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Abstract: Wildfire disasters pose a significant threat to the stability and sustainability of ecosystems.
The assessment of wildfire risk based on a seasonal dimension has contributed to improving the
spatiotemporal targeting of fire prevention efforts. In this study, Nanning, China, was selected as the
research area. The wildfire driving factors were chosen from both seasonal and nonseasonal aspects,
and the datasets were divided into five periods: all seasons, spring, summer, autumn, and winter.
The light gradient boosting machine (LGBM) was employed to construct wildfire danger models
for different periods, evaluating the spatial distribution of high-wildfire-danger areas during these
periods and the predictive performance differences. The SHapley Additive exPlanations (SHAP)
method was utilized to analyze the differential contributions of various factors to wildfire occurrence
in different seasons. Subsequently, the remote sensing ecological index (RSEI) was calculated using
four indicators, greenness, heat, wetness, and dryness, to assess the ecological vulnerability in
different seasons. Finally, by integrating danger and vulnerability information, wildfire risk models
were developed to systematically assess the risk of wildfire disasters causing losses to the ecological
environment in different seasons. The results indicate that: (1) The evaluation of wildfire danger
based on individual seasons effectively compensates for the shortcomings of analyzing danger across
all seasons, exhibiting higher predictive performance and richer details. (2) Wildfires in Nanning
primarily occur in spring and winter, while the likelihood of wildfires in summer and autumn is
relatively lower. In different seasons, NDVI is the most critical factor influencing wildfire occurrence,
while slope is the most important nonseasonal factor. The influence of factors varies among different
seasons, with seasonal factors having a more significant impact on wildfire danger. (3) The ecological
vulnerability in Nanning exhibits significant differences between different seasons. Compared to
spring and winter, the ecological environment is more vulnerable to wildfire disasters during summer
and autumn. (4) The highest wildfire risk occurs in spring, posing the greatest threat to the ecological
environment, while the lowest wildfire risk is observed in winter. Taking into account information on
danger and vulnerability in different seasons enables a more comprehensive assessment of the risk
differences in wildfire disasters causing ecological losses. The research findings provide a scientific
theoretical basis for relevant departments regarding the prevention, control, and management of
seasonal wildfires.

Keywords: wildfire risk assessment; seasonal differences; ecological environment vulnerability;
LGBM; SHAP

1. Introduction

Wildfire refers to unplanned and uncontrolled fires that occur in natural environments
such as forests, cultivated lands, and grasslands [1]. Wildfire disasters pose significant
risks to the ecological environment [2,3]. They not only incinerate vegetation, damaging
the roots and underground parts of plants and leading to plant mortality and reduced
vegetation, but also have a severe impact on biodiversity [4]. Moreover, wildfires can
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burn organic matter in the soil, impairing soil fertility and structure and resulting in soil
erosion, loss of topsoil, and water source contamination [5–7]. Furthermore, wildfires can
trigger natural disasters such as landslides and floods, exacerbating the destruction of the
ecological environment [8,9]. The harm caused to the ecological environment by wildfire
disasters is comprehensive and far-reaching, posing a significant threat to the stability and
sustainability of ecosystems [10].

China is one of the countries with the highest frequencies of forest fires, with a level of
devastation surpassing the global average [11,12]. Guangxi Zhuang Autonomous Region,
as the most serious area of wildfire disasters in the country, had 774 recorded forest fires
in 2019 alone, and the affected area and number of casualties were among the highest in
the country, posing a great threat to the ecological environment and the safety of human
life and property. Nanning, being a high-risk region for wildfire disasters in Guangxi, has
suffered severe losses to its ecological environment and social economy due to frequent
wildfire occurrences in recent years. In November 2021, a significant wildfire disaster took
place in Wutang Town, Nanning, scorching an estimated area of 500 acres, devastating the
surrounding vegetation, and causing substantial economic losses. Additionally, in April
2022, a wildfire incident in Xiaolu Village, Nanning, posed a grave threat to the safety of
nearby nature reserves, reservoirs, and villages. Hence, as a vital component of wildfire
monitoring and prediction, it is of utmost importance to assess the risk posed by wildfire
disasters in terms of their destructive impact and losses to the ecological environment [13].
Additionally, government agencies and industries such as tourism and transportation
can utilize wildfire risk assessment results to develop effective wildfire prevention plans,
thereby mitigating the losses caused by wildfire disasters to the ecological environment [14].

Wildfire risk refers to the probability of wildfire occurrence and spread (danger) and
the potential damage to the environment and human society (vulnerability) [15–17]. In
terms of the ecological environment, wildfire risk describes the potential risk of wildfire
damage to the ecosystem. Specifically, wildfire danger refers to the likelihood of wildfire
occurrence, with areas of high danger being more prone to wildfires [18,19]. Ecological
vulnerability characterizes the degree to which an ecosystem is susceptible to wildfire
damage, with high vulnerability indicating that the ecosystem is more likely to be harmed
and destroyed by wildfires [20,21].

Wildfire danger is an integral component of wildfire risk assessment. Its principle is
based on historical wildfire data and involves analyzing the responses of wildfires to factors
such as topography, vegetation, climate, and human activities to predict the probability of
wildfire occurrence [22–25]. In recent years, advancements in computer science, geographic
information systems, and remote sensing technologies have enabled the use of multiple data
sources, such as remote sensing imagery, meteorological data, and geospatial information
data, to build wildfire danger models [26–28]. This development has laid the foundation
for obtaining more accurate and larger-scale assessments of wildfire danger. In particular,
the widespread adoption of machine learning (ML) and artificial intelligence algorithms
has greatly improved the speed and accuracy of wildfire danger research [29]. Algorithms
such as logistic regression [30], artificial neural networks [31], support vector machines [32],
random forest [33], and deep neural networks [34] can effectively handle the complex
nonlinear relationships between wildfire occurrence and various factors, leading to more
precise predictions of wildfire danger [35,36]. Furthermore, a notable advancement in
wildfire danger research is the amalgamation of ML algorithms with the SHapley Additive
exPlanations (SHAP) method [37–39]. In contrast to the single ML models that provide
predictions without in-depth insights into feature importance, the ML-SHAP models can
offer a unique advantage in comprehending the contributions of different factors to wildfire
danger predictions. SHAP enables quantification of the impact of each input feature on the
model’s output, thereby facilitating the interpretation and understanding of underlying
factors influencing wildfire danger [40,41]. This transition to SHAP-based approaches
enhances the transparency and interpretability of wildfire danger assessments, enabling
stakeholders to make well-informed decisions [39,42].
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Currently, wildfire danger research primarily focuses on annual-scale analysis and
often overlooks seasonal differences in wildfires [20]. However, the occurrence and behavior
of wildfires can significantly vary across different seasons [43,44]. Merely considering
average annual conditions may not fully reveal the true level of wildfire danger [12]. In
reality, climate conditions and vegetation statuses in different seasons have a substantial
impact on wildfire danger [45,46]. Therefore, accounting for seasonal changes in factors
such as vegetation and climate is crucial for a more comprehensive and accurate evaluation
of wildfire danger. Integrating the SHAP method into seasonal wildfire danger analysis
allows for the assessment of varying effects of driving factors of wildfires in different
seasons. Through the integration of seasonal perspectives with the SHAP method, this
strengthened spatiotemporal analysis enables a deeper understanding of the driving forces
behind wildfires in different seasons, thereby promoting the development of precise and
effective wildfire prevention and management strategies.

Additionally, more attention needs to be given to the potential risks that wildfire disas-
ters pose to the ecological environment. Wildfires not only cause vegetation destruction and
soil erosion, but also contribute to the loss of biodiversity, water source contamination, and
climate change issues [47,48]. However, in many wildfire danger studies, the evaluation of
the potential risks of wildfire damage to the ecological environment is often overlooked or
limited to qualitative descriptions [20,49]. This situation restricts our in-depth understand-
ing of the impacts of wildfire disasters and hinders the development of effective wildfire
prevention, control, and ecological protection strategies. Therefore, to better understand
the seasonal differences of wildfires and the potential risks of wildfire disasters to the
ecological environment, it is necessary to consider the seasonal changes in factors such as
vegetation and climate. This will strengthen the spatiotemporal analysis of wildfire danger
research and allow for a more in-depth assessment of the potential impacts of wildfires
on ecosystems during different seasons. Such research can provide more accurate and
comprehensive wildfire risk assessments, which will serve as a more precise and effective
scientific basis for wildfire prevention and management, as well as the protection of the
ecological environment [50].

In view of this, this study proposes a methodology and process for seasonal wildfire
risk assessment that is integrated with the ecological environment. Firstly, historical
wildfire samples in Nanning were taken as the research objects, taking into account the
spatial distribution of wildfire samples to select the appropriate seasonal and nonseasonal
factors. An ML algorithm was utilized to construct wildfire danger models for different
seasons, and the SHAP method was utilized to assess the differences in the impact of
wildfire driving factors during different periods. Secondly, ecological vulnerability models
for each season were developed by integrating various ecological environmental factors.
Finally, by integrating the danger and vulnerability information within the same period,
wildfire disaster risk models for each season were constructed. The specific objectives
were as follows: (1) Summarizing the seasonal spatial distribution patterns of wildfire-
prone areas, exploring the predictive performance advantages of a seasonal-based wildfire
danger assessment method, and analyzing the contribution differences of factors to wildfire
occurrence in different seasons; (2) analyzing ecological vulnerability and the contribution
of ecological variables to vulnerability during different seasons; (3) evaluating the wildfire
risk in Nanning during different seasons and summarizing the spatial distribution patterns
of different risk levels. In summary, this research advances the field of wildfire risk
assessment by considering seasonal differences and ecological factors, contributing to
a more comprehensive understanding of wildfire occurrence patterns and supporting
informed decision-making for effective wildfire management and prevention strategies.

