Effects of Canopy Damage and Litterfall Input on CO2-Fixing Bacterial Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Area and Experimental Design
2.2. Measurements of Physicochemical and Biological Parameters
2.3. DNA Isolation and PCR Amplification
2.4. Bioinformatics Analysis
2.5. Statistical Analysis
2.6. Nucleotide Sequence Accession Number
3. Results
3.1. Dynamics of Environmental Factors
3.2. Soil Physicochemical Properties
3.3. Soil CO2-Fixing Bacteria Diversity
3.4. Soil CO2-Fixing Community Composition
3.5. Environmental Factors Influence the Soil CO2-Fixing Bacteria Communities
4. Discussion
4.1. Effects of Canopy Damage and Litterfall Input on Soil Physicochemical Parameters
4.2. Effects of Canopy Damage and Litterfall Input on Soil CO2-Fixing Bacterial Communities
4.3. Relationship between Soil CO2-Fixing Bacterial Communities and Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, G.; Martínez-Yrízar, A.; Álvarez-Yépiz, J.C.; Maass, M.; Araiza, S. Effects of hurricane disturbance on a tropical dry forest canopy in western Mexico. For. Ecol. Manag. 2018, 426, 39–52. [Google Scholar] [CrossRef]
- Zhu, L.K. Impact of serious disaster on forestry and ideas of restoration and reconstruction. For. Econ. 2008, 3, 3–7. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, M.; Chi, Y.; Zheng, Y.; Shen, R.; Wang, S. Effects of freeze damage on litter production, quality and decomposition in a loblolly pine forest in central China. Plant Soil 2014, 374, 449–458. [Google Scholar] [CrossRef]
- Silver, W.L.; Hall, S.J.; González, G. Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest. For. Ecol. Manag. 2014, 332, 47–55. [Google Scholar] [CrossRef]
- Jardim, A.M.R.F.; Morais, J.E.F.; Souza, L.S.B.; Lopes, D.C.; Silva, M.V.; Pandorfi, H.; Oliveira-Júnior, J.F.; Silva, J.L.B.; Neto, A.J.S.; Morellato, L.P.C.; et al. A systematic review of energy and mass fluxes, and biogeochemical processes in seasonally dry tropical forests and cactus ecosystems. J. S. Am. Earth Sci. 2023, 126, 104330. [Google Scholar] [CrossRef]
- Zhong, Y.; Yan, W.; Wang, R.; Wen, W.; Shangguan, Z. Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession. Soil Biol. Biochem. 2018, 123, 207–217. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, H.; Chen, J.; Zhang, T.L.; Cai, Z.L.; Zhou, G.Y.; Li, Z.J.; Qiu, Z.J.; Wu, Z.M. Soil microbial community dynamics mediate the priming effects caused by in situ decomposition of fresh plant residues. Sci. Total Environ. 2020, 737, 139708. [Google Scholar] [CrossRef]
- Smith, A.P.; Marín-Spiotta, E.; Balser, T. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: A multiyear study. Glob. Chang. Biol. 2015, 21, 3532–3547. [Google Scholar] [CrossRef]
- Smith, A.P. Linking Microbial Community Structure and Function with Tropical Forest Recovery. Ph.D. Dissertation, The University of Wisconsin-Madison, Madison, WI, USA, 2013. [Google Scholar]
- Hart, K.M.; Kulakova, A.N.; Allen, C.C.R.; Simpson, A.J.; Oppenheimer, S.F.; Masoom, H.; Courtier-Murias, D.; Soong, R.; Kulakov, L.A.; Flanagan, P.V. Tracking the fate of microbially sequestered carbon dioxide in soil organic matter. Environ. Sci. Technol. 2013, 47, 5128–5137. [Google Scholar] [CrossRef]
