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Abstract: Peatlands are wetlands with an accumulation of peats, partially decomposed organisms,
under waterlogged and anoxic conditions. Despite peatlands being extensively studied due to
their wide distribution and various functions, the trends in peatland research have hardly been
analyzed. We performed dynamic topic modeling (DTM) and network analysis to investigate the
changes in the global trends in peatland research. Among the searched studies using the keyword
‘peatland’ from ScienceDirect, titles and abstracts from 9541 studies (1995–2022) were used for
the analysis. They were classified into 16 topics via DTM (geomorphology, land use and land
cover, production, greenhouse gas, habitat, permafrost, management, deposit, fire, soil organic
matter, peatland formation, forest, past environmental change, microbe, metal, and hydrology).
Among these, the proportion of ‘management’ was the largest and increased the fastest, showing
the transition of research trends toward the sustainable management of peatlands under climate
change. The keywords used within topics tended to change dynamically when related to a large
number of studies and increasing trends. Network analysis among topics suggested that studying
peatlands as a response measure to climate change will promote overall peatland research because
the greenhouse gases topic had the greatest impact on other topics. Despite increasing research on
peatland management under climate change, a gap between academia and policies was found in
the field of using peatlands as a response measure to climate change, indicating the necessity for
effective policies, research, and technology. This study demonstrates that DTM and network analysis
are useful tools for understanding the temporal shift of views on peatlands and finding a gap we
need to focus on in the near future.

Keywords: peatland; dynamic topic modeling; network analysis; research trend analysis

1. Introduction

Peatlands are wetland ecosystems with an accumulation of peat, which is partially
decomposed organic matter from dead plants and animals, under waterlogged and anoxic
conditions [1,2]. Peatlands can be defined in several ways; however, the most common
definition refers to peatlands as follows: (1) where more than a 30 cm depth of peat has
accumulated or (2) where dead organic material comprises at least 30% of the dry mass of
the peat [3,4].

Peatlands are distributed across broad areas in tropical, temperate, and subarctic
regions and are characterized by climate-dependent distinctions. The global area of peat-
land was estimated as 4.232 M km2, with 75% located in the northern area (>30◦ N) and
the remaining located in the tropical area (30◦ S to 30◦ N) [5,6]. Tropical peatlands have
rapid production and decomposition rates due to high temperatures and heavy rainfall;
however, the decomposition rate is relatively slower than the production rate due to the
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high lignin and cellulose contents of trees, resulting in the accumulation of peat [7,8]. In
temperate peatlands with relatively lower rainfall and temperatures than tropical regions,
peat is accumulated by the delayed decomposition of herbaceous plants, such as reeds or
sedges, in inundated anaerobic environments. In cold and humid subarctic regions, peat is
generated due to the delayed decomposition rate of moss in inundated environments [9].

Peatlands provide important ecological, economic, and cultural roles. For instance,
they can regulate regional and global climate by storing more than 600 gigatons of carbon,
which represents up to 44% of global soil carbon [10], despite covering less than 3% of the
global land surface [5]. These ecosystems can also store water by regulating the river’s
discharge [11] and improving the water cycle [12]. Even though the nutrient availability
is low, peatlands can store nitrogen in the ecosystem [13]. Moreover, they also have
an important role in conserving biodiversity, which supports the ecosystem processes
and services [14,15]. Peatlands also provide economic benefits with livelihoods for local
communities, such as agricultural cultivation and fishing [16,17]. Furthermore, healthy
peatlands are repositories of cultural and social value relating to heritage, education, sense
of place, recreation, and spirituality [18].

Although peatlands provide such diverse benefits, they are fragile and subject to
serious damage. The main causes of degrading peatlands are deforestation, drainage, fire,
and conversion to other land types such as agriculture. This results in increased greenhouse
gas emissions to the atmosphere, reduced carbon storage, enhanced risk of flooding,
changes in nutrient storage and cycling, and biodiversity loss [17,19]. Furthermore, smoke
haze due to the peatland fires is not only a serious public health concern but also a cause
of conflicts between neighboring countries [20,21]. As a caution against the crises that
peatlands face deepens, global efforts to restore peatlands have been also growing [17,22,23].