2. Study Area and Data Overview
2.1. Study Area

Nanning is the capital of the Guangxi Zhuang Autonomous Region in China. It is
situated in the central-northern part of Guangxi, in the eastern Nanning Basin, between
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22◦50′ and 24◦12′ N, and 107◦36′ and 109◦41′ E. The city covers an approximate total area
of 22,100 km2 (Figure 1a). Nanning boasts a subtropical monsoon climate characterized by
hot and humid summers and warm and moist winters. The annual average temperature
ranges from 20 to 23 ◦C, with precipitation averaging around 1400 to 2000 mm per year.
The climate is mild, humid, and abundant in sunshine, promoting lush vegetation growth.
Nanning falls within the tropical evergreen broad-leaved forest zone, with a remarkable
forest coverage rate of 52.96%. Its primary vegetation types comprise tall trees, shrubs,
and herbaceous plants, rendering it a vital ecological barrier in the southern region. Due
to its abundant vegetation cover and unique climatic natural environment, Nanning has
become a highly susceptible region for the occurrence of wildfire disasters. The complex
climatic conditions, accumulation of dry branches and fallen leaves in the forests, and
human activities are all contributing factors to the occurrence of wildfires in this area.

Forests 2023, 14, x FOR PEER REVIEW  4  of  36 
 

 

2. Study Area and Data Overview 

2.1. Study Area 

Nanning  is  the capital of  the Guangxi Zhuang Autonomous Region  in China.  It  is 

situated in the central-northern part of Guangxi, in the eastern Nanning Basin, between 

22°50′ and 24°12′ N, and 107°36′ and 109°41′ E. The city covers an approximate total area 

of 22,100 km2 (Figure 1a). Nanning boasts a subtropical monsoon climate characterized by 

hot and humid summers and warm and moist winters. The annual average temperature 

ranges from 20 to 23 °C, with precipitation averaging around 1400 to 2000 mm per year. 

The climate is mild, humid, and abundant in sunshine, promoting lush vegetation growth. 

Nanning falls within the tropical evergreen broad-leaved forest zone, with a remarkable 

forest coverage rate of 52.96%. Its primary vegetation types comprise tall trees, shrubs, 

and herbaceous plants, rendering it a vital ecological barrier in the southern region. Due 

to its abundant vegetation cover and unique climatic natural environment, Nanning has 

become a highly susceptible region for the occurrence of wildfire disasters. The complex 

climatic conditions, accumulation of dry branches and fallen leaves in the forests, and hu-

man activities are all contributing factors to the occurrence of wildfires in this area. 

 

Figure 1. Study area and spatial and temporal distribution of historical wildfires: (a) study area and 

the spatial distribution of historical wildfire samples; (b) total number of wildfire samples in each 

month from 2013 to 2022. 

2.2. Historical Wildfire Dataset 

Compared to the historical wildfire data collected by government agencies, wildfire 

data obtained through Earth observation satellites are more readily accessible and com-

prehensive [20,37]. VIIRS, a passive microwave imaging technology developed by NOAA 

and NASA,  collects visible  light and  infrared  radiation data during both daytime and 

Figure 1. Study area and spatial and temporal distribution of historical wildfires: (a) study area and
the spatial distribution of historical wildfire samples; (b) total number of wildfire samples in each
month from 2013 to 2022.

2.2. Historical Wildfire Dataset

Compared to the historical wildfire data collected by government agencies, wildfire
data obtained through Earth observation satellites are more readily accessible and compre-
hensive [20,37]. VIIRS, a passive microwave imaging technology developed by NOAA and
NASA, collects visible light and infrared radiation data during both daytime and nighttime,
enabling fire detection with a spatial resolution of 375 m [51,52]. This product has been
widely employed in wildfire detection and prediction research [53–55]. In this study, VIIRS
hotspot data were utilized to obtain spatial information and reports on the intensity of
surface fire sources. Due to the fact that VIIRS hotspot data encompass anomalous heat
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sources of various types across the entire domain, it is necessary to filter the acquired raw
hotspot data [35].

Based on the existing data filtering methods, the following steps were undertaken for
wildfire sample selection in this paper:

(1) Downloading VIIRS hotspot data from 2013 to 2022 via the FIRMS official web-
site (https://firms.modaps.eosdis.nasa.gov/ (accessed on 5 May 2023)) and using Ar-
cGIS 10.2 software to filter the hotspot samples within the vector boundary of Nanning;

(2) Removing data with inadequate confidence based on the “Confidence” attribute
field in the VIIRS data;

(3) Deleting samples of “active volcano”, “other static land source” and “offshore
detection” types in the “Type” attribute field of the VIIRS data, retaining only the data of
the “presumed vegetation fire” type;

(4) Using the 30 m resolution GlobeLand30 land use type product (http://www.
globallandcover.com/ (accessed on 6 May 2023)) to exclude non-target points located
within water bodies, buildings, and bare land;

(5) Based on sample density and remote sensing images, eliminating non-target points
that represent long-term static thermal anomalies, such as thermal power plants and
metallurgical factories. In the end, 9336 wildfire samples were obtained. Among them,
the numbers of wildfires in spring (March to May), summer (June to August), autumn
(September to November), and winter (December to February) were 2345, 561, 1908, and
4522, respectively. The distribution of wildfire samples in each season within the study
area is shown in Figure 1a, while the statistical information of wildfire samples within each
season from 2013 to 2022 is presented in Figure 1b. It is evident that the wildfire samples
in Nanning are predominantly concentrated in spring and winter, with relatively fewer
occurrences in summer and autumn.

2.3. Wildfire Driving Factors

This study selected 15 wildfire driving factors from both seasonal and nonseasonal
perspectives. Seasonal factors include the normalized difference vegetation index (NDVI),
rainfall, temperature, and wind speed. Non-seasonal factors include 11 factors, including
elevation, slope, and population density. The basic information of these factors is presented
in Table 1. To facilitate the analysis, all factor visualization images were projected onto the
UTM_Zone_49N coordinate system and resampled to a 30 m × 30 m grid size consistent
with the DEM, resulting in a total of 24,566,450 grid cells.

Table 1. Information on wildfire driving factors.

Category Factors Source of Data Format and
Scale Resolution

Seasonal

NDVI Landsat 8 OLI (2013–2022) 30 m .tiff
Rainfall CHIRPS dataset (2013–2022) 5566 m .tiff

Temperature ERA5-Land Reanalysis Dataset
(2013–2022) 11,132 m

.tiff
Wind speed .tiff

Nonseasonal

Elevation

SRTM V3_30 m DEM 30 m

.tiff
Slope .tiff

Aspect .tiff
Curvature .tiff

Topographic wetness index (TWI) .tiff
Stream power index (SPI) .tiff

Distance to rivers National Catalogue Service for
Geographic Information (in Chinese) 1:250,000 m

.shp
Distance to roads .shp

Population density WorldPop Dataset 1000 km .tiff
Land use GlobeLand30 V2020 Dataset 30 m .tiff
Soil type Harmonized World Soil Database 5′ .tiff

https://firms.modaps.eosdis.nasa.gov/
http://www.globallandcover.com/
http://www.globallandcover.com/
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2.3.1. Nonseasonal Factors

Topographical factors have a significant impact on wildfire occurrence (Figure 2).
Elevation influences human activities and vegetation distribution and interacts with local
climatic conditions, collectively affecting the initiation and spread of wildfires [56]. Slope
plays a crucial role in fire propagation [57]. In general, steeper slopes facilitate the rapid
spread of wildfires. Specific aspects can result in varying levels of sunlight exposure,
influencing vegetation growth and dryness and thereby affecting wildfire occurrence [58].
Different curvatures can lead to differences in vegetation distribution and moisture, further
influencing wildfire incidence [59]. TWI and SPI can reflect surface moisture and water
flow energy, respectively, collectively impacting vegetation coverage and the exposure of
combustible materials [9]. The formulae for calculating TWI and SPI are as follows.

TWI = ln(α/tanθ) (1)

SPI = ln(α× tanθ) (2)

where α corresponds to the upstream catchment and θ represents the inclination angle
in radians.
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(f) SPI.

Furthermore, factors such as distance to rivers, distance to roads, population density,
land use, and soil type also have an impact on the occurrence and spread of wildfires
(Figure 3). Distance to rivers reflects, to some extent, the surface’s moisture level, thereby
influencing vegetation growth [60]. Distance to roads and population density jointly indi-
cate human activities, evaluating the extent to which engineering activities and improper
use of fire sources contribute to wildfire disasters [18,35]. Land use types have a certain
influence on wildfire occurrence. Different land use types provide varying vegetation types
and fuel loads, potentially affecting the probability and spread rate of fires [61]. Soil type
reflects the composition and characteristics of the soil. Different soil types have varying
effects on vegetation growth and water retention. Soil moisture, water storage capacity,
and vegetation health are all associated with the occurrence and spread of wildfires [49].
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2.3.2. Seasonal Factors

Due to the significant impact of vegetation coverage and climatic conditions on the
occurrence and spread of wildfires during different seasons, this study selected seasonal
factors from these two aspects. The climatic factors include rainfall, temperature, and wind
speed. Rainfall is a crucial climatic factor that determines the water supply for vegetation
growth [62]. In Nanning, the highest rainfall occurs during the summer, while the rainfall
is relatively lower in spring and autumn, and the lowest in winter. Variations in rainfall
directly affect the growth status of vegetation and surface moisture, thereby influencing
the probability of wildfire occurrence. Temperature variations affect vegetation growth
and dryness, with higher temperatures favoring wildfire occurrence [63]. In Nanning, the
highest temperatures are experienced in summer, while the lowest temperatures occur in
winter, and spring and autumn temperatures fall between the two extremes. Changes in
wind speed impact the spread of fire and the rate of wildfire propagation [64]. In Nanning,
the highest wind speeds are observed in winter, while lower wind speeds are recorded in
summer and autumn, and the lowest wind speeds occur in spring. Additionally, NDVI,
serving as a metric for assessing vegetation condition, reflects the density and health of
vegetation. Areas with abundant vegetation coverage are likely to provide a greater fuel
load [65]. The calculation formula is shown as Equation (3).

