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Abstract: The Cathedral of Florence is one of the largest churches in the world and is known for one
of the most famous domes ever, which characterizes the skyline of the city. The dimensions of the
building mean that the dimensions of the roof are equally large and so are the wooden structures
that support it. The roof of the cathedral is organized on two levels: the roof of the large central nave
and, at a lower level, those of the two lateral naves. The purpose of this paper is the identification of
the wood species of which the structures are made. The sampling method of the 408 samples that
have been identified is then described, the methods followed to reach a reliable identification and
finally the results. The timbers most represented among the structural elements are those of silver
fir, chestnut and elm. Other timbers are then found in the other components less directly linked
to the main structural parts that make up the trusses. The paper then discusses the technological
implications on the use of those woods within the wooden covering structures of the cathedral and
the main sources of timber that the builders had available, in particular the Casentino forests that the
Municipality of Florence had donated to the structure that managed the construction of the cathedral
(Opera di Santa Maria del Fiore—OPA). OPA still exists today and is responsible for the maintenance
of the cathedral and other annexed buildings.

Keywords: historic timber structures; wood identification; forest source; Florence Cathedral

1. Introduction

Santa Maria del Fiore is one of the largest churches in the world. The plan consists
of a triple-nave basilica with the presbytery area nested within, dominated by the large
octagon of the immense dome, around which are three radial apses (or “tribunes”), each
consisting of five chapels.

The cathedral is 153 m (502 feet) in length, 90 m (295 feet) wide at the transept, and
90 m high from floor to base of the dome lantern. The title “Santa Maria del Fiore” (our lady
of the flower) alludes to the name of the city, “Florentia”, or “city of flowers”, “destined to
bloom”, and to its emblem, the Florentine lily.

The first stone of the new cathedral was laid on 8 September 1296, and the task
of erecting it was entrusted to Arnolfo di Cambio. His project was similar in plan but
smaller than the current building, which instead corresponds to the expansion developed by
Francesco Talenti, beginning in the mid-14th century (Figure 1). The church was consecrated
by Pope Eugene IV on 25 March 1436, when work on the dome was completed.

Over the centuries, due to the complexity and dimensions of the cathedral, challenging
engineering solutions have been adopted. Among them, it is worth mentioning those
adopted for building all the roofing structures, suitable for protecting the underlying
vaulted structures of the three naves from weather. They, being dimensionally unique, are
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characterised by a wooden forest that hardly finds analogous examples in architectures of
the same dimensions and characteristics (Figure 2).
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Indeed, the wooden elements of the structures come from forests. To understand
which forest, it is necessary on the one hand to identify the timbers and on the other to
carefully analyse the archives relating to the period in which the roofs of the central and
lateral naves were made, in the second half of the XV century [1,2].

Any type of diagnosis on wooden artifacts requires the identification of the wood
species as a first step of knowledge [3]. In the case of timber structures, knowledge
of the wood species allows for better estimation of the mechanical performances of the
structural members, together with the characterization of defects [4]. Therefore, the wood
identification is one of the first analyses to be conducted during the structural diagnosis
(according to EN 17121:2019 [5]).

The “Duomo” of Florence is a building known throughout the world for Brunelleschi’s
dome that characterizes the skyline of the city. In the case of an ancient artwork of the
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importance of the cathedral of Florence, there are further implications that derive from the
knowledge of the timbers.

In the past, the transport of construction timber was a non-negligible problem, due
to volumes and weights in an era in which engines did not exist. Cities with a natural
waterway could rely on the water to float and carry them.

In the case of Florence, following the course of the Arno River and its tributaries
backwards, it is possible to identify the forests from which the construction timber came
and which were the paths followed in its flow.