- Jiang, P.; Xiao, L.Q.; Wan, X.; Yu, T.; Liu, Y.F.; Liu, M.X. Research Progress on Microbial Carbon Sequestration in Soil: A Review. Eurasian Soil Sci. 2022, 55, 1395–1404. [Google Scholar] [CrossRef]
- Yuan, H.Z.; Ge, T.D.; Wu, X.H.; Liu, S.L.; Tong, C.L.; Qin, H.L.; Wu, M.; Wei, W.X.; Wu, J.S. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Appl. Microbiol. Biot. 2012, 95, 1061–1071. [Google Scholar] [CrossRef]
- Qin, J.; Li, M.; Zhang, H.; Liu, H.; Zhao, J.; Yang, D. Nitrogen Deposition Reduces the Diversity and Abundance of cbbL Gene-Containing CO2-Fixing Microorganisms in the Soil of the Stipa baicalensis Steppe. Front. Microbiol. 2021, 12, 570908. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.Q.; Bao, P.; Bao, Q.L.; Jia, Y.; Huang, F.Y.; Su, J.Q.; Zhu, Y.G. Quantitative analyses of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils. FEMS Microbiol. Ecol. 2014, 87, 89–101. [Google Scholar] [CrossRef]
- Lynn, T.M.; Ge, T.D.; Yuan, H.Z.; Wei, X.M.; Wu, X.H.; Xiao, K.Q.; Kumaresan, D.; Yu, S.S.; Wu, J.S.; Whiteley, A.S. Soil Carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microb. Ecol. 2017, 73, 645–657. [Google Scholar] [CrossRef]
- Eaton, W.D.; McGee, K.M.; Alderfer, K.; Jimenez, A.R.; Hajibabaei, M. Increase in abundance and decrease in richness of soil microbes following Hurricane Otto in three primary forest types in the Northern Zone of Costa Rica. PLoS ONE 2020, 15, e0231187. [Google Scholar] [CrossRef] [PubMed]
- Akinyede, R.; Taubert, M.; Schrumpf, M.; Trumbore, S.; Küsel, K. Rates of dark CO2 fixation are driven by microbial biomass in a temperate forest soil. Soil Biol. Biochem. 2020, 150, 107950. [Google Scholar] [CrossRef]
- Selesi, D.; Schmid, M.; Hartmann, A. Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl. Environ. Microb. 2005, 71, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, S.N.; Zhou, G.Y. Effects of the Frozen Rain and Snow Disaster on the Dominant Species of Castanopsis Forests in Yangdongshan Sllierdushui Provincial Nature Reserve of Guangdong. Sci. Silvae Sin. 2009, 9, 41–47. [Google Scholar] [CrossRef]
- Cantrell, S.A.; Molina, M.; Lodge, D.J.; Rivera-Figueroa, F.J.; Ortiz-Hernández, M.L.; Marchetti, A.A.; Cyterski, M.J.; Pérez-Jiménez, J.R. Effects of a simulated hurricane disturbance on forest floor microbial communities. For. Ecol. Manag. 2014, 332, 22–31. [Google Scholar] [CrossRef]
- González, G.; Lodge, D.J.; Richardson, B.A.; Richardson, M.J. A canopy trimming experiment in Puerto Rico: The response of litter decomposition and nutrient release to canopy opening and debris deposition in a subtropical wet forest. For. Ecol. Manag. 2014, 332, 32–46. [Google Scholar] [CrossRef]
- Wu, J.; He, Z.L.; Wei, W.X.; O’Donnell, A.G.; Syers, J.K. Quantifying microbial biomass phosphorus in acid soils. Biol. Fert. Soils 2000, 32, 500–507. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 3 Chem. Methods 1996, 34, 961–1010. [Google Scholar]
- Dong, M. Survey, Observation and Analysis of Terrestrial Biocommunities; Standard Press: Beijing, China, 1996. [Google Scholar]