Despite peatlands being extensively studied due to their diverse values, the crises
they face, and the efforts to prevent and solve the problems, there is limited analysis of
the trends in peatland research. In the only previous study, Van Bellen and Larivière [24]
collected papers published from 1991 to 2017 under the keywords ‘peatland’, ‘bog’, ‘fen’,
and ‘mire’ in Web of Science to examine the global trend in peatland research. Based on
the keywords assigned for each paper by Web of Science, they considered the top 20 of the
most frequent keywords as their research topics and described how each topic changed
over time. This study was a first attempt to understand the trends in peatland research
based on the frequency of keywords; however, the criteria for keyword allocation to each
paper were unclear, and the keyword itself was considered one topic, resulting in the
issue of overlapping topics. In addition, their approach could not ascertain the structural
relationships among topics due to the overlapping issue. To overcome these limitations,
several keywords with a high probability of appearing on a specific theme should be
grouped as a single topic, and the relationships among topics should be analyzed using an
improved methodology such as topic modeling and network analysis.

Topic modeling is a text mining technique that helps to find hidden semantics in
document collections and cluster them into topics. The most commonly used topic mod-
eling technique is Latent Dirichlet Allocation (LDA), which is based on the probabilistic
algorithm of unsupervised learning [25,26]. However, LDA is a static model that does not
account for topic evolution over time. To improve this, dynamic topic modeling (DTM)
was proposed to analyze the time evolution of topics in large document collections [27].
Dynamic topic modeling can identify the temporal change in keyword occurrence probabil-
ity within a topic; therefore, it has been applied across various fields to analyze research
trends (e.g., Sha et al. [28]; Yao & Wang [29]). In addition, DTM is often used with network
analysis to analyze the structural relationships among topics [30,31].

Using DTM and network analysis, this present study attempted to answer the follow-
ing question, ‘How have the global trends in peatland research changed over time?’ To
answer this question, we clustered topics, analyzed the temporal change in topic propor-
tions and keyword occurrence probabilities within topics based on DTM, and conducted a
network analysis to reveal the structural relationships among topics in order to provide a
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comprehensive understanding of global peatland research. Knowing the research trend of
peatlands can help us understand the temporal shift of views on peatlands and find a gap
we need to focus on in the near future.

2. Materials and Methods
2.1. Research Framework

Figure 1 shows a diagram of the research procedures. From the database of ScienceDi-
rect, the titles and abstracts of papers published until 2022 were collected by searching for
the keyword ‘peatland’. After data pre-processing, we determined the optimal number of
topics based on coherence score. Then, we applied DTM to titles and abstracts of papers
published from 1995 to 2022, when all of the topics began to appear. To comprehend
the clustered topics, suitable topic names were chosen by the researchers based on the
keywords extracted from the papers and representative papers with a high probability of
being allocated to each topic. Subsequently, the temporal changes in the proportion of each
topic and the temporal change in the probability of keywords within topics were analyzed.
Network analysis was also performed to analyze the structural relationships among topics.
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2.2. Data Collection and Pre-Processing