The important archives of the OPA (Opera del Duomo di Firenze, the still existing
institution that financed and followed the construction of the building and that takes care
of its continuous maintenance) are in this sense a complete source of information. The
archives show the forests that OPA owned and from which most of the lumber came.
The timber for the construction comes mainly from Casentino forests—donated by the
Signoria to the Opera del Duomo in 1378 as a contribution to the construction of the
cathedral—an enormous forest heritage located not far from the sources of the river that
crosses Florence [6], where it is possible to find huge silver fir forests. The donation of the
Casentino forests was not only intended to complete the cathedral, but also to ensure the
OPA a perpetual source of income, such as to guarantee the self-financing of the institution
even after the completion of the religious building.

In the archives, each transport is included and its volume, and the people involved in
the transport are reported. The information about the timber purchased from other forests
for different purposes is included as well.

But, if everything is described in the documents, why carry out the detailed identi-
fication of the timbers? Firstly, because trades are described, but not the final use of the
elements. Furthermore, it is worth considering the possibility that continuous maintenance
has led to the insertion, over time, of new wooden elements that could also be of a different
provenance and species from the original. For example, the modern wooden elements in-
serted during the restorations dated 1937–1938 are clearly identifiable. Given the existence
of modern means of transport at that time, it cannot be excluded a priori that the timber
could also come from very far away.

It is interesting to note how the large volumes of timber floated to Florence made OPA
the largest operator in the region on the timber market at the time. It should in fact be
considered that much of the timber transported or purchased was not only used for the
construction of structures, but also for the assembling of the scaffolding on construction
sites, not only for the cathedral, but also for other buildings of great importance that were
being constructed simultaneously in Florence, such as the Dominican church of Santa Maria
Novella (1279–1420), the Franciscan church of Santa Croce (1294–1443), the Dominican
church and the Convent of San Marco (1299–1443), and the seat of the city government,
Palazzo Vecchio (1299–1314). These buildings also required large amounts of timber, not
only from OPA forests, but also from surrounding forests.

In the same way, the various historical–sociological and economic aspects resulting
from this trade cannot be overlooked: the involvement of local populations, the birth of
market chains, from loggers in the forest to those who transported from the forest to the
stream, to those who carried along the waterway to the city and, finally, the grading and
selection of the single elements for the different uses.

Each wooden member of a historic building contains a story that starts from the tree
in its forest, in a specific environment. Before becoming the artefact we observe, it was then
a raw material within the commercial world of the time and passed through the hands of
the professional who made it become what we look at.

The aim of this paper is to show the results of the anatomical identification of the
wood species. From the results, other aims derive: a discussion about the technological
explanation of their use within a timber structure and the connection of the obtained results
with the information collected from the archives of OPA.
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2. Materials and Methods
2.1. Description of the Timber Structures

Visiting the cathedral from the outside and inside, the tourist cannot observe wooden
elements, because the building is finished in masonry, covered by plaster and marble. In
reality, the tile roofs are supported by a wooden structure: in the attics there are wooden
structural elements for a total of 360 m3 and a weight of about 150 tons.

The central nave of the Cathedral of Santa Maria del Fiore has a double pitched roof.
The main framework is formed by nineteen timber trusses, articulated according to the
scheme called “all’italiana” [7], or king post with struts (Figure 3). This typology consists of
two principal rafters, tie beam, king post and struts. The king post is shaped to enable the
housing of the rafters and struts. Similar indentations are prepared on the rafters to contain
the struts. King post and rafters are connected to each other by a simple notch, reinforced
with heel straps. The nodes between each constitutive element are strengthened by metal
fittings such as straps and nails.
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Covering a free span of around 19m, the tie beams are composed of two elements,
normally jointed in the centre line by a scarf joint (also called “bolt of lightning”) reinforced
with bolts. The tie beams replaced in 1938 are a combination of four elements, probably
due to the fact that, at the time, trees with appropriate size were not easily available.

An additional constitutive element of the central nave trusses is the sleeper, located
under the middle of the tie beam and connected to it and to the king post through a strap
and heel straps.

