, and MAE were calculated for each fold. The
10 resampled validation measurements of the model performance were then averaged us-
ing Equations (9)–(11) (Table 9). Although the R2, RMSE, and MAE for the three models
indicates slight variation among different species groups, the FM generally performs the
best, yet the difference is very small.
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Table 8. Goodness-of-fit of the CM and NCM models calibrated using the same 330 sample plots.

Model
PM QU OC OH OS

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Diameter growth
CM 3492.3 3574.4 1220.1 1294.5 1755.5 1832.8 1492.9 1567.7 1390.9 1462.1
NCM 3499.1 3567.6 1250.4 1312.4 1816.9 1881.3 1529.1 1591.4 1412.4 1471.8
Recruitment
CM 1426.1 1467.9 2120.0 2161.7 1788.6 1830.3 2292.4 2334.2 2206.1 2247.9
NCM 1425.0 1459.2 2120.4 2154.6 1785.6 1819.8 2294.8 2329.0 2202.4 2236.5
Mortality
CM 2061.1 2137.0 1663.3 1732.1 403.6 474.6 1642.8 1712.0 1689.5 1755.7
NCM 2062.3 2124.3 1666.1 1722.4 420.2 478.3 1646.6 1703.3 1709.2 1763.4

The model with the lowest AIC and BIC values are highlighted in bold.

Table 9. Accuracy of the final CM, NCM, and FM determined by 10-fold cross-validation.

Species Model R2 RMSE MAE

OC
CM 0.829 0.311 0.085
NCM 0.832 0.308 0.098
FM 0.845 0.296 0.081

OH
CM 0.765 0.268 0.085
NCM 0.760 0.272 0.141
FM 0.781 0.259 0.084

OS
CM 0.696 0.226 0.069
NCM 0.691 0.228 0.105
FM 0.745 0.207 0.064

PM
CM 0.850 0.476 0.176
NCM 0.851 0.474 0.149
FM 0.852 0.478 0.180

QU
CM 0.769 0.288 0.080
NCM 0.772 0.287 0.070
FM 0.782 0.283 0.077

All
CM 0.855 0.769 0.360
NCM 0.855 0.769 0.360
FM 0.868 0.739 0.340

Highest R2 and lowest RMSE and MAE values for each species groups are marked in bold.

3.3. Model Application (Long-Term Prediction)

Long-term predictions spanning 100 years were conducted using the non-climate-
sensitive transition matrix model (NCM) and the fixed probability transition matrix model
(FM) based on the plots with CNFI numbers 3329, 5465, 6128, and 6476. The predictions
made by the CM model considered three representative concentration pathways (RCPs).
The projected number of trees (N) varied among the models, displaying distinct trends
(Figure 5). The FM model, which is unaffected by stand and climate variables, exhibited
a linear upward trend in the predicted N. The N predicted by the NCM model initially
showed a slightly rising tendency until 2040, after which it grew more rapidly for plots
6476, 3329, and 6128, but exhibited a small decrease for plot 5465. Under the three RCPs,
the CM model demonstrated a significantly increasing trend in the predicted N over the
100-year period, with RCP8.5 exhibiting the highest rate of increase, followed by RCP4.5
and RCP2.6.
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Figure 5. The long-term prediction of tree numbers conducted using the climate-sensitive model
(CM) under three RCPs (RCP2.6, RCP4.5, RCP8.5), the non-climate-sensitive transition matrix model
(NCM), and the fixed probability model (FM), using plots with CNFI numbers 5465, 6476, 3329,
and 6128. MAT is the mean annual temperature from 2009 and 2014 and GSP is the mean growing
season (April–September) precipitation in the same years. (a) plot 5465; (b) plot 6476; (c) plot 3329;
(d) plot 6128.

Similar to N, the basal area (BA) predicted by FM also displayed a continuous linear
growth pattern, as depicted in Figure 6. In contrast, the NCM- and CM-predicted BA
initially exhibited a slightly increasing trend, and subsequently approached a steady state
for all plots, with the exception of 6128. Furthermore, minor differences were observed
among the three representative concentration pathways (RCPs), namely, the BA predicted
by RCP8.5 was the largest, followed by RCP 4.5 and RCP2.6.
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Figure 6. The long-term prediction of basal area conducted using the climate-sensitive model (CM)
under three RCPs (RCP2.6, RCP4.5, RCP8.5), the non-climate-sensitive transition matrix model (NCM),
and the fixed probability model (FM), using CNFI plots 5465, 6476, 3329, and 6128. MAT is the mean
annual temperature from 2009 and 2014 and GSP is the mean growing season (April–September)
precipitation in the same years. (a) plot 5465; (b) plot 6476; (c) plot 3329; (d) plot 6128.