NDVI =
NIR− Red
NIR + Red

(3)

where Red is the red band and NIR is the near-infrared band.
To explore the influence of seasonal differences in terms of the above factors on the

assessment of wildfire danger, data collection and processing were conducted for five
different periods: all seasons, spring, summer, autumn, and winter, as shown in Figure 4.
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2.4. Ecological Vulnerability Factors

The remote sensing ecological index (RSEI) is an aggregate index that utilizes remote
sensing data to swiftly assess the ecological conditions [66]. This approach employs four
ecological variables, namely, greenness (representing vegetation), heat (representing tem-
perature), wetness (representing soil moisture), and dryness (representing built areas), to
evaluate the ecological status [67]. In general, higher values of greenness and wetness indi-
cate higher vegetation coverage, greater soil and surface vegetation moisture, and a better
ecological environment. Conversely, greater values of the heat and dryness indicators indi-
cate higher surface temperatures, intensified soil and built-up areas, and poorer ecological
environments [68,69]. By integrating these four indicators, the ecological conditions within
the region can be visually depicted [70,71]. In this study, we calculated the four indicators
of RSEI using Landsat 8 OLI images. And the RSEI was selected as an evaluation index to
measure the ecological condition and vulnerability in different seasons. Specifically:

Greenness is represented by the NDVI. NDVI is a reliable indicator of vegetation
dynamics and is widely used to assess vegetation growth conditions [72].

Heat is denoted by land surface temperature (LST) [73]. The calculation is based on Land-
sat 8 images using the atmospheric correction method, which is given in Equations (4) and (5):

LST =
K2

ln
(

K1
B(Ts)

+ 1
) (4)

B(Ts) =
LT − L↑ − β(1− θ)L↓

βθ
(5)

where K1 and K2 are calibration coefficients; LT represents the land surface temperature
in the thermal infrared band of the satellite; and L↑ and L↓ represent the upwelling and
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downwelling atmospheric radiance, respectively. β denotes the transmissivity of the
thermal infrared band, and θ represents the surface emissivity.

Dryness is represented by the normalized difference built-up and soil index (NDBSI),
which is derived from a combination of the index-based built-up index (IBI) and soil index
(SI) [74,75]. The mathematical expressions for the calculation are shown in Equations (6)–(8).

NDBSI =
IBI + SI

2
(6)

IBI =
2SWIR1

SWIR1+NIR −
(

NIR
NIR+Red + Green

Green+SWIR1

)
2SWIR1

SWIR1+NIR +
(

NIR
NIR+Red + Green

Green+SWIR1

) (7)

SI =
[(SWIR1 + Red)− (NIR + Blue)]
[(SWIR1 + Red) + (NIR + Blue)]

(8)

where Blue, Green, Red, NIR, and SWIR1 correspond to the spectral bands representing
the blue, green, red, near-infrared, and first short-wave infrared bands, respectively.

Wetness is determined using tasseled cap transformation, which effectively reflects
the surface humidity status [76]. The calculation formula is shown in Equation (9).

WET = 0.1511× Blue + 0.1973× Green + 0.3283× Red+0.3404× NIR− 0.7117× SWIR1 + 0.4559× SWIR2 (9)

where Blue, Green, Red, NIR, SWIR1, and SWIR2 refer to the bands representing the
blue, green, red, near-infrared, first short-wave infrared, and second short-wave infrared
wavelengths, respectively.

Considering the variable and cloudy weather conditions in Nanning, a single-year and
single-season image dataset is insufficient to fully cover the entire study area. Therefore,
we utilized a collection of Landsat 8 OLI images from 2018 to 2022 using the Google Earth
Engine (GEE) platform. To ensure data quality, we applied image masking to areas with
cloud cover exceeding 20% in order to minimize the influence of atmospheric interference.
By incorporating images within this temporal framework, we calculated the average values
of four indicators for different seasons, aiming to provide a comprehensive representation
of the ecological environment. The ecological indicators for each season are shown in
Figure 5.
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3. Methods

The methodology employed in this research consisted of three stages.
In the first stage, we aimed to construct wildfire danger models for different seasons

in Nanning using an ML algorithm. We explored the prediction performance differences
of wildfire danger based on annual and quarterly scales, analyzed the spatial distribution
characteristics of wildfire danger in different seasons, and assessed the variation in the
degree of contribution of each factor on a seasonal scale. The main procedures are described
as follows. Initially, we established a spatial database to acquire and categorize wildfire
samples from five distinct periods: all seasons, spring, summer, autumn, and winter.
Additionally, we gathered wildfire driving factors corresponding to each of these periods.
Subsequently, we conducted multicollinearity analysis on the factors for different periods
to ensure their independence. Second, we randomly divided the modeling datasets for
different periods into training and testing datasets according to a ratio of 7:3. Based on the
training set, we used the light gradient boosting machine (LGBM) algorithm to construct
wildfire danger models for different periods and generated wildfire danger maps for each
season to assess their spatial distribution. Based on the test set, multiple evaluation metrics
were used to evaluate the zonal rationality and predictive performance of each model.
Third, we employed the SHapley Additive exPlanations (SHAP) method to assess the
importance variation in wildfire driving factors across different seasons and focused on
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analyzing the differences in the influences of seasonal factors on wildfire danger prediction
results. The overall technology roadmap is depicted in Figure 6.
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In the second stage, a vulnerability assessment of the ecological environment was
conducted for different seasons, as shown in Figure 7. Firstly, Landsat imagery data were
collected and divided according to the seasons. The greenness, heat, wetness, and dryness
indicators were calculated and obtained for each season, and then normalized. Subse-
quently, principal component analysis (PCA) was applied to integrate the four indicators in
order to calculate the remote sensing ecological index (RSEI) for each season. Finally, based
on the spatial distribution of the RSEI, the vulnerability of the ecological environment in
Nanning was assessed for each season.

In the third stage, the wildfire risk assessment was conducted for different seasons in
Nanning. Following the disaster risk assessment method of the United Nations Depart-
ment of Humanitarian Affairs (UNDHA), the wildfire danger model for each season was
integrated with the ecological vulnerability model to construct the wildfire risk model for
the corresponding season. Additionally, the spatial distribution characteristics of wildfire
risk were summarized for each season, providing a scientific basis for the prevention and
management of wildfire disasters in Nanning.
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3.1. Wildfire Danger Assessment Method Based on ML Algorithm
3.1.1. Light Gradient Boosting Machine (LGBM)

The light gradient boosting machine (LGBM) is a ML algorithm based on the gradient
boosting decision tree (GBDT) [77]. LGBM stands out due to its algorithm based on
histograms and a leaf-wise growth strategy, which effectively reduces memory usage and
computation time while handling sparse data. Moreover, LGBM incorporates various
strategies, such as regularization, to prevent overfitting and supports multi-threading and
parallel computing, allowing for efficient processing of massive data and high-dimensional
features. As a result, LGBM offers faster processing speed, lower memory consumption, and
improved accuracy, making it a valuable tool for wildfire danger assessment [78,79]. LGBM
utilizes a gradient-boosting algorithm to enhance model accuracy, and the calculation
formula is as follows:

ypred =
n

∑
i=1

(Lr× fi(x)) + y0 (10)

where ypred represents the final predicted value, Lr denotes the learning rate, fi(x) repre-
sents the prediction value of the i-th decision tree, and y0 is the initial predicted value.

In addition to using wildfire samples as positive samples, ML models also require
negative samples to construct the data foundation for the purpose of building the wildfire
danger regression prediction model [9]. In this study, equal numbers of negative samples
were randomly selected in areas with low historical wildfire density, and the distance
between samples was greater than 500 m to ensure the randomness of the negative sample
region’s characteristics. Specifically, the numbers of negative samples for spring, summer,
autumn, and winter were 2345, 561, 1908, and 4522, respectively. Wildfire-positive samples
were assigned a value of “1”, while negative samples were assigned a value of “0”. In total,
70% of the samples were randomly selected as the training set, and the remaining 30% were
used as the test set. The training set was used for model training and construction, while
the test set was used to verify the predictive performance of the danger models for each
period. In this study, we employed the grid search method for hyperparameter tuning to
optimize the performance of our danger prediction model. K-fold cross-validation with a
value of 10 was used to construct a more reliable and accurate model. The hyperparameter
tuning results for the models in each period are shown in Table 2.



Forests 2023, 14, 1616 13 of 36

Table 2. Hyperparameter adjustment results.

Hyperparameter All Seasons Spring Summer Autumn Winter

max_depth 13 7 7 10 11
num_leaves 80 90 50 50 50

colsample_bytree 0.8 0.5 0.4 0.6 0.7
n_estimators 250 270 250 290 300

min_child_samples 7 6 4 7 4

3.1.2. Performance Assessment of Danger Models

This study selected multiple indicators in order to comprehensively evaluate the
predictive performance of the wildfire danger models from different dimensions. The
receiver operating characteristic (ROC) curve is a common method used to describe the
classification performance of the model [80]. The ROC curve plots the true positive rate
(TPR) on the vertical axis and the false positive rate (FPR) on the horizontal axis, and the
area under the curve (AUC) represents the model’s classification ability. The AUC value
ranges from 0.5 to 1, where a value closer to 1 indicates a better classification performance of
the model [81]. Precision represents the proportion of correctly predicted wildfire samples
among all predicted wildfire samples. It measures the accuracy of positive predictions [82].
Recall measures the proportion of correctly predicted wildfire samples among all actual
wildfire samples. It captures the ability of the model to identify positive samples [37]. The F1
score combines both precision and recall into a single metric, allowing for a comprehensive
evaluation of the model’s effectiveness in predicting wildfires [83]. Overall accuracy (OA)
refers to the proportion of correctly predicted samples to the total number of samples [84].
The kappa coefficient (KC) is a statistical measure used to assess the consistency between
the model’s predicted results and the true labels. A value closer to 1 indicates a higher
level of agreement between the model’s predictions and the true labels [34]. The root
mean squared error (RMSE) is used to measure the average difference between the model’s
predicted values and the true labels. A smaller RMSE indicates a smaller error between the
model’s predicted results and the true values, indicating a better predictive capability of
the model [18]. The above indicators are calculated as follows:

AUC =
1
2
×
(

TP
TP + FN

+
TN

TN + FP

)
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 score =
2× Precision× Recall

Precision + Recall
(14)

OA =
TP + TN

TP + FN + TN + FP
(15)

KC =
OA− Pe

1− Pe

(
Pe =

(TP + FN)(TP + FP)(TN + FN)(FP + TN)

(TP + FN + FP + TN)2

)
(16)

RMSE =

√
1
n∑n

i=1

(
Ypre_i −Yi

)2 (17)

In Equations (2)–(5), TP (true positive) indicates the number of wildfire samples that
were correctly classified as wildfire. TN (true negative) indicates the number of non-wildfire
samples that were correctly classified as non-wildfire. On the other hand, FP (false positive)
is the number of non-wildfire samples that were incorrectly classified as wildfire. FN (false
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negative) is the number of wildfire samples that were incorrectly classified as non-wildfire.
In Equation (6), n represents the number of samples. Ypre_i and Yi, respectively, represent
the predicted value and the actual value of the i-th sample.