The truss rests at both ends of the tie beam on wooden corbels.
The secondary framework is composed of purlins laying on the rafters and the ridge

beam that lays directly on the king post. Cleats retain purlins from sliding. Above the
purlins stands a warping of common rafters, on which rests a layer of tiles and the rest of
the covering bundle.

The aisles are composed of four bays divided by three flying buttresses, hidden by
the single pitched roof. Being located at the same level as the trusses, the arcs-boutants
replace them in the structure layout. The sixteen asymmetrical trusses are surmounted by
purlins parallel to the line of the eaves, with a false rafter (Figure 4). In this case too, king
post, rafters and struts are connected with indentations. The joint between tie beam and
rafters includes a simple notch, occasionally bolted and strapped. Here, the tie beam lays
directly on the supporting wall. Due to a smaller free span (around 8.5 m) compared to the
central nave, the tie beam is formed by a single element. The rafter and false rafter are often
topped by an additional wooden element that reduces the roof inclination. The secondary
framework is again composed of purlins that support the covering bundle.
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2.2. Sampling and Wood Identification

The sampling to identify the wood species has been made in accordance with standard
UNI 11118:2004 [8]. It was decided to sample only the structural elements of the trusses
safely reachable, so excluding purlins. From every element under investigation has been
taken a three-dimensional sample, from which was obtained the three anatomical sections
necessary to identify the species, ideally a small cube of 0.5 cm. To alter the artefact as little
as possible, the samples were taken from areas where sampling was barely visible. Every
sample has been stored in a box named after a recognizable code. A total of 408 samples
were collected and analysed.

The microscopic identification has been made at the laboratory of wood anatomical
characterisation of CNR-IBE. At first, every sample has been boiled in water, until the
sinking of the sample, to soften wood. Once softened, the samples have been shaped along
the transversal, radial and tangential longitudinal directions. With the aid of a Peltier cooler,
for every anatomical direction has been cut a thin section that thereafter has been placed
on a microscope slide covered with glycerol. Observing the slides under a microscope,
it is possible to recognize the distinctive anatomical features and to identify the timbers.
The identification is based on the observation of specific atlases (such as [9,10]) and on the
comparison with the anatomical slides collection of CNR-IBE.

The anatomical characterization of wood actually goes as far as the identification of
the genus. It is, however, possible to infer the species in many cases starting from historical
and/or logical considerations. For example, if you find in a historic building in central Italy
wood identified as Castanea, you can deduce that it is Castanea sativa Mill. The same is true
for the genus Abies, for which we deduce that it is Abies alba Mill. For other identifications,
instead, the number of possible species is such as to stop at the genus, as in the case of
Ulmus, for which the possible species are about three different ones. In these cases, the
identification stops at Ulmus sp.

3. Results

From the central nave, 237 samples were brought. The timbers resulting from wood
identification are listed in Table 1.

Table 1. Number of identified samples drawn from the structural members of the central nave.

Timber Identified Samples

Abies alba Mill. 178
Ulmus sp. 27

Robinia pseudoacacia L. 11
Castanea sativa Mill. 10

Picea abies Karst. 7
Quercus sp. 2

Juglans regia L. 2
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European fir (Abies alba Mill., Figure 5) is the most represented timber, then elm
(Ulmus sp. Figure 6) follows, but much less represented. The woods that amaze in Table 1
are that of black locust (Robinia pseudoacacia L.) and spruce (Picea abies Karst.), the first
because it was not present in Europe at the time of the construction of the cathedral, the
second because it is found very rarely in historical Florentine structures: despite being
present in the Italian flora, the typical origins of spruce are Alpine, very far from Florence.
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ring porous and the latewood in tangential bands of vessels and axial parenchyma; (b) a longitudinal
tangential section showing the parenchymatic rays homogenous and 4–6 seriates.

It becomes interesting to observe the division of the timbers for the different structural
elements that make up the trusses (Table 2).