We searched 11,519 English-written papers published until 2022, using the keyword
‘peatland’ on the global academic publication data platform ScienceDirect. We did not
limit the search range to title, abstract, and author keywords, but as whole document for
two reasons: (1) If ‘peatland’ is searched limited to title, abstract, and author keywords,
many papers that actually used peatland as a study area but mentioned this term only
in Materials and Methods or other sections were excluded. It can be a critical limitation
in analyzing global trends of peatland research. (2) Even if some papers did not study
peatland directly, we believe that it was necessary to include papers using ‘peatland’
in the papers as a comparison target or mentioning ‘peatland’ as a solution to climate
change mitigation for understanding the comprehensive research trend of peatland. Thus,
we adopted a method that can include as many papers related to peatland as possible.
Among the collected papers, 1361 papers that did not include abstracts or were indicated as
‘unknown’ were excluded as outliers. Finally, 10,158 papers were found from 1953 to 2022.
To pre-process the collected data, tokenization was performed first to divide the text data
into tokens, which are the minimum units of meaning. Since not all words that underwent
tokenization were meaningful, we eliminated elements such as English stop-words, special
characters, and punctuation marks provided in the Natural Language Toolkit of Python
(3.9.12 ver.). Additionally, verbs, adverbs, and adjectives frequently used in all studies
were also eliminated (Table S1). Words of less than three characters were eliminated, and
stemming and lower-case conversion was performed for all words using Python to prevent
the repetition of singular and plural words.

2.3. Determination of Hyperparameters

In DTM, the number of topics is the most important hyperparameter. Selecting an
insufficient number of topics will make the content of one topic too broad, while selecting
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too many topics will result in smaller and fairly similar topics. There are criteria used to
determine the optimal number of topics, such as perplexity, log-likelihood, and coherence
score [26]. This study determined the number of topics based on the commonly used
criteria, coherence score [25,29,32]. The coherence score is an index that measures the
coherence of the keywords constituting a topic, and a higher coherence score indicates a
better description of the topic by the keywords [33]. In order to find the optimal frequency
of DTM training (i.e., passes) and the number of topics, the modeling was performed
several times while adjusting the variables, and the coherence score was the highest at
0.059 when the number of topics was 16 with 40 passes (Figure 2).
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2.4. Dynamic Topic Modeling

Topic models are unsupervised machine learning algorithms to identify themes in
large text collections. They assign the document with different weights to the topics and
allocate the words based on two distributions (i.e., the distribution of words in the topics
and the distribution of topics in the documents). Among topic models, DTM considers
the temporal evolution of topics, assuming that there is K number of topics over the entire
period and Kt−1 of time t − 1 evolves to topic Kt of time t. It means each time t should
contain the K number of topics. This method can analyze the temporal change in the
probability distribution of keywords representing each topic [31,34].

Among the collected data, studies published from 1995 to 2022, the period when all 16
topics appeared simultaneously, were used for DTM analysis. Dynamic topic modeling
was performed using the ‘ldaseqmodel’ library in Python, and papers and keywords were
classified into each topic according to the optimal number of topics. While the computer
classifies each topic, the content must be interpreted by researchers. Therefore, two re-
searchers individually interpreted the topics based on the top keywords and representative
papers (Table S2) that had a high probability of being assigned to each topic. The topics
were reviewed and corrected by all co-authors. Subsequently, linear regression analysis
was performed to test the significance of temporal tendency in the number of papers for
each topic (i.e., topic frequency) and the ratio of the number of papers in a specific topic
to the total number of papers (i.e., topic proportion). The year of publication was set as
an independent variable, and topic frequency and topic proportion by year were set as
dependent variables. Using Python’s ‘statsmodels’ library, the increase or decrease in each
topic over time was analyzed. The significance level was set to 95%. When the regression
coefficient was positive, the topic was classified as a hot topic (i.e., significantly increases
with time); when the regression coefficient was negative, it was classified as a cold topic
(i.e., significantly decreases with time). The temporal change in the keyword occurrence
probability within the topics was also analyzed based on the top five keywords.
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2.5. Network Analysis

Network analysis can describe the relationships between the study targets in a combi-
nation of nodes (i.e., points) and links (i.e., lines). Important nodes can be decided based
on the extent of connection between nodes. The degree of node importance is expressed as
centrality, which means the degree to which a particular node is positioned at the center
of a network while having concentrated connections to other nodes [35,36]. This study
calculated degree centrality, closeness centrality, and eigenvector centrality. The degree of
centrality increases as