3.1.3. SHapley Additive exPlanations (SHAP) Method

SHapley Additive exPlanations (SHAP) is an interpretable method based on game
theory which is used to explain the outputs of any ML model [85]. Its essence lies in
the Shapley value, which is a method of allocating contributions to total consumption
based on players’ participation. The interpretability of Shapley values is manifested as
an additive feature attribution method, where the model’s predictions are explained as
the sum of attribution values for each input feature [49,86]. We employed the Tree-SHAP
method, which considers tree-based models in conjunction with an input dataset X of
size N ×M, generating an N × M matrix with Shapley values (where N represents the
number of samples and M denotes the number of features), enabling the comprehensive
global explanation of wildfire danger models constructed at different time periods. The
calculation formula for Shapley is as follows:

φj(xi) = ∑
S⊆N/{j}

M!× (|S|)× (M− |S| − 1)!
M!

[ fS
⋃ {j}(xi)− fS(xi)] (18)

where xi represents the i-th sample; j denotes one of the features; S represents a feature
subset that does not include the feature j; fS(xi) represents the model’s prediction output
when the feature subset S is removed from the model; fS

⋃ {j}(xi) represents the model’s
prediction output when the feature j is added to the feature subset S; and M is the total
number of samples in the dataset. In this study, we utilized the SHAP method to generate
global summary plots and single dependence plots. These plots were used to analyze the
direction and contribution of each factor in predicting wildfire danger during different
periods. The dependence relationship between the attribute values of seasonal factors and
the prediction results of danger was evaluated.

3.2. Ecological Vulnerability Assessment Method Based on RSEI

Disaster vulnerability can be defined as the degree of vulnerability to damage that an
area or system exhibits in the face of a disaster [87]. It reflects the resistance and recovery
capacity of the subject under disaster conditions. Specifically in the context of the ecological
environment, disaster vulnerability refers to the vulnerability of various components in
the ecosystem (such as vegetation, soil, water resources, etc.) to disasters. It takes into
account the responsiveness of the ecosystem’s structure, functions, and dynamic processes
to disasters. In this study, we used RSEI to assess the vulnerability of wildfire disasters in
different seasons by integrating greenness, heat, wetness, and dryness in the study area.

In order to mitigate the influence of varying scales and dimensions among different
indicators on the evaluation results, normalization was applied to the indicators [73]. The
normalization process is represented by Equation (19).

NIi =
Ii − Imin

Imax − Imin
(19)

where NIi represents the normalized value of each indicator, Ii represents the value of each
indicator at the i-th pixel, and Imin and Imax represent the minimum and maximum values
of each indicator, respectively.

Subsequently, the principal component analysis (PCA) method was employed to
objectively allocate weights based on the contribution rates of NDVI, LST, WET, and
NDBSI. This approach helps to reduce biases caused by subjective weighting based on
personal experience [88,89]. The final outcome is a composite index, RSEI, which is used to
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assess the ecological environment status [90]. The calculation formulas are presented as
Equations (20) and (21).

RSEI0 = {PCA[ f (NDVI, LST, NDBSI, WET)]} (20)

RSEI =
RSEI0 − RSEI0min

RSEI0max − RSEI0min

(21)

where RSEI0 denotes the initial remote sensing ecological index obtained through PCA;
RSEI0min is the minimum value of RSEI0; RSEI0max is the maximum value of RSEI0; and
RSEI signifies the standardized remote sensing ecological index, ranging from 0.0 to 1.0.
A higher RSEI value indicates a better ecological environment status, and it also suggests
that the occurrence of wildfire may result in more severe ecological damage. Conversely, a
lower RSEI value suggests that the ecological environment is relatively less susceptible to
the impacts and damage caused by wildfires.

3.3. Wildfire Risk Assessment Method

The natural disaster risk arises from the interaction between disaster danger and
vulnerability. It represents the potential risk of losses to specific entities resulting from the
occurrence of the disaster [91–93]. The assessment of disaster risk combines both these
factors and quantifies the level of risk by evaluating potential impacts and losses [94,95].
The calculation formula for disaster risk is shown in Equation (22).

Riski = Dangeri ×Vulnerabilityi (22)

where Dangeri represents the wildfire danger value of the i-th pixel, and Vulnerabilityi
represents the ecological vulnerability value of the i-th pixel. The resulting Riski represents
the risk of wildfire-induced ecological damage for the i-th pixel, ranging from 0 to 1.

4. Results
4.1. Wildfire Danger Assessment
4.1.1. Multicollinearity Test Results

In this study, the multicollinearity between wildfire occurrences and driving factors
in different periods was assessed using the SPSS 26.0 data analysis software, as shown
in Table 3. The tolerance (TOL) values for the 15 wildfire-regulating factors in different
periods were all above 0.2, and the variance inflation factor (VIF) values were all below
5.0. Among them, elevation had the lowest TOL values and the highest VIF values across
all periods. The results indicate that there is no multicollinearity among the factors within
each period and no strong mutual influence, ensuring the reliability and effectiveness of
the wildfire danger model.

Table 3. Analysis of the multicollinearity between wildfire driving factors.

Wildfire Driving
Factor

All Seasons Spring Summer Autumn Winter

TOL VIF TOL VIF TOL VIF TOL VIF TOL VIF

Elevation 0.362 2.766 0.313 3.193 0.283 3.527 0.332 3.011 0.344 2.909
Slope 0.367 2.726 0.339 2.952 0.362 2.763 0.370 2.705 0.358 2.795

Aspect 0.989 1.011 0.993 1.007 0.985 1.015 0.996 1.004 0.997 1.003
Curvature 0.904 1.106 0.908 1.102 0.893 1.120 0.918 1.090 0.919 1.088

TWI 0.559 1.788 0.593 1.686 0.549 1.821 0.562 1.780 0.579 1.726
SPI 0.639 1.566 0.672 1.487 0.645 1.550 0.643 1.555 0.645 1.549

Distance to rivers 0.699 1.430 0.591 1.693 0.624 1.602 0.672 1.489 0.593 1.685
Distance to roads 0.816 1.226 0.691 1.446 0.819 1.220 0.813 1.229 0.773 1.293

Population density 0.911 1.098 0.865 1.156 0.814 1.228 0.833 1.200 0.871 1.148
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Table 3. Cont.

Wildfire Driving
Factor

All Seasons Spring Summer Autumn Winter

TOL VIF TOL VIF TOL VIF TOL VIF TOL VIF

Land use 0.691 1.448 0.780 1.282 0.669 1.495 0.741 1.349 0.868 1.152
Soil type 0.758 1.320 0.666 1.501 0.724 1.382 0.732 1.367 0.708 1.412

NDVI 0.545 1.833 0.589 1.698 0.510 1.963 0.609 1.642 0.686 1.457
Rainfall 0.802 1.247 0.427 2.340 0.644 1.553 0.813 1.231 0.652 1.533

Temperature 0.467 2.141 0.256 3.909 0.235 4.258 0.367 2.729 0.463 2.158
Wind speed 0.929 1.077 0.726 1.377 0.521 1.919 0.902 1.109 0.865 1.156

4.1.2. Wildfire Danger Map

This study initially analyzed the wildfire danger based on all seasons, aiming to
identify and understand the influence of seasonal factors and providing the reference for
subsequent wildfire danger analyses in different seasons. We classified the regional wildfire
danger predictions based on all seasons into five levels: very low, low, moderate, high, and
very high, using the classification criteria of [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8,
1.0], as shown in Figure 8a. It can be seen that areas with high wildfire danger are primarily
distributed in the northwest, central-eastern, and southern parts of Nanning, while low
danger areas can be found in the northern, western, and southwestern regions of Nanning.
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The global interpretation results of the wildfire driving factors are presented in Fig-
ure 8b. The SHAP summary plot presents the relationship between model predictions and
different factors, as well as the extent of the influence these factors have on the predictions.
Each point in the summary plot represents a data sample, with the color indicating the
magnitude of the corresponding factor value, where red represents a high value and blue
represents a low value. The horizontal axis represents the Shapley values of the sample
points, while the vertical axis arranges the factors in descending order of their contributions.
The results reveal that the seasonal factors exhibited the most significant impact on wildfire
danger in Nanning, with the factor importance rankings for NDVI, rainfall, temperature,
and wind speed being 1, 2, 3, and 8, respectively. It is evident that the occurrence of
wildfires in Nanning is greatly influenced by seasonal factors.

In order to ensure the comparability of wildfire danger zoning results across different
seasons and to establish a consistent probability range for the same danger level across
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different models, we employed the same zoning interval to classify the danger prediction
results for different seasons. The danger zoning results are shown in Figure 9, demon-
strating similar spatial distribution patterns of wildfire danger across all seasons as well
as during the individual seasons of spring, summer, autumn, and winter. However, the
danger zoning results based on different seasons revealed more detailed information, with a
higher number of wildfire samples falling within the high-danger zones. Consequently, this
approach provides a more comprehensive depiction of the spatial distribution of wildfire
danger within different seasons.
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Figure 9. Wildfire danger maps of different seasons: (a) spring, (b) summer, (c) autumn and (d) winter.

As shown in Figure 10, the wildfire danger in different seasons exhibited a similar
trend in the same direction (either horizontally or vertically), with fewer regions having
a wildfire danger probability below 0.5. However, there were slight differences in the
details, with the danger probabilities in spring and winter being higher in the eastern and
northern-central parts of the study area compared to summer and autumn. Additionally,
the danger probabilities in the northwestern and southern-central parts of the study area
were slightly higher in spring and summer than in autumn and winter.