- Olsen, S.R.; Somers, L.E. Phosphorus. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keene, D.R., Eds.; Soil Science of America: Madison, WI, USA, 1982; pp. 403–448. [Google Scholar]
- Retamal-Salgado, J.; Hirzel, J.; Walter, I.; Matus, I. Bioabsorption and bioaccumulation of cadmium in the straw and grain of Maize (Zea mays L.) in growing soils contaminated with cadmium in different environment. Int. J. Environ. Res. Public Health 2017, 14, 1399. [Google Scholar] [CrossRef] [PubMed]
- Frazer, G.W.; Canham, C.D.; Lertzman, K.P. Gap Light Analyzer (GLA), Version 2.0: Imaging Software to Extract Canopy Structure and Gap Light Transmission Indices from True-Colour Fisheye Photographs. Users Manual and Program Documentation; Simon Fraser University: Burnaby, BC, Canada; Institute of Ecosystem Studies: Millbrook, NY, USA, 1999. [Google Scholar]
- Griffiths, R.I.; Whiteley, A.S.; O’Donnell, A.G.; Bailey, M.J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 2000, 66, 5488–5491. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Joseph, S.D.; Ji, M.; Nielsen, S.; Mitchell, D.R.G.; Donne, S.; Horvat, J.; Wang, J.; Munroe, P.; Thomas, T. Chemolithotrophic processes in the bacterial communities on the surface of mineral-enriched biochars. ISME J. 2017, 11, 1087–1101. [Google Scholar] [CrossRef]
- Chao, A.; Bunge, J. Estimating the number of species in a Stochastic abundance model. Biometrics 2002, 58, 531–539. [Google Scholar] [CrossRef]
- Samani, K.M.; Pordel, N.; Hosseini, V.; Shakeri, Z. Effect of land-use changes on chemical and physical properties of soil in western Iran (Zagros oak forests). J. For. Res. 2020, 31, 637–647. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, R Package Version 2.5-7 2020. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 July 2023).
- Liu, J.F.; Sun, X.B.; Yang, G.C.; Mbadinga, S.M.; Gu, J.D.; Mu, B.Z. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration. Front. Microbiol. 2015, 6, 236. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps, R Package Version 1.0.12 2019. Available online: https://cran.r-project.org/web/packages/pheatmap/index.html (accessed on 1 July 2023).
- Wang, X.Y.; Li, W.; Xiao, Y.T.; Cheng, A.Q.; Shen, T.M.; Zhu, M.; Yu, L.J. Abundance and diversity of carbon-fixing bacterial communities in karst wetland soil ecosystems. Catena 2021, 204, 105418. [Google Scholar] [CrossRef]
- Beaudet, M.; Brisson, J.; Messier, C.; Gravel, D. Effect of a major ice storm on understory light conditions in an old-growth Acer-Fagus forest: Pattern of recovery over seven years. For. Ecol. Manag. 2007, 242, 553–557. [Google Scholar] [CrossRef]
- Perry, K.I.; Herms, D.A. Responses of ground-dwelling invertebrates to gap formation and accumulation of woody debris from invasive species, wind, and salvage logging. Forests 2017, 8, 174. [Google Scholar] [CrossRef]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. 2006, 81, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Gómez, L.; Lajtha, K.; Bowden, R.; Jauhar, F.N.M.; Jia, J.; Feng, X.; Simpson, M.J. Soil organic matter molecular composition with long-term detrital alterations is controlled by site-specific forest properties. Glob. Chang. Biol. 2023, 29, 243–259. [Google Scholar] [CrossRef]