The samples that are not listed are those with which the wedges to tension the scarf
joints of the tie-beams were made of: nineteen of elm wood, eleven of black locust, two of
deciduous oak (Quercus sp.), two of walnut (Juglans regia L.) and one of spruce wood. They
are not listed in Table 2 because of not really having a structural function.

Finally, it is possible to note a marked differentiation according to the function of the
element within the triangular frame of each truss. The longer elements are almost always
in silver fir, and only in the king posts is the presence of elm wood important. For the
production of corbels and wedges, the composition varies greatly. Note the presence of
black locust wood wedges to stretch the tie-beams made from scratch during the restoration
carried out in the two-year period 1937–1938.

Less samples were taken from the two lateral nave timber structures, for various
reasons. There are 16 trusses instead of 19, there are no corbels and no composite ele-
ments and, finally, the safe accessibility to all the elements of half of the 16 trusses was
practically impossible.
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Table 2. Identified timber and their use in the central nave structures.

Structural Member Timber Identified Samples

Tie-beam Abies alba Mill. 38

Sleeper Abies alba Mill. 38

Rafter
Abies alba Mill. 38

Picea abies Karst. 2

King post Abies alba Mill. 13
Ulmus sp. 6

Strut
Abies alba Mill. 37

Ulmus sp. 1

Corbel

Abies alba Mill. 33
Castanea sativa Mill. 10

Picea abies Karst. 3
Ulmus sp. 1

The general appearance of the lateral nave structures is less well-finished and is limited
to the presence of structural elements only, as the corbels are not present, and generally
they have a hint of carved decoration. Even the supporting niches in the walls often have
the appearance of chiselled breaches in already-completed masonry. In the central nave,
however, the supports were shaped during the construction of the walls.

From the northern lateral nave, 80 samples were drawn. The timbers resulting from
wood identification are listed in Table 3.

Table 3. Number of identified samples drawn from the structural members of the northern lateral nave.

Timber Identified Samples

Abies alba Mill. 52
Castanea sativa Mill. 26

Picea abies Karst. 1
Fagus sylvatica L. 1

Even in these wooden structures, fir is the prevailing timber, but the presence of
chestnut structural elements is one third of the total. Clearly of replacement are the single
member, a king post, of beech wood (Fagus sylvatica L.) and a spruce rafter.

A total of 81 samples were taken from the southern lateral nave structures. The
resulting identifications are listed in Table 4.

Table 4. Number of identified samples drawn from the structural members of the southern lateral nave.

Timber Identified Samples

Abies alba Mill. 43
Castanea sativa Mill. 24

Pinus nigra Arn./sylvestris L. 13
Picea abies Karst. 1

The distribution of timbers in the southern lateral nave reflects that found in the north
nave, in particular as regards the ratio between fir and chestnut. However, the presence
of pine wood appears in an important way. It should be remembered that the anatomical
differences between the woods of Pinus nigra Arn. (black pine) and P. sylvestris L. (Scots
pine) do not allow a reliable distinction between the two woods [9]. It is worth noting that
there are no Scots pine forests along the Apennine chain of the Italian peninsula, while
there are plantations of black pine, and the Corsican pine, a variety of P. nigra Arn., is
spontaneously present.
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Table 5 shows the use of the different timbers in the trusses of both the lateral naves. It
is worth underlining that the two main timbers are fir and chestnut (Figure 7) and that the
important presence of pine wood is mainly in struts (of the southern nave).

Table 5. Identified timber and their use in lateral naves structures.