The detailed statistical information on wildfire danger zoning in different periods
is presented in Table 4. The proportions of very high-danger areas for spring, summer,
autumn, winter, and all seasons were 52.28%, 44.553%, 37.66%, 50.125%, and 41.74%,
respectively. Among them, summer and autumn had smaller areas of very high danger,
while spring and winter had larger areas. The proportions of wildfire samples within
the very high-danger areas for spring, summer, autumn, winter, and all seasons were
81.895%, 87.06%, 77.509%, 76.032%, and 74.019%, respectively, while the proportions of
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wildfire samples within the very low-danger areas were 2.263%, 1.695%, 3.633%, 3.835%,
and 4.833%. It can be observed that wildfire danger zoning based on individual seasons
can provide a more comprehensive identification of high-danger areas. Compared to the
model based on all seasons, this demonstrates better classification performance.

Forests 2023, 14, x FOR PEER REVIEW  18  of  36 
 

 

0.0

0.2

0.4

0.6

0.8

1.0

E

 SPR    SUM    AUT    WIN

W
ild

fi
re

 d
an

ge
r 

in
d

ex

Horizontal direction of study area W

0.0

0.2

0.4

0.6

0.8

1.0

 SPR    SUM    AUT    WIN

W
ild

fi
re

 d
an

ge
r 

in
d

ex

Vertical direction of study area SN

(a)

(b)

 

Figure 10. Regional horizontal and vertical average wildfire danger indices for different periods: (a) 

horizontal wildfire danger index; (b) vertical wildfire danger index. 

The detailed statistical information on wildfire danger zoning in different periods is 

presented in Table 4. The proportions of very high-danger areas for spring, summer, au-

tumn, winter, and all seasons were 52.28%, 44.553%, 37.66%, 50.125%, and 41.74%, respec-

tively. Among them, summer and autumn had smaller areas of very high danger, while 

spring and winter had larger areas. The proportions of wildfire samples within the very 

high-danger areas  for spring, summer, autumn, winter, and all seasons were 81.895%, 

87.06%, 77.509%, 76.032%, and 74.019%,  respectively, while  the proportions of wildfire 

samples within  the  very  low-danger  areas were  2.263%,  1.695%,  3.633%,  3.835%,  and 

4.833%. It can be observed that wildfire danger zoning based on individual seasons can 

provide  a more  comprehensive  identification  of  high-danger  areas. Compared  to  the 

model based on all seasons, this demonstrates better classification performance. 

Based on the area of specific danger levels and the number of wildfire samples they 

contained, we calculated the frequency ratios of different wildfire danger levels in each 

period. It can be observed that the frequency ratio increased with the increase in wildfire 

danger level across different periods. And the frequency ratio for the very high-danger 

areas was greater than 1.0, indicating the rationality of the zoning results in each period. 

Among  them,  the  summer and autumn exhibited higher  frequency  ratios  for  the very 

high-danger areas compared to all seasons, indicating a better fit with the wildfire samples. 

On the other hand, the spring and winter showed lower frequency ratios for the very high-

danger areas compared to all seasons, indicating a relatively poorer fit with the wildfire 

samples. 

Table 4. Statistics of wildfire danger zoning results in different periods. 

Period  Danger Level 
Percentage of Area 

(P(S)/%) 

Proportion of Wildfire 

Samples (P(N)/%) 

Frequency Ratio 

(P(N)/P(S)) 

Spring 

Very low  16.525  2.263  0.137 

Low  9.619  2.970  0.309 

Moderate  9.687  4.809  0.496 

High  11.889  8.062  0.678 

Very high  52.280  81.895  1.566 

Summer 

Very low  16.175  1.695  0.105 

Low  12.011  1.695  0.141 

Moderate  12.972  3.955  0.305 

High  14.290  5.650  0.395 

Figure 10. Regional horizontal and vertical average wildfire danger indices for different periods:
(a) horizontal wildfire danger index; (b) vertical wildfire danger index.

Table 4. Statistics of wildfire danger zoning results in different periods.

Period Danger Level Percentage of Area (P(S)/%) Proportion of Wildfire
Samples (P(N)/%)

Frequency Ratio
(P(N)/P(S))

Spring

Very low 16.525 2.263 0.137
Low 9.619 2.970 0.309

Moderate 9.687 4.809 0.496
High 11.889 8.062 0.678

Very high 52.280 81.895 1.566

Summer

Very low 16.175 1.695 0.105
Low 12.011 1.695 0.141

Moderate 12.972 3.955 0.305
High 14.290 5.650 0.395

Very high 44.553 87.005 1.953

Autumn

Very low 28.811 3.633 0.126
Low 11.239 2.768 0.246

Moderate 9.969 6.574 0.660
High 12.323 9.516 0.772

Very high 37.660 77.509 2.058

Winter

Very low 21.615 3.835 0.177
Low 9.703 4.572 0.471

Moderate 8.804 6.490 0.737
High 9.754 9.071 0.930

Very high 50.125 76.032 1.517

All seasons

Very low 28.130 4.833 0.172
Low 12.185 5.414 0.444

Moderate 8.838 6.032 0.682
High 9.107 9.702 1.065

Very high 41.740 74.019 1.773
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Based on the area of specific danger levels and the number of wildfire samples they
contained, we calculated the frequency ratios of different wildfire danger levels in each
period. It can be observed that the frequency ratio increased with the increase in wildfire
danger level across different periods. And the frequency ratio for the very high-danger
areas was greater than 1.0, indicating the rationality of the zoning results in each period.
Among them, the summer and autumn exhibited higher frequency ratios for the very
high-danger areas compared to all seasons, indicating a better fit with the wildfire samples.
On the other hand, the spring and winter showed lower frequency ratios for the very
high-danger areas compared to all seasons, indicating a relatively poorer fit with the
wildfire samples.

This study employed statistical and computational tools within GIS to analyze the
distribution of very high-wildfire-danger areas across different seasons. The seasonal
distribution of these areas is depicted in Figure 11, while the statistical results of their
respective proportions are presented in Table 5. The results indicate that the proportion
of regions prone to wildfire occurrence throughout each season in Nanning was 32.921%.
Specifically, during the spring–summer–winter, the spring–winter, and the spring, the
proportions of areas susceptible to wildfire were 5.323%, 5.131%, and 4.095%, respectively.
It is evident that the seasonal wildfire danger in Nanning is primarily influenced by the
spring and winter. It is recommended to implement preventive and control measures
in the corresponding areas indicated in Figure 11 during these seasons to enhance the
effectiveness of fire prevention efforts.
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4.1.3. Model Performance Assessment

The ROC curves and AUC values were utilized to evaluate the classification perfor-
mance of the wildfire danger models across different periods, considering the presence and
absence of wildfires as two categories. A higher AUC value indicates a stronger classifi-
cation ability of the model in terms of distinguishing between the presence and absence
of wildfires. As shown in Figure 12, the ROC-AUC values for each period, ranked from
highest to lowest, are as follows: summer (0.989) > spring (0.958) > autumn (0.976) > winter
(0.968) > all seasons combined (0.955). It can be observed that the wildfire danger models
constructed based on individual seasons achieved higher ROC-AUC values, indicating
superior predictive performance.
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Table 5. Statistical results of very high-wildfire-danger areas by season. SPR: spring; SUM: summer;
AUT: autumn; WIN: winter.

Partition Results Number of
Grids/Unit

Percentage of
Area/% Partition Results Number of

Grids/Unit
Percentage of

Area/%

None 9,915,568 40.362 WIN 675,323 2.749
SPR 1,005,981 4.095 SPR-WIN 1,260,502 5.131
SUM 542,557 2.209 SUM-WIN 235,855 0.960

SPR-SUM 371,360 1.512 SPR-SUM-WIN 1,307,684 5.323
AUT 73,525 0.299 AUT-WIN 71,726 0.292

SPR-AUT 88,214 0.359 SPR-AUT-WIN 530,584 2.160
SUM-AUT 64,000 0.261 SUM-AUT-WIN 144,539 0.588

SPR-SUM-AUT 191,421 0.779 SPR-SUM-AUT-WIN 8,087,611 32.921
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Figure 12. ROC curves of different periods. 
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The predictive accuracy of wildfire danger models during different time periods is presented
in Table 6. The precision of the models during different time periods, ranked in descending order,
were as follows: spring (0.982) > autumn (0.972) > summer (0.971) > winter (0.952) > (0.924). The
recalls, ranked in descending order, were as follows: summer (0.944) > spring (0.930) > au-
tumn (0.907) > winter (0.888) > all seasons (0.869). The F1 scores, ranked in descending
order, were as follows: summer (0.957) > spring (0.955) > autumn (0.938) > winter (0.919)
> all seasons (0.985). The results indicate that the wildfire danger models based on indi-
vidual seasons exhibited a stronger ability to accurately predict and capture wildfires in
their respective seasons. The overall accuracies and kappa coefficients of different mod-
els, ranked in descending order, were as follows: spring > summer > autumn > winter
> all seasons. The RMSE values, ranked in ascending order, were as follows: summer
(0.194) < spring (0.209) < autumn (0.234) < winter (0.255) < all seasons (0.279). It can be
observed that the wildfire danger model constructed based on all seasons had a relatively
weaker ability to distinguish between wildfires and non-wildfires, resulting in a lower level
of concordance between predictions and actual observations. Conversely, the models based
on individual seasons demonstrated a stronger capability to differentiate between wildfire
and non-wildfire areas, resulting in a higher level of consistency between predictions and
actual occurrences and a lower level of uncertainty or variability in the model predictions.
Additionally, in terms of wildfire prediction performance across different seasons, the
performance was better in spring and summer compared to autumn and winter.
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Table 6. Predictive performance of wildfire danger models of different periods. OA: overall accuracy;
KC: kappa coefficient.

Period Precision Recall F1 Score OA KC RMSE

Spring 0.982 0.929 0.955 0.956 0.912 0.209
Summer 0.971 0.944 0.957 0.955 0.911 0.194
Autumn 0.972 0.907 0.938 0.940 0.880 0.234
Winter 0.952 0.888 0.919 0.922 0.843 0.255

All seasons 0.924 0.869 0.895 0.900 0.800 0.279

In conclusion, due to the close relationship between wildfire occurrence and factors
such as climate and vegetation growth, the impact of seasonal factors on wildfires cannot be
overlooked in wildfire danger research. Therefore, by constructing wildfire danger models
for different seasons, the prediction results can be more targeted, effectively improving
the accuracy and reliability of wildfire predictions. In contrast, the assessment of wildfire
danger based on all seasons may not comprehensively consider the seasonal differences
in climate and vegetation factors, leading to a potential decrease in prediction accuracy.
In summary, wildfire danger models based on individual seasons demonstrate superior
performance and reliability.