- Gong, C.; Tan, Q.; Liu, G.; Xu, M. Forest thinning increases soil carbon stocks in China. For. Ecol. Manag. 2021, 482, 118812. [Google Scholar] [CrossRef]
- Zimmerman, J.K.; Pulliam, W.M.; Lodge, D.J.; Quiñones-Orfila, V.; Fetcher, N.; Guzmán-Grajales, S.; Parrotta, J.A.; Asbury, C.E.; Walker, L.R.; Waide, R.B. Nitrogen immobilization by decomposing woody debris and the recovery of tropical wet forest from hurricane damage. Oikos 1995, 72, 314–322. [Google Scholar] [CrossRef]
- Giudice, R.D.; Lindo, Z. Short-term leaching dynamics of three peatland plant species reveals how shifts in plant communities may affect decomposition processes. Geoderma 2017, 285, 110–116. [Google Scholar] [CrossRef]
- Lajtha, K. Nutrient retention and loss during ecosystem succession: Revisiting a classic model. Ecology 2020, 101, e02896. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, B.; Ma, Y.; Xu, J.; Sun, H. The response of the soil bacterial community and function to forest succession caused by forest disease. Funct. Ecol. 2020, 34, 2548–2559. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, S.; Stoy, P.C. Preface: Impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences 2016, 13, 3665–3675. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.X.; Kong, W.D.; Liu, J.B.; Zhao, J.X.; Du, H.D.; Zhang, X.Z.; Xia, P.H. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Appl. Microbiol. Biotechnol. 2015, 99, 8765–8776. [Google Scholar] [CrossRef] [PubMed]
- Han, L.L.; Wang, Q.; Shen, J.P.; Di, H.J.; Wang, J.T.; Wei, W.X.; Fang, Y.T.; Zhang, L.M.; He, J.Z. Multiple factors drive the abundance and diversity of diazotrophic community in typical farmland soils of China. FEMS Microbiol. Ecol. 2019, 95, fiz113. [Google Scholar] [CrossRef] [PubMed]
- Bickel, S.; Or, D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nat. Commun. 2020, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Beales, N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr. Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef]
- Curtin, D.; Peterson, M.E.; Anderson, C.R. pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy. Geoderma 2016, 271, 161–172. [Google Scholar] [CrossRef]
- Zhang, J.; Kuang, L.; Mou, Z.; Kondo, T.; Koarashi, J.; Atarashi-Andoh, M.; Li, Y.; Tang, X.; Wang, Y.; Peñuelas, J.; et al. Ten years of warming increased plant-derived carbon accumulation in an East Asian monsoon forest. Plant Soil 2022, 481, 349–365. [Google Scholar] [CrossRef]
- Krista, L.M.; Kathleen, K.T. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol. Biochem. 2010, 42, 529–535. [Google Scholar] [CrossRef]
- Zhang, L.; Lehmann, K.; Totsche, K.U.; Lueders, T. Selective successional transport of bacterial populations from rooted agricultural topsoil to deeper layers upon extreme precipitation events. Soil Biol. Biochem. 2018, 124, 168–178. [Google Scholar] [CrossRef]
- Wang, N.N.; Wang, M.J.; Li, S.L.; Sui, X.; Han, S.J.; Feng, F.J. Effects of variation in precipitation on the distribution of soil bacterial diversity in the primitive Korean pine and broadleaved forests. World J. Microbiol. Biotechnol. 2014, 30, 2975–2984. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