Structural Member Timber Identified Samples

Tie-beam
Abies alba Mill. 33

Castanea sativa Mill. 3
Pinus nigra Arn./sylvestris L. 1

Rafter
Abies alba Mill. 33

Castanea sativa Mill. 27
Picea abies Karst. 1

King post
Abies alba Mill. 5

Castanea sativa Mill. 11
Fagus sylvatica L. 1

Strut
Abies alba Mill. 15

Pinus nigra Arn./sylvestris L. 12
Castanea sativa Mill. 3
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Figure 7. Microscopic pictures from Castanea sativa Mill. samples: (a) a cross section showing the
earlywood ring porous wood and the latewood’s small vessels organized in a radial dendritic pattern;
(b) a longitudinal tangential section showing vessels containing tyloses and uniseriate parenchymatic rays.

4. Discussion

Producing long, slender structural members has generally drawn attention to softwood
rather than hardwood lumber. This is mainly due to the shape of the conifer stems,
with mainly monocormic branching, while broad-leaved trees generally have dendritic
branching. The monocormic habit implies main stems from which branch off almost
horizontal branches and a much smaller diameter than that of the stem. It therefore
becomes easier to obtain relatively long beams of constant section, with relatively small
defects, principally knots [11].

Even in the case described in this paper, coniferous wood elements clearly prevail,
more particularly silver fir. The silver fir is present almost exclusively to compose the
trusses of the central nave, where the structural elements are very long. For example,
consider that each element that makes up the tie-beams is 12–13 m long, and for that length
it maintains a section of 30 × 45 cm. This means that such beams were obtained from
silver fir trunks, which at about 14 m in height, were more than 50 cm in diameter. The
rafters in the central nave are also very long: about 9 m, with sections similar to those of
the tie-beams.

Among the structural elements, the king posts are shorter, while retaining the sections
of the other elements, i.e., about 3 m. Silver fir also prevails among the king posts, but those
made of elm wood are not uncommon (Figure 8). Macchioni and Mannucci [12] already
reported about the use of fir wood in Florence area for rafters and tie-beams, while elm
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wood was common in king posts and corbels. Why the elm wood for those purposes?
Giving an answer is not simple: it is true that elm wood is hard and therefore it can be
useful for making joints between rafters and king posts, near the ridge of the roof, but it
is certainly not the only hard wood available at the time for that purpose. There is also
the possibility that the use of elm wood, for that specific structural use, could have had
a traditional or ritual meaning at the time that we are no longer able to interpret today.
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Figure 8. One of the elm wood king posts of the central nave shows a graved possible dating (MCCII).
In this case, the graved year would be more than two centuries before the assembling of the roof,
marking a possible reuse from a previous structure.

In the lateral naves, although silver fir wood continues to be prevalent, hardwood,
such as chestnut, takes on a more important role.

Chestnut wood is very suitable for structural uses because the heartwood has a high
natural durability and the sapwood is always very thin; furthermore, the mechanical
performances are high [13]. In fact, it is a wood widely used in historical structures in Rome
and Naples [14–16]. It has two important limitations, i.e., major flaws, particularly ring
shake and large knots, and the stems are tapered, so they do not maintain the required
sections for large lengths.

In accordance with the characteristics described, chestnut wood is well represented
among the structural elements in the lateral naves, where the longest elements are the
tie-beams (about 9 m) and the rafters (about 5 m).

Hardwood timbers have found wide use in these structures where a high hardness
was required of wood. We find them, in fact, in the corbels and in the wedges of the central
nave. As mentioned previously, timber reached Florence by floating from the Casentino
forests (Figure 9), through the Arno/Sieve basins. The Casentino forests mainly produced
silver fir timber.

From the Campigna plateau, the trunks were pulled by pairs of oxen to Pratovecchio,
signed with the mark of OPA, transported in “rafts”, formed by logs tied together, along the
Arno River in Florence at the port of Porticciola d’Arno (a small port destroyed in 1862) [17].

The purchase of other kinds of timber comes from the surroundings of Florence: elm,
beech and chestnut are generally bought at the local market and oak from the Apennines of
Pistoia. To obtain chestnut wood, OPA acquired specific forests in the Pistoia area a few
centuries later.