4.1.4. Assessment of Seasonal Differences in the Importance of Factors

Figure 13 displays the summary plots for the wildfire prediction factors in different
seasons. It was determined that the importance of factors exhibited both uniformity
and difference among different seasons. The uniformity manifested in the consistent
prominence of NDVI as the most influential factor in the wildfire danger models across all
seasons, displaying a positive correlation with wildfire occurrence. This relationship can be
attributed to densely vegetated regions accumulating a greater biomass, thereby increasing
the availability of combustible materials. Furthermore, when wildfires transpire, densely
vegetated areas often prove challenging to control, resulting in regions with higher NDVI
values being more susceptible to such incidents. As for nonseasonal factors, slope emerged
as the highest-ranking contributor in terms of importance, exerting a significant influence
on wildfire occurrence throughout different seasons. In comparison to other factors, TWI,
curvature, and aspect made relatively smaller contributions to the prediction of wildfire
danger in each season.

The single dependence plot illustrates the influence of specific attribute values of a
factor on the prediction results. As shown in Figure 14 for seasonal factors, the horizontal
axis represents the range of factor values, while the vertical axis represents the Shapley
values. Each point in the plot represents the degree of impact of a specific attribute value
of the factor on the prediction. Generally, when the Shapley value of a sample is greater
than 0, it indicates that the specific attribute value of that factor contributes to an increased
likelihood of wildfire occurrence. By observing the dependence plots, we can gain insights
into how changes in factor values affect the predictions, thereby understanding the model’s
dependence on the factors and the stability of the predictions. Combining the analysis with
the summary plots revealed that each factor exhibited varying degrees of influence on the
prediction of wildfire danger in different seasons. Specifically:
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(1) Spring: NDVI, land use, rainfall, slope, and temperature were the main factors
influencing the occurrence of wildfire disasters. Concerning seasonal factors, spring
experienced lower rainfall (300–500 mm) and higher temperatures (20.1–22.9 ◦C).
The limited precipitation and warm weather facilitated the growth of vegetation.
Additionally, abundant sunshine and dry ground conditions were conducive to the
occurrence of wildfires. Spring recorded the lowest wind speeds (0.46–1.33 m/s),
which exhibited a negative correlation with wildfire incidence, making a smaller
contribution.

(2) Summer: NDVI, slope, land use, distance to rivers, and SPI played a significant
role in the occurrence of wildfire disasters. Regarding seasonal factors, summer
had the highest rainfall (700–1100 mm) and the highest temperatures (25.6–27.8 ◦C).
The combination of rainfall and evaporation resulted in increased humidity in the
surface and air, thereby suppressing the risk of combustible materials leading to
wildfires. Additionally, summer experienced lower wind speeds (0.70–1.75 m/s),
which exhibited a positive correlation with wildfire incidence, reducing the risk
of wildfire spread. In summary, apart from NDVI, which served as an indicator
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for combustible materials, the three meteorological factors made a relatively minor
contribution to wildfire occurrence.

(3) Autumn: NDVI, slope, land use, temperature, and SPI played a predominant role
in wildfire incidents. Regarding seasonal factors, autumn experienced relatively
lower rainfall (230–380 mm) and higher temperatures (20.5–23.3 ◦C). The reduced
rainfall resulted in a slowdown of vegetation growth and a decrease in vegetation
cover density. However, it also led to an increase in dry combustible materials
compared to the summer season, providing the material basis for wildfire occurrence.
Furthermore, autumn had higher wind speeds (0.76–1.66 m/s), which exhibited a
positive correlation with wildfire incidence. The importance of meteorological factors
was significantly enhanced compared to summer.

(4) Winter: NDVI, temperature, slope, rainfall, and wind speed were the primary con-
tributors to wildfire incidents. All seasonal factors exhibited a positive correlation
with winter wildfires. Winter had the lowest rainfall (90–290 mm) and the coldest
temperatures (11.3–14.7 ◦C) compared to other seasons. The combination of low
temperatures and limited precipitation resulted in decreased moisture both on the
surface and in the air, rendering vegetation dry and highly flammable. Moreover,
the occurrence of cold surges during the winter in Nanning brought strong winds,
contributing to the highest wind speeds (0.66–1.81 m/s) and increasing the risk of
wildfire spread.
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(c) temperature, and (d) weed speed.

4.2. Ecological Vulnerability Assessment
4.2.1. Principal Component Analysis of the Ecological Environment

In the study, RSEI was calculated using PCA with four indicators: NDVI, LST, NDBSI,
and WET. Table 7 shows that the cumulative contribution of the eigenvalues for the first
principal component (PC1) and the second principal component (PC2) exceeded 85%
for each season. This indicates that PC1 and PC2 captured the majority of the features
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represented by the four indicators. Thus, using PC1 and PC2 to calculate the RSEI for each
season can reasonably reflect the ecological condition and vulnerability.

Table 7. Statistical results of principal component analysis.

Indicator
Spring Summer Autumn Winter

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

NDVI 0.794 0.587 0.738 0.670 0.727 0.684 0.643 0.755
Wet 0.111 −0.264 0.074 −0.164 0.142 −0.228 0.164 −0.228

NDBSI −0.583 0.664 −0.665 0.700 −0.638 0.651 −0.739 0.570
LST −0.130 0.381 −0.087 0.186 −0.212 0.235 −0.118 0.228

Eigenvalue 0.0079 0.0020 0.0068 0.0013 0.0097 0.0025 0.0098 0.0036
Contribution rate/% 75.631 19.462 81.987 15.842 76.330 19.827 67.380 24.539

The statistical results are presented in Table 8. Based on the average values of each
indicator and their correlations with RSEI, it can be concluded that in different seasons,
NDVI and WET had a positive impact on the ecological environment, while NDBSI and LST
had a negative impact, which is consistent with ecological principles. The ranking of RSEI
from highest to lowest across different seasons was as follows: autumn (0.722) > summer
(0.718) > spring (0.704) > winter (0.634). In terms of ecological condition assessment, the
RSEI values for different seasons in Nanning ranged from 0.6 to 0.8, indicating a good
ecological environment in each season. Regarding vulnerability to disasters, autumn
had the highest vulnerability, followed by summer and spring, while winter had the
lowest vulnerability. Specifically, during autumn, Nanning had higher NDVI, the highest
WET, and lower NDBSI and LST, indicating the best ecological conditions and the highest
vulnerability of the ecological environment, which could lead to more severe damage and
loss from wildfires. In winter, Nanning had the lowest NDVI, lower WET, the highest
NDBSI, and lower LST, resulting in the poorest ecological conditions during this period.
The potential damage and loss to the ecological environment from wildfire incidents may
be relatively smaller.

Table 8. The statistical results of the four ecological indicators and RSEI in different seasons.

Season Indicator NDVI WET NDBSI LST RSEI

Spring
Mean 0.756 0.823 0.396 0.726 0.704

Standard deviation 0.113 0.024 0.090 0.043 0.127
Correlation with RSEI 0.973 0.512 −0.786 −0.319 1.000

Summer
Mean 0.820 0.522 0.321 0.802 0.718

Standard deviation 0.098 0.031 0.090 0.024 0.131
Correlation with RSEI 0.957 0.627 −0.868 −0.407 1.000

Autumn
Mean 0.800 0.873 0.361 0.644 0.722

Standard deviation 0.119 0.028 0.106 0.047 0.141
Correlation with RSEI 0.951 0.656 −0.815 −0.607 1.000

Winter
Mean 0.717 0.566 0.403 0.612 0.634

Standard deviation 0.117 0.033 0.121 0.056 0.140
Correlation with RSEI 0.920 0.587 −0.791 −0.227 1.000

4.2.2. Ecological Vulnerability Map

In order to quantitatively and visually analyze the vulnerability of the ecological
environment in different seasons and its variations, this study classified the ecological
vulnerability into five levels: very low [0, 0.2], low (0.2, 0.4], moderate (0.4, 0.6], high (0.6,
0.8], and very high (0.8, 1.0]. This classification allows us to better understand the state
of the ecological environment and facilitates comparison and analysis of the vulnerability
across different seasons.
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From Figure 15, it can be seen that in each season, the central, eastern, and north-
western parts of Nanning had higher vegetation coverage compared to other areas and
were less affected by human activities, indicating better ecological environmental quality
in these regions. This also meant that when wildfire disasters occurred, these areas faced
greater ecological vulnerability and potential threats. In contrast, the urban central areas
of the southern, central-western, and northeastern parts of Nanning, which were more
influenced by human activities, often had relatively lower vegetation coverage, resulting in
poorer ecological quality. Therefore, these areas exhibited lower ecological vulnerability
when wildfire disasters occurred. As shown in Table 9, among the four seasons, the areas
with very high and high ecological vulnerability decreased in the following order: autumn
(84.538%) > summer (84.327%) > spring (81.517%) > winter (63.164%). It could be observed
that the areas with very high or high ecological vulnerability were larger in autumn and
summer, indicating a more fragile ecological environment and a greater potential threat
from wildfire disasters. The areas with high ecological vulnerability were the smallest in
winter, indicating lower ecological vulnerability and less impact from wildfire disasters.
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(d) winter.

In conclusion, there are differences in ecological vulnerability across different seasons.
Nanning exhibited better ecological conditions in autumn and summer, indicating that
the ecological environment during these periods was more fragile and could potentially
lead to more severe damage and losses when facing wildfire disasters. On the other
hand, the ecological conditions were poorer in spring and winter, suggesting that the
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impact of wildfire disasters on the ecological environment during these seasons might be
relatively smaller.

Table 9. Statistics of wildfire risk zoning results for different seasons.