The total stand diversity (Hsd) predicted by the FM showed a pronounced increasing
trend and eventually approached a stable condition (Figure 7). The Hsd predicted by NCM
and CM under the three distinct RCPs revealed a marginal upward trend prior to 2050
and then decreased following this point. Almost no differences were observed in the
CM-predicted Hsd values under different RCPs.
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Figure 7. The long-term prediction of total stand diversity conducted using the climate-sensitive
model (CM) under three RCPs (RCP2.6, RCP4.5, RCP8.5), the non-climate-sensitive transition ma-
trix model (NCM), and the fixed probability model (FM), using CNFI plots 5465, 6476, 3329, and
6128. MAT is the mean annual temperature from 2009 and 2014 and GSP is the mean growing
season (April–September) precipitation in the same years. (a) plot 5465; (b) plot 6476; (c) plot 3329;
(d) plot 6128.

4. Discussion

In this study, a climate-sensitive transition matrix model (CM) was proposed for
uneven-aged, mixed-species Masson pine forests, incorporating both climate factors and
total stand diversity. The transition model encompassed tree diameter growth, mortality,
and recruitment components. To assess its reliability, the model underwent validation using
a 10-fold cross-validation approach across all species and diameter classes, demonstrating
its accuracy.

The total stand diversity (Hsd), which indicates the overall diversity of tree species and
the size of a stand, exhibited a negative correlation with tree diameter growth for all tree
species (with the exception of QU). This suggests that stand diversity can result in a reduced
diameter growth. A positive correlation was found between total stand diversity and tree
mortality in the PM, QU, and OC species groups, and a negative association was identified
between total stand diversity and tree mortality for OH. The majority of our results for the
tree species groups are inconsistent with the positive relationship between biodiversity
and productivity, which has been documented in numerous ecosystems [64–66]. This
may be attributed to the unique responses of different species to competition from other
species [37].
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The combined influences of elevation, slope, and aspect have demonstrated their
significance as valuable indicators for factors such as radiation, precipitation, and tempera-
ture, which play a crucial role in shaping species distribution and productivity [67]. Soil
temperature and moisture and other physical and chemical factors that reflect moisture-
fertility gradient are affected by the interacting effects of elevation, slope, and aspect [68].
In this study, we utilize the variables SLcosASP and cosASPlnEL to describe these complex
effects. SLcosASP shows a significant negative impact on the growth of PM, OH, and OS,
while cosASPlnEL exhibits a significant positive impact on the growth of these three tree
species groups (Table 5). This suggests that these three tree species groups thrive better
on steep south-facing slopes and high-elevation north-facing slopes. This preference may
be attributed to the ample sunlight and good drainage on steeper south-facing slopes,
which benefit the growth of these tree species groups. However, as elevation increases,
north-facing slopes provide more abundant water and nutrient supply. On the contrary, for
tree mortality, SLcosASP exhibits a positive impact (Table 7), which may be related to the
loss of soil nutrients and moisture on steep north-facing slopes.

The mean annual temperature (MAT) was found to have a positive influence on
tree diameter for QU, QC, and OS, and a negative influence on tree mortality for OH
and OS. Climate change has been widely documented to have a positive effect on forest
growth in subtropical forests [69]. This positive effect is generally attributed to warmer
climate conditions and an extended growing season [33]. In contrast, the mean annual
temperature (MAT) exhibits a negative influence on tree diameter growth in hygrophilous
species such as PM and OC (mainly Cunninghamia lanceolata). This observation aligns
with the findings reported by Barber et al. [70], who observed a reduction in the radial
growth of Alaskan white spruce in response to rising temperatures. The authors attributed
this detrimental effect to temperature-induced drought stress, which is exacerbated by
inadequate precipitation and elevated temperatures [71,72]. Therefore, the adverse impact
of MAT on tree diameter growth may be attributed to the occurrence of temperature-
induced drought stress.