Among the timbers identified in this work, there are several others, in addition to the
three mentioned here. Two in particular, walnut and deciduous oak, appear as hardwoods
for making the tensioning wedges, as does elm. These are woods that are part of the local
flora and very common at the time.
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Figure 9. The two principal floating directions to Florence from the Casentino forests (the yellow
area): 1—from Dicomano by the Sieve River then Arno following a 30 km path; 2—from Pratovecchio
only by Arno River, following a 130 km path [6].

Two others, spruce and black/Scots pine, are part of the Italian flora, but not of the
local one. Therefore, it is very likely that these are recent introductions within the trusses,
due to restorations carried out in the post-unification period, probably during the great
works carried out in 1937–1938. In those restorations, the most used timber continued to be
silver fir; however, in the trusses dating back to those years, there are also some elements
of spruce. The pine, as we have seen, is found in only one of the two aisles, mainly, but not
exclusively, in the form of new struts.

The reconstruction of some trusses in 1937–1938 also introduced a timber of North
American origin, which became part of the Italian flora from the 18th–19th century, that of
black locust. The durability of locust wood against fungi and insects and its hardness make
it a great choice for wedges.

A final part of the discussion regards the relationships between the timber structure
durability and wood natural durability. Of the structural elements of the trusses of the
central nave, 95% are made of silver fir. According to EN 350:2016 [18], the wood of silver
fir is in class 4 to fungal rot (not durable) and to the principal degrading insects. Even
elm wood is not durable, and its heartwood is largely attacked by beetles (performing the
diagnostic survey, elm wood was frequently recognised at first sight due to the massive
insect attacks, even before microscopic identification).

The only durable wood is the sweet chestnut found in lateral naves. Its natural
durability is somehow increased by a very limited sapwood, normally 2–4 growth rings
thick. Similar characteristics are also found for the wood of black locust, but it has been
seen that in reality its use in duomo timber structures is recently introduced (for historical
reasons) and is mainly due to its high hardness.

The carpenters who assembled the structures described here knew that the durability
of a wooden structure was due more to the construction details and maintenance than to
the natural durability of used timbers. The carpenters also knew that the most harmful and
dangerous attacks are those from fungal rot and that when the conditions for a fungal decay
exist, even the most durable woods undergo decay, only slower than the less durable ones.

Taking into account the wood used for the construction of the trusses elements, 80%
of the elements are of silver fir, a not-durable wood. Those who built the structures knew
that the points of greatest risk of fungal attack are the connections between masonry and
wood, which in the case of the Duomo of Florence, are always very large and ventilated.
The attics in general are also well ventilated.
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A further important aspect for the durability of the wooden structures is that they are
accessible and checked frequently, in particular during rainy events, to assess the tightness
of the roof covering.

5. Conclusions

Meiggs [19] rightly argues that no large commercial empire existed in the past that
did not have large forests at its disposal. A trade empire needed forests to build ships and
to be able to caulk them with the pitch produced from the resin.

At the end of this paper, we think we can add that the forests were also used to
demonstrate power through the construction of large buildings, both religious and civil.

Buildings could not be built without timber, and large buildings could not be built
without large quantities of timber. Important cities had to have large forests at their disposal,
preferably if forests and cities were connected by rivers. In Italy, the link between forests
and the expansion of political power is palpable by observing Venice. But it is known that
the Florentine Signoria had decided to build a new cathedral to demonstrate the achieved
economic wealth and the resulting political weight [20].

From the point of view of the structural diagnostic analysis, wood identification is
a basic knowledge. This work aimed to show that identifying the timbers in a large historic
roofing structure can have further meanings and, with the help of archival sources, allow
discussion of the possible origins of the timber and the possibility of studying the history
of maintenance.

A series of possible further studies of dendrochronology [1] and dendroprovenance
on the roof structures of Santa Maria del Fiore will allow us to deepen our knowledge on
the construction and maintenance of the cathedral of Florence.
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