Season Vulnerability Level Percentage of Area (%)

Spring

Very low 0.008
Low 3.289

Moderate 15.186
High 58.244

Very high 23.273

Summer

Very low 0.224
Low 3.687

Moderate 11.762
High 54.926

Very high 29.401

Autumn

Very low 0.474
Low 4.361

Moderate 10.626
High 51.615

Very high 32.923

Winter

Very low 0.013
Low 6.689

Moderate 30.134
High 53.812

Very high 9.352

4.3. Wildfire Risk Assessment for the Ecological Environment

In this study, we utilized Equation (21) to integrate the assessment results of wildfire
danger and ecological vulnerability in each season in Nanning in order to construct a
wildfire risk assessment model for each season. Additionally, we adopted the equal interval
approach to define risk classes to ensure that specific risk levels have the same range of
wildfire risk values across all seasons, facilitating a consistent comparison of wildfire risk
levels among different seasons. Based on the classification criteria of [0, 0.2], (0.2, 0.4], (0.4,
0.6], (0.6, 0.8], and (0.8, 1.0], the wildfire risk results for the entire region were divided into
five risk levels: very low, low, moderate, high, and very high. The zoning results of wildfire
risk are shown in Figure 16, and the percentages of different wildfire risk levels in each
season are presented in Table 10.

In the four seasons, the average wildfire risk in Nanning can be ranked from highest
to lowest as follows: spring (0.4940) > summer (0.4827) > autumn (0.4662) > winter (0.4351).
Furthermore, the areas with very high and high wildfire risk, from largest to smallest,
were observed in spring (47.572%) > autumn (44.140%) > summer (43.841%) > winter
(40.402%). The results indicate that in spring, Nanning faced a greater risk of wildfire-
induced ecological damage, with a wider coverage of high risk areas posing a larger threat
to the local ecological environment. Furthermore, although winter exhibited a higher
danger to wildfires, it had the lowest ecological vulnerability, resulting in the lowest risk
of ecological damage when wildfires occurred. Therefore, it is necessary to consider the
varying levels of wildfire danger and ecological vulnerability across different seasons,
summarize the patterns and spatial distribution characteristics of wildfire risk, and manage
high-risk areas for wildfires separately for each season.
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Table 10. Statistics of wildfire risk zoning results in different seasons.

Season Risk Level Percentage of Area (%)

Spring

Very low 21.897
Low 14.272

Moderate 16.259
High 34.768

Very high 12.804

Summer

Very low 22.420
Low 16.842

Moderate 16.897
High 29.045

Very high 14.796

Autumn

Very low 28.890
Low 14.475

Moderate 12.495
High 24.097

Very high 20.043

Winter

Very low 29.552
Low 13.978

Moderate 16.068
High 33.497

Very high 6.905
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5. Discussion
5.1. SHAP Dependence Analysis of Nonseasonal Factors

The research findings revealed that among all nonseasonal factors, land use, slope,
and distance to rivers played a significant role in predicting wildfire danger across different
seasons in Nanning. Utilizing the SHAP single dependency analysis method, we gained
detailed insights into the impact of these factors on wildfire danger within various attribute
intervals (Figure 17).
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Figure 17. SHAP dependence analysis of the main nonseasonal factors in different seasons: (a) land
use, (b) slope, and (c) distance to rivers.

In terms of land use, we observed different trends in different seasons. In spring, the
Shapley values for cultivated land, forest land, and grassland were generally greater than 0,
indicating that these land use types are all susceptible to wildfire disaster. In contrast, the
Shapley values of forest land and grassland remained high in summer, autumn, and winter,
while cultivated land showed high Shapley values in only some samples. It is evident that
forest land and grassland were more susceptible to wildfire impacts compared to cultivated
land during these seasons.

In terms of slope, we discovered that in any season, the samples exhibited Shapley
values greater than 0 when the slope exceeded 5◦ but remained below 30◦. This suggests
that steeper slopes contributed to rugged terrain, accelerating the spread of wildfires, and
fuel accumulation. Consequently, areas with higher slopes were more prone to wildfire
occurrences.

In terms of distance to rivers, we observed that when the distance was greater than
500 m but less than 2000 m, the samples exhibited positive Shapley values, indicating a
higher danger of wildfires in these areas. It is evident that regions adjacent to rivers were
less prone to fire incidents, while areas farther away from rivers but still maintaining a
certain distance were more susceptible to wildfires. These areas likely harbored a greater
abundance of flammable vegetation and combustible materials, thereby increasing the risk
of wildfire spread and propagation.
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On the whole, the Shapley value trends of slope and distance to rivers in different
seasons are relatively consistent, indicating that their influence on wildfire danger remains
relatively stable across seasons. However, for the same land use type, such as cultivated
land, there are variations in the distribution of Shapley values among different seasons,
suggesting that the impact of land use on wildfire danger varies across seasons. It is evident
that seasonal factors play an important moderating role in explaining the influence of the
other factors on wildfire danger in different seasons. This variability reminds us of the
need to adopt appropriate prevention and management strategies in different seasons to
address the potential risks of wildfires.

5.2. Comparison with Previous Studies

Wildfire danger assessment is a complex task involving multiple influencing factors
and non-linear relationships, and traditional machine learning algorithms often struggle
to provide explanations for model predictions [96]. The SHAP method, by calculating the
Shapley values of features, quantifies the contribution of each feature to the prediction
results, thus aiding in the interpretation of the model’s prediction process and outcomes [40].
In our study, we observed that slope, as an important terrain factor influencing wildfires,
received extensive support in previous research [38,39,49]. Additionally, many studies
emphasized the positive role of vegetation coverage in promoting wildfire occurrences,
which aligns with our findings [38,49]. However, there are also studies suggesting a
weaker impact of vegetation coverage, and even a negative relationship with wildfire
occurrences [39]. Moreover, meteorological factors, such as temperature, have shown a
significant positive impact on wildfire occurrences in some studies [37,49], while others
have demonstrated an inverse result, with temperature having a minor negative effect on
wildfires [39,97]. These discrepancies in wildfire danger assessment arise from differences
in climate and vegetation coverage across regions, leading to variations in the assessment
results. Furthermore, within the same region, the frequency of wildfire occurrences may
change over time due to temporal variations in climate and vegetation coverage. Therefore,
exploring the temporal and spatial patterns of wildfire danger based on seasons and
understanding the complexity of influencing factors are of vital importance.

As of now, numerous scholars have conducted extensive research on wildfire danger
within different seasons [12,20,50]. Their findings consistently show distinct spatial distri-
butions of wildfire danger across different seasons in the same region, demonstrating that
considering seasonal dimensions provides a more comprehensive identification of poten-
tially high-danger areas. However, variations exist in the assessment results of seasonal
wildfire danger among different regions. In our study, the distribution of high-danger
wildfire areas was more widespread in spring and winter, with fewer areas in summer
and autumn, which is in line with a previous study [12]. However, another study showed
higher danger in spring and autumn [50]. Furthermore, some regions even exhibit a divide
between winter wildfire states in the north and summer wildfire states in the south [20].
These observations indicate significant regional differences in wildfire danger influenced by
seasonal changes. Different climate conditions, vegetation coverage, and terrain factors in
distinct regions may result in varying patterns of wildfire danger across seasons. Therefore,
to understand the wildfire occurrence patterns in different regions, it is essential to fully
consider seasonal factors and to explore the reasons behind the seasonal differences, thereby
enhancing the accuracy and effectiveness of wildfire prediction and response.

5.3. Significance of Different Dimensions of Wildfire Riskiness Assessment

Given the seasonal distribution patterns of wildfire incidents in Nanning and the
influence of seasonal factors, conducting wildfire risk assessments for different seasons
is of great significance. Assessing wildfire risks in different seasons can help us to gain a
comprehensive understanding of fire risk conditions. Climate conditions and vegetation
states vary across seasons, necessitating considerations of these factors’ fluctuations in
wildfire risk assessments. In the study area, the frequency of wildfire incidents is higher in
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spring and winter, with a wider coverage of high-risk areas. Summer and autumn exhibit
higher ecological conditions and vulnerability, making them more susceptible to wildfire
impacts. Thus, notable differences exist in the danger and vulnerability assessments among
different seasons.

In conclusion, due to the suddenness, destructiveness, and uncontrollability of wildfire
incidents, as well as the influence of seasonal differences, conducting wildfire risk assess-
ments for different seasons is necessary. By integrating assessments of wildfire danger and
ecological vulnerability across different seasons, we can better understand the potential
risks of wildfire-induced ecological losses in different seasons [20]. This understanding
enables us to take the corresponding preventive measures, strengthen monitoring and
emergency responses, reduce the impact of wildfire incidents on the ecological environment
and society, and ensure the safety and quality of people’s lives.

5.4. Limitations and Future Works

This study has several limitations. Firstly, only four common seasonal factors, namely,
NDVI, temperature, precipitation, and wind speed, were considered in this work. However,
there are other factors that could be included in the wildfire danger assessment, such as
solar radiation [98,99], soil moisture [12,100], and air humidity [44,101]. Secondly, the
historical wildfire data provided by government agencies mainly focus on forest areas, and
there is incomplete information about wildfire incidents in cultivated land and transitional
vegetation areas. Therefore, this study advocates for the use of active fire data products [37].
Although the wildfire sample dataset has undergone rigorous quality control and screening,
it may still need to be compared with imagery from sources such as Landsat 8, Sentinel,
and other imagery data to further enhance the reliability of the wildfire samples.