The mean growing season precipitation (GSP) exhibited a positive correlation with
the tree diameter growth for OC and was positively associated with recruitment for OH.
Thus, our findings support a positive association between precipitation and tree growth,
which is consistent with numerous other studies [73,74]. However, we observed a negative
association between GSP and diameter growth for PM and QU. This inverse relationship
may be attributed to excessive precipitation, which surpasses the optimal level required
for tree growth, rendering it non-limiting or even unfavorable. As noted by Clark and
Clark [75], there is a point of diminishing returns in terms of precipitation’s influence on
tree growth. This is evidenced by the authors’ findings for a Costa Rican tropical rainforest,
where tree growth was no longer restricted by precipitation beyond a certain threshold
(e.g., up to 3860 mm).

The 10-fold cross-validation revealed limited differences in the performance among
the three models, although the predictive accuracy varied slightly between models. The
fixed probability transition matrix model (FM) is characterized by stationary transition
probabilities, meaning that these probabilities remain constant over time [52]. This assump-
tion is typically applicable for short-term predictions. Moreover, the FM is renowned for
its simplicity and user-friendly nature, rendering it a valuable tool for short-term projec-
tions [76]. However, for the long-term prediction, the assumption of stationarity may not
hold true due to the interplay of forest dynamics with stand and site conditions, as well
as climate variables, which undergo changes over time [15,77]. The long-term prediction
experiment aligns with this concern, as depicted in Figures 5–7. It reveals a linearly in-
creasing trend in the predicted tree density and basal area over a 100-year period, which is
likely an inaccurate representation. Consequently, we assert that the FM is only suitable for
short-term predictions and not for long-term projections.

Over the course of a century, the CM under the three RCPs and NCM exhibited an
overall upward trend in tree numbers across all four plots. Furthermore, the projected
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number of trees exhibited a minor upward trend under three distinct RCPs until 2050, after
which substantial variations were observed. More specifically, RCP8.5 demonstrated the
most pronounced increase, with RCP4.5 and RCP2.6 following suit. The basal area initially
displayed a slight increase before reaching a stable state for all plots. Du, Chen, Zeng,
and Meng [32] employed the CM and NCM to forecast stand dynamics for uneven-aged
mixed-species oak forests in North China. The authors also found that the basal area
showed a slight upward trend, followed by a gradual convergence towards a stable state in
long-term predictions over a 100-year period.

The influence of temperature and precipitation on long-term forest dynamics has been
the subject of much research [78–80]. Temperature-induced drought stress has the potential
to hinder tree growth and increase mortality, particularly in arid regions [81–83]. However,
these variables are also linked to local moisture availability [70,84]. In the present study,
the analysis of tree numbers under three RCPs did not reveal any discernible declining
trend, suggesting the absence of temperature-induced mortality. This observation can be
attributed to the potential compensatory effect of increased precipitation, which may offset
the negative impacts of temperature-induced drought stress in the future. Following 2050,
the tree numbers (N) exhibited substantial variation across the three RCPs, with slightly
increasing trends observed for RCP2.6 and RCP4.5, while RCP8.5 exhibited a significant
upward trend. These trends are consistent with the predicted temperature patterns. Based
on these findings, we can infer that mean annual temperature serves as a critical limiting
factor influencing stand density dynamics in Hunan Province.

In contrast to the variation in tree numbers, the predicted basal area (BA) showed min-
imal distinctions across the three RCPs. More specifically, under RCP8.5, stands comprised
numerous trees with smaller individual basal areas, while under RCP2.6, stands consisted
of fewer trees with larger individual basal areas. In terms of economic considerations, the
stand under RCP2.6 holds greater value due to the presence of larger individual trees. This
implies that climate change may diminish the economic worth of this forest. Similarly,
Hanewinkel, et al. [85] demonstrated that projected temperature and precipitation changes
can result in significant economic implications. By the year 2100, depending on the applied
interest rate and climate scenario, the potential loss ranges from 14% to 50% of the current
value of European forest land, excluding Russia.

We observed a declining trend in predicted total stand diversity (Hsd) beyond 2050,
irrespective of the representative concentration pathways (RCPs), suggesting the potential
negative impact of climate change on total stand diversity. This adverse effect has also been
documented in previous research [86–88]. For example, Habibullah, et al. [89] conducted a
comprehensive investigation into the relationship between climate change and biodiversity
loss, employing a global dataset comprising 115 countries. The findings revealed that
climate change variables were associated with an increase in biodiversity loss. Conversely,
other studies argue that climate change may enhance total stand diversity. Liang, Zhou,
Verbyla, Zhang, Springsteen, and Malone [57], for example, attribute a positive effect to
climate change, as it facilitates the increasing dominance of black spruce, leading to the
redistribution of tree species and sizes. This redistribution is likely to result in an overall
increase in diversity until the area reaches the climax stage.