Sample | pH | Soil Carbon (g/kg) | Total Nitrogen (g/kg) | Total Phosphorus (g/kg) | Available Phosphorus (mg/kg) | Nitrate Nitrogen (mg/kg) |
---|---|---|---|---|---|---|
CN11 | 4.92 ± 0.01 aA | 21.65 ± 0.21 cAB | 1.67 ± 0.01 bA | 0.30 ± 0.00 abA | 3.63 ± 0.12 cBC | 7.72 ± 2.45 bA |
TD11 | 4.70 ± 0.03 bA | 31.39 ± 0.32 aA | 1.96 ± 0.03 aA | 0.29 ± 0.01 bA | 6.13 ± 0.09 bA | 9.13 ± 1.62 bA |
TR11 | 4.60 ± 0.03 cA | 26.24 ± 0.60 bB | 2.00 ± 0.06 aA | 0.29 ± 0.00 bAB | 7.02 ± 0.10 aB | 27.51 ± 0.51 aA |
UD11 | 4.88 ± 0.01 aA | 21.92 ± 0.31 cA | 1.66 ± 0.02 bA | 0.32 ± 0.01 aAB | 6.07 ± 0.06 bB | 10.11 ± 0.21 bB |
CN12 | 4.2 ± 0.04 bC | 21.83 ± 1.96 abAB | 1.57 ± 0.08 abA | 0.32 ± 0.01 aA | 0.92 ± 0.07 bC | 2.05 ± 0.76 aB |
TD12 | 4.44 ± 0.05 aB | 18.41 ± 4.78 bC | 1.19 ± 0.21 bC | 0.29 ± 0.03 aC | 0.77 ± 0.12 bB | 1.58 ± 0.59 aB |
TR12 | 4.34 ± 0.10 abB | 28.49 ± 0.70 aAB | 1.72 ± 0.06 aA | 0.29 ± 0.01 aAB | 0.75 ± 0.07 bE | 1.68 ± 0.86 aC |
UD12 | 4.43 ± 0.06 aC | 23.87 ± 1.69 abA | 1.44 ± 0.1 abA | 0.34 ± 0.02 aA | 1.46 ± 0.17 aC | 3.78 ± 0.17 aC |
CN13 | 4.82 ± 0.01 bA | 22.07 ± 0.45 bAB | 1.53 ± 0.02 bA | 0.25 ± 0.00 cB | 4.92 ± 0.09 bB | 2.31 ± 0.33 cB |
TD13 | 4.78 ± 0.02 bA | 27.80 ± 0.24 aAB | 1.73 ± 0.04 aAB | 0.27 ± 0.01 bAB | 5.30 ± 0.10 bA | 9.80 ± 1.99 aA |
TR13 | 4.57 ± 0.01 cAB | 21.18 ± 0.49 bB | 1.59 ± 0.00 bA | 0.30 ± 0.00 aAB | 5.14 ± 0.12 bC | 4.01 ± 0.52 bcBC |
UD13 | 4.89 ± 0.03 aA | 21.40 ± 0.26 bA | 1.56 ± 0.02 bA | 0.29 ± 0.01 aAB | 6.49 ± 0.16 aB | 8.31 ± 2.44 abBC |
CN14 | 4.55 ± 0.01 cB | 20.23 ± 0.12 bcB | 1.49 ± 0.04 aA | 0.28 ± 0.00 aB | 8.96 ± 2.12 aA | 10.57 ± 0.16 bA |
TD14 | 4.72 ± 0.01 aA | 19.03 ± 0.24 cC | 1.33 ± 0.03 bC | 0.24 ± 0.00 cB | 7.41 ± 1.47 aA | 2.06 ± 0.08 dB |
TR14 | 4.59 ± 0.02 bcA | 23.1 ± 0.25 aB | 1.60 ± 0.02 aA | 0.26 ± 0.00 bB | 11.34 ± 0.14 aA | 6.94 ± 0.16 cB |
UD14 | 4.64 ± 0.02 bB | 21.9 ± 1.15 abA | 1.52 ± 0.09 aA | 0.28 ± 0.01 aB | 7.48 ± 0.25 aA | 16.78 ± 0.81 aA |
CN15 | 4.67 ± 0.08 aB | 25.64 ± 2.43 aA | 1.63 ± 0.12 aA | 0.33 ± 0.03 aA | 1.07 ± 0.17 aC | 6.67 ± 1.98 aAB |
TD15 | 4.4 ± 0.07 aB | 22.73 ± 2.69 aBC | 1.44 ± 0.04 aBC | 0.31 ± 0.03 aA | 1.50 ± 0.23 aB | 7.98 ± 1.21 aA |
TR15 | 4.41 ± 0.12 aAB | 34.62 ± 5.42 aA | 1.93 ± 0.28 aA | 0.33 ± 0.04 aA | 1.35 ± 0.28 aD | 6.46 ± 2.05 aB |
UD15 | 4.57 ± 0.10 aBC | 28.35 ± 4.20 aA | 1.51 ± 0.10 aA | 0.34 ± 0.03 aAB | 1.53 ± 0.20 aC | 7.48 ± 2.63 aBC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Li, Z.; Liang, J.; Zhao, H. Effects of Canopy Damage and Litterfall Input on CO2-Fixing Bacterial Communities. Forests 2023, 14, 1712. https://doi.org/10.3390/f14091712
Yu F, Li Z, Liang J, Zhao H. Effects of Canopy Damage and Litterfall Input on CO2-Fixing Bacterial Communities. Forests. 2023; 14(9):1712. https://doi.org/10.3390/f14091712
Chicago/Turabian StyleYu, Fei, Zhen Li, Junfeng Liang, and Houben Zhao. 2023. "Effects of Canopy Damage and Litterfall Input on CO2-Fixing Bacterial Communities" Forests 14, no. 9: 1712. https://doi.org/10.3390/f14091712
APA StyleYu, F., Li, Z., Liang, J., & Zhao, H. (2023). Effects of Canopy Damage and Litterfall Input on CO2-Fixing Bacterial Communities. Forests, 14(9), 1712. https://doi.org/10.3390/f14091712