Furthermore, it should be noted that the lightning activity factor was not included in
our investigation of seasonal wildfire danger, which was a limitation of this study. Light-
ning activity plays a crucial role as a major natural ignition source in the formation and
propagation of wildfires [102]. The process of lightning-induced fires is highly complex
and closely related to factors such as vegetation type, fuel conditions, weather, and to-
pography, with many aspects still remaining unknown [103]. Lightning-caused fires in
specific regions often exhibit distinct spatiotemporal distribution patterns [104], and factors
such as meteorology [105,106] (especially rainfall), combustible materials [107] (vegetation
cover, vegetation type), and topography [108] significantly influence the frequency and
intensity of wildfires caused by lightning activity [109]. In this study, based on consider-
ation of seasonal factors such as topography, climate, and vegetation cover, we explored
the spatiotemporal variation patterns of wildfire danger. Among the seasonal influencing
factors, climate factors such as temperature, wind speed, and precipitation directly affect
the probability of wildfire occurrence, while vegetation cover determines the fuel supply
for wildfires [102]. The combined effects of these seasonal factors lead to considerable
variations in wildfire danger across different seasons and regions. Therefore, considering
the critical role of lightning activity in wildfire occurrence, future research could focus on
studying the significant impact of lightning activity on wildfires and incorporate it into
group of the factors for assessing wildfire danger. By collecting and compiling wildfire
disaster data caused by lightning activity and integrating lightning activity factors with key
factors such as topography, climate, and vegetation cover, we may enhance the predictive
accuracy of models and gain a better understanding of the spatial distribution and seasonal
variation of wildfires. Moreover, exploring the interaction between lightning activity and
climate factors can further elucidate the relationship between wildfire danger and climate
change. Through in-depth research on the impact of climate factors and lightning activity
on wildfire danger, we will come to better understand the potential influence of climate
change on wildfire risk, providing scientific evidence for wildfire disaster management
and mitigation.



Forests 2023, 14, 1616 31 of 36

6. Conclusions

This study focused on Nanning as the research area. Firstly, both nonseasonal and
seasonal factors related to wildfires were collected. The historical wildfire samples and
seasonal factors were divided into five different periods: all seasons, spring, summer,
autumn, and winter, forming separate datasets. Based on an ML algorithm, we constructed
wildfire danger models within different periods, explored the advantages of wildfire danger
analysis and evaluation based on seasonal dimensions, and systematically understood the
seasonal change patterns of spatial distribution of wildfire danger and the differences in
the roles of various factors. In addition, we constructed ecological vulnerability models for
different seasons based on greenness, heat, dryness, and wetness indicators, and analyzed
the ecological vulnerability situation and spatial distribution characteristics in different
seasons. Finally, the results of vulnerability and danger evaluation were integrated to
construct the wildfire disaster risk model, and the potential threat of wildfire to the local
ecological environment in different seasons was systematically evaluated. The conclusions
of the study are as follows:

(1) The occurrence of wildfire disaster in Nanning is mainly influenced by seasonal factors.
The evaluation and analysis of wildfire danger in Nanning based on each season can
obtain wildfire danger evaluation results with a better prediction performance. This
makes up for the shortcomings of traditional evaluation methods and can grasp the
spatial and temporal distribution patterns of wildfires in the area in a more refined
way.

(2) The wildfires in Nanning mainly occurred in spring and winter, reflecting most of
the high-wildfire-danger areas in the region, while the high-wildfire-danger areas
in summer and autumn accounted for a relatively small proportion. In each season,
NDVI was the most critical factor affecting wildfire danger, while slope was the most
important nonseasonal factor. Evaluating wildfire danger based on each season can
capture the differences in the roles of factors that have a major impact on wildfire
occurrence in different seasons in a more refined way.

(3) The ecological vulnerability of Nanning is higher in autumn and summer, with a
larger area occupied by high vulnerability zones. This indicates a greater potential
threat of wildfire disasters to the ecological environment in Nanning. The ecological
vulnerability is lower in spring and winter, resulting in a relatively smaller impact of
wildfire disasters on the ecological environment during these periods.

(4) The ecological environment of Nanning faces the most severe wildfire risk during the
spring period and the lowest wildfire risk during the winter period. A comprehensive
consideration of wildfire danger and ecological vulnerability in different seasons
enables a more comprehensive assessment of the degree of risk of damage to the
ecological environment caused by wildfire disasters. This enables swift responses to
be made and effective measures to be taken during wildfire incidents, minimizing the
damage to the ecological environment to the greatest extent possible.
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28. Ljubomir, G.; Pamučar, D.; Drobnjak, S.; Pourghasemi, H.R. Modeling the spatial variability of forest fire susceptibility using
geographical information systems and the analytical hierarchy process. In Spatial Modeling in GIS and R for Earth and Environmental
Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 337–369.

29. Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in
wildfire science and management. Environ. Rev. 2020, 28, 478–505. [CrossRef]

30. Mohammadi, F.; Bavaghar, M.P.; Shabanian, N. Forest fire risk zone modeling using logistic regression and GIS: An Iranian case
study. Small-Scale For. 2014, 13, 117–125.

31. Cao, Y.; Wang, M.; Liu, K. Wildfire susceptibility assessment in Southern China: A comparison of multiple methods. Int. J.
Disaster Risk Sci. 2017, 8, 164–181.

32. Tang, X.; Machimura, T.; Li, J.; Liu, W.; Hong, H. A novel optimized repeatedly random undersampling for selecting negative
samples: A case study in an SVM-based forest fire susceptibility assessment. J. Environ. Manag. 2020, 271, 111014.

33. Bustillo Sánchez, M.; Tonini, M.; Mapelli, A.; Fiorucci, P. Spatial assessment of wildfires susceptibility in Santa Cruz (Bolivia)
using random forest. Geosciences 2021, 11, 224. [CrossRef]

34. Zhang, G.; Wang, M.; Liu, K. Deep neural networks for global wildfire susceptibility modelling. Ecol. Indic. 2021, 127, 107735.
[CrossRef]

35. Lan, Y.; Wang, J.; Hu, W.; Kurbanov, E.; Cole, J.; Sha, J.; Jiao, Y.; Zhou, J. Spatial pattern prediction of forest wildfire susceptibility
in Central Yunnan Province, China based on multivariate data. Nat. Hazards 2023, 116, 565–586. [CrossRef]

36. Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy system and
metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For. Meteorol. 2019, 266, 198–207.
[CrossRef]

37. Iban, M.C.; Sekertekin, A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A
case study of Adana and Mersin provinces, Turkey. Ecol. Inform. 2022, 69, 101647.

38. Cilli, R.; Elia, M.; D’Este, M.; Giannico, V.; Amoroso, N.; Lombardi, A.; Pantaleo, E.; Monaco, A.; Sanesi, G.; Tangaro, S.
Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe. Sci. Rep.
2022, 12, 16349. [CrossRef]

39. Abdollahi, A.; Pradhan, B. Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire
susceptibility prediction model. Sci. Total Environ. 2023, 879, 163004. [CrossRef]

40. Cheng, X.; Wang, J.; Li, H.; Zhang, Y.; Wu, L.; Liu, Y. A method to evaluate task-specific importance of spatio-temporal units
based on explainable artificial intelligence. Int. J. Geogr. Inf. Sci. 2021, 35, 2002–2025. [CrossRef]

41. Lundberg, S.M.; Erion, G.G.; Lee, S.-I. Consistent individualized feature attribution for tree ensembles. arXiv 2018,
arXiv:1802.03888.

42. Zhou, X.; Wen, H.; Li, Z.; Zhang, H.; Zhang, W. An interpretable model for the susceptibility of rainfall-induced shallow landslides
based on SHAP and XGBoost. Geocarto Int. 2022, 37, 13419–13450. [CrossRef]

43. Bergonse, R.; Oliveira, S.; Gonçalves, A.; Nunes, S.; da Câmara, C.; Zêzere, J.L. A combined structural and seasonal approach to
assess wildfire susceptibility and hazard in summertime. Nat. Hazards 2021, 106, 2545–2573. [CrossRef]

44. Bergonse, R.; Oliveira, S.; Gonçalves, A.; Nunes, S.; DaCamara, C.; Zêzere, J.L. Predicting burnt areas during the summer season in
Portugal by combining wildfire susceptibility and spring meteorological conditions. Geomat. Nat. Hazards Risk 2021, 12, 1039–1057.
[CrossRef]

45. Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global
wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [CrossRef]

46. Vacchiano, G.; Foderi, C.; Berretti, R.; Marchi, E.; Motta, R. Modeling anthropogenic and natural fire ignitions in an inner-alpine
valley. Nat. Hazards Earth Syst. Sci. 2018, 18, 935–948. [CrossRef]

47. Jhariya, M.K.; Raj, A. Effects of wildfires on flora, fauna and physico-chemical properties of soil—An overview. J. Appl. Nat. Sci.
2014, 6, 887–897. [CrossRef]

48. Dunn, C.J.; D O’Connor, C.; Abrams, J.; Thompson, M.P.; Calkin, D.E.; Johnston, J.D.; Stratton, R.; Gilbertson-Day, J. Wildfire risk
science facilitates adaptation of fire-prone social-ecological systems to the new fire reality. Environ. Res. Lett. 2020, 15, 025001.
[CrossRef]

https://doi.org/10.1029/2022GL099368
https://doi.org/10.3390/su14020992
https://doi.org/10.1080/10106049.2022.2071470
https://doi.org/10.1080/10106049.2023.2167005
https://doi.org/10.1139/er-2020-0019
https://doi.org/10.3390/geosciences11050224
https://doi.org/10.1016/j.ecolind.2021.107735
https://doi.org/10.1007/s11069-022-05689-x
https://doi.org/10.1016/j.agrformet.2018.12.015
https://doi.org/10.1038/s41598-022-20347-9
https://doi.org/10.1016/j.scitotenv.2023.163004
https://doi.org/10.1080/13658816.2020.1805116
https://doi.org/10.1080/10106049.2022.2076928
https://doi.org/10.1007/s11069-021-04554-7
https://doi.org/10.1080/19475705.2021.1909664
https://doi.org/10.1071/WF08187
https://doi.org/10.5194/nhess-18-935-2018
https://doi.org/10.31018/jans.v6i2.550
https://doi.org/10.1088/1748-9326/ab6498


Forests 2023, 14, 1616 34 of 36

49. Yue, W.; Ren, C.; Liang, Y.; Liang, J.; Lin, X.; Yin, A.; Wei, Z. Assessment of Wildfire Susceptibility and Wildfire Threats to
Ecological Environment and Urban Development Based on GIS and Multi-Source Data: A Case Study of Guilin, China. Remote
Sens. 2023, 15, 2659.

50. Trucchia, A.; Meschi, G.; Fiorucci, P.; Gollini, A.; Negro, D. Defining wildfire susceptibility maps in Italy for understanding
seasonal wildfire regimes at the national level. Fire 2022, 5, 30. [CrossRef]

51. Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description
and initial assessment. Remote Sens. Environ. 2014, 143, 85–96.
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