China possesses diverse unevenly aged, mixed-species forests. However, there is
a noticeable dearth of matrix models specifically designed for decision support systems
aimed at managing these forests. As a result, the creation of forest growth models becomes
crucial for decision-making processes and the effective management of unevenly aged,
mixed-species forests across various regions.

It is worth noting that our CM model has the following usage guidelines: (1) it is appli-
cable to the natural forests of Pinus massoniana in Hunan Province and can be extrapolated
to South-Central China where Pinus massoniana natural forests are present; (2) based on the
modeling data, the optimal range of input variables for the model is as follows: elevation
ranging from 40 to 1500 m; slope less than 50◦; humus thickness (HT) ranging from 1 to
50 cm; soil thickness (ST) ranging from 14 to 150 cm; mean annual temperature (MAT)
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between 11 and 20 ◦C; mean growing season precipitation (GSP) between 700 and 1700 mm.
These ranges can be appropriately expanded based on specific circumstances.

5. Conclusions

We developed a climate-sensitive transition matrix growth model (CM) to forecast the
dynamics of unevenly aged, mixed-species Masson pine forests in South-Central China. In
order to demonstrate the robustness of the climate-sensitive model, we conducted a com-
parative analysis with a non-climate-sensitive transition matrix model (NCM) and a fixed
probability transition matrix model (FM). Our findings from the 10-fold cross validation
indicated minimal differences among the three predictive models. However, for long-term
projections, the climate-sensitive model outperformed the fixed probability and non-climate
models, providing more reliable forecasts across the three different representative con-
centration pathways (RCPs). Therefore, the FM model we established is only suitable for
short-term predictions (5–10 years) when climate and site conditions remain stable; it is not
suitable for long-term projections. We anticipate that this climate-sensitive transition matrix
growth model will make a substantial contribution to the effective management of Masson
pine natural forests, particularly considering the challenges posed by climate change.

Author Contributions: Conceptualization, J.M., X.W. and X.D.; methodology, X.D.; validation, X.D.
and X.W.; formal analysis, X.D.; data curation, X.W.; writing—original draft preparation, X.D.;
writing—review and editing, X.W. and J.M.; supervision, X.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (32271871).

Data Availability Statement: Not applicable.

Acknowledgments: We thank the Academy of Forest Inventory and Planning, National Forestry and
Grassland Administration, China, which provided data access support during our research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Estimated Parameters of the Non-Climate-Sensitive Transition Matrix
Model (NCM) and the Fixed Probability Transition Matrix Model (FM)

The parameters of the non-climate-sensitive transition matrix model (NCM) and the
fixed probability transition matrix model (FM) were estimated using the same data as the
climate-sensitive transition matrix growth model (CM). Tables A1–A3 report the results of
the diameter growth (Equation (A1)), recruitment (Equations (A2) and (A3)), and mortality
(Equation (A4)) components, respectively, for NCM. Tables A4 and A5 detail the transition
probabilities and recruitment of FM, respectively.

gij in NCM was calculated as follows:

gij = βi1 + βi2·DBH j + βi3·DBH j
2 + βi4·BA + βi5·Hsd + βi6·HT + βi7·ST + βi8·SLcosASP

+βi9·cosASPlnEL + µij,
(A1)

where DBHj is tree dimeter (cm); BA represents basal area (m2·ha−1); Hsd is total stand
diversity in the Shannon index; HT is humus thickness (cm); ST is soil thickness (cm);
SLcosASP = Slope × cos(Aspect) [55]; cosASPlnEL = cos(Aspect) × ln(Elevation) [37,55];
βs are parameters; and µij is the error.

We utilized the Tobit model to estimate recruitment Ri in NCM:

Ri = Ω
(

γixi
σi

)
γixi + σiω

(
γixi
σi

)
, (A2)

γixi = γi1 + γi2·Ni + γi3·BA + γi4·Hsd + γi5·HT + γi6·ST + γi7·SLcosASP + γi8·cosASPlnEL + vi, (A3)

where Ni represents the number of trees per hectare in species group i; Ω and ω are the
standard normal cumulative and density functions, respectively; and σi corresponds to
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the standard deviation of the residuals, vi, acquired during the estimation process of the
γ parameters.

We utilized the probit model to express the annual probability of mortality (mij) in
NCM as follows:

mij =
Mij
T = 1

T Ω(δi1 + δi2·DBH j + δi3·DBH j
2 + δi4·BA + δi5·Hsd + δi6·HT + δi7·ST + δi8·SLcosASP

+δi9·cosASPlnEL + εij),
(A4)

where Mij represents the probability of mortality for a tree in species group i and diameter
class j within a time span of T years.; δs are parameters; and ξij is the error.

Table A1. Estimates of parameters and associated lack-of-fit statistics for the tree diameter growth
model of NCM.

PM QU OC OH OS

Intercept 3.79 × 10−1 *** 2.52 × 10−1 *** 4.91 × 10−1 *** 2.73 × 10−1 ** 3.89 × 10−1 ***
DBH 3.01 × 10−2 *** 2.01 × 10−2 *** 7.35 × 10−3 ** 2.58 × 10−2 *** 3.15 × 10−2 ***
DBH2 −3.85 × 10−4 *** −3.46 × 10−4 *** 8.38 × 10−5 −4.38 × 10−4 *** −6.17 × 10−4 ***
BA −1.65 × 10−2 *** −1.08 × 10−2 *** −1.07 × 10−2 *** −7.93 × 10−3 *** −8.10 × 10−3 ***
Hsd −7.75 × 10−2 *** 3.57 × 10−2 ** −5.44 × 10−2 *** −4.96 × 10−2 *** −7.76 × 10−2 ***
HT 2.64 × 10−3 *** −3.49 × 10−3 *** −2.97 × 10−3 *** 1.59 × 10−3 ** −2.30 × 10−3 **
ST 1.48 × 10−3 *** 8.56 × 10−4 *** 7.58 × 10−4 *** 1.89 × 10−3 *** 1.21 × 10−3 ***
SLcosASP −2.15 × 10−3 *** −1.39 × 10−3 * 2.14 × 10−3 *** −2.38 × 10−3 *** −2.39 × 10−3 **
cosASPlnEL 7.69 × 10−3 *** 8.04 × 10−3 * −1.06 × 10−2 *** 1.15 × 10−2 *** 1.21 × 10−2 **
R2

Na 0.33 0.24 0.24 0.24 0.23
AIC 3499.11 1250.38 1816.85 1529.05 1412.36
BIC 3567.55 1312.36 1881.34 1591.37 1471.76
logLik −1739.55 −615.19 −898.42 −754.53 −683.43
df 6928 3627 4661 3750 2795

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01.

Table A2. Estimates of parameters and corresponding lack-of-fit statistics for the recruitment model
of NCM.

PM QU OC OH OS

Intercept 2.08 × 101 ** −2.65 × 101 ** −3.63 × 101 *** −8.61 × 100 −9.05 × 100

N 4.00 × 10−2 *** 5.77 × 10−2 *** 6.92 × 10−2 *** 5.41 × 10−2 *** 6.33 × 10−2 ***
BA −1.83 × 100 *** −2.00 × 100 *** −1.90 × 100 *** −1.28 × 100 *** −1.02 × 100 ***
Hsd −1.90 × 101 *** 1.76 × 101 *** 8.98 × 100 7.62 × 100 ** 8.33 × 100 **
HT −5.17 × 10−3 −2.61 × 10−1 −2.99 × 10−1 9.14 × 10−1 *** 2.76 × 10−1

ST 1.36 × 10−1 1.75 × 10−1 2.54 × 10−1 * 8.63 × 10−2 4.30 × 10−2

SLcosASP 5.76 × 10−1 ** 2.28 × 10−1 9.01 × 10−3 −1.52 × 10−1 −2.48 × 10−1

cosASPlnEL −3.78 × 100 *** −8.38 × 10−1 1.18 × 100 4.96 × 10−1 1.48 × 100

logSigma 3.36 × 100 *** 3.60 × 100 *** 3.79 × 100 *** 3.27 × 100 *** 3.31 × 100 ***
R2

Na 0.38 0.22 0.20 0.27 0.19
AIC 1425.02 2120.37 1785.58 2294.80 2202.35
BIC 1459.22 2154.56 1819.77 2329.00 2236.54
logLik 1 −703.51 −1051.18 −883.79 −1138.40 −1092.18
n 2 132,330 193,330 154,330 228,330 214,116

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01. 1 logSigma: Log of standard deviation of residuals.
2 n: number of plots with recruitment, total number of plots.
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Table A3. Estimates of parameters and other statistics from the mortality equations of NCM.

PM QU OC OH OS

Intercept −2.50 × 100 *** −1.96 × 100 *** −2.94 × 100 *** −7.80 × 10−1 *** −1.29 × 100 ***
DBH −1.02 × 10−1 *** −1.53 × 10−2 −1.40 × 10−1 *** −4.98 × 10−2 ** 5.30 × 10−2

DBH2 5.24 × 10−4 −2.92 × 10−4 3.11 × 10−3 * 9.26 × 10−4 −4.03 × 10−3 *
BA −1.56 × 10−3 −6.72 × 10−3 7.91 × 10−3 2.31 × 10−2 *** −2.65 × 10−4

Hsd 1.37 × 100 *** 2.76 × 10−1 *** 7.17 × 10−1 *** −2.49 × 10−1 ** −6.87 × 10−2

HT 1.13 × 10−2 ** 1.97 × 10−2 *** −9.24 × 10−3 4.19 × 10−3 −1.13 × 10−3

ST −9.90 × 10−3 *** −1.05 × 10−3 −9.14 × 10−4 −5.61 × 10−3 *** −8.05 × 10−4

SLcosASP 4.88 × 10−3 −3.04 × 10−3 3.23 × 10−2 *** 1.11 × 10−2 * −1.20 × 10−2 **
cosASPlnEL −4.27 × 10−2 ** 2.75 × 10−2 −1.46 × 10−1 *** −5.18 × 10−2 * 6.54 × 10−2 **
AIC 2062.27 1666.12 420.18 1646.65 1709.22
BIC 2124.32 1722.44 478.32 1703.26 1763.45
logLik −1022.14 −824.06 −201.09 −814.32 −845.61
df 7276 3850 4713 3974 3048

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01.

Table A4. Transition probabilities for each species group across different diameter classes.

Diameter Class (cm)
PM QU OC

a 1 b 2 m 3 a b m a b m

7.5 0.5660 0.3690 0.0651 0.7044 0.2365 0.0591 0.6909 0.2970 0.0121
12.5 0.5883 0.3754 0.0363 0.6953 0.2555 0.0491 0.7171 0.2797 0.0032
17.5 0.5557 0.4151 0.0292 0.6475 0.2787 0.0738 0.7466 0.2476 0.0058
22.5 0.5690 0.4119 0.0192 0.6923 0.2564 0.0513 0.6480 0.3440 0.0080
27.5 0.5606 0.4394 0.0000 0.7826 0.2174 0.0000 0.6897 0.3103 0.0000
≥32.5 0.5714 0.4143 0.0143 0.8421 0.1579 0.0000 0.6364 0.3636 0.0000

OH OS All species

a b m a b m a b m

7.5 0.6984 0.2427 0.0588 0.6681 0.2399 0.0920 0.6613 0.2817 0.0570
12.5 0.6378 0.3133 0.0489 0.6610 0.2740 0.0651 0.6508 0.3152 0.0340
17.5 0.6502 0.3216 0.0283 0.6009 0.3474 0.0516 0.6228 0.3466 0.0305
22.5 0.6381 0.3333 0.0286 0.6286 0.3714 0.0000 0.6033 0.3767 0.0200
27.5 0.5385 0.3846 0.0769 0.8667 0.1333 0.0000 0.6147 0.3761 0.0092
≥32.5 0.6410 0.3333 0.0256 0.7500 0.2500 0.0000 0.6333 0.3500 0.0125

1 a: probability of a tree surviving and remaining in the same diameter class over a span of five years.
2 b: probability of a tree surviving and progressing to the next diameter class. 3 m: mortality rate over a
span of five years.

Table A5. Tree recruitment within each species group.

Species Group Recruitment (Trees ha−1 year−1) Proportion

PM 8.4273 13.23%
QU 14.3818 22.58%
OC 10.2545 16.10%
OH 16.3636 25.69%
OS 14.2636 22.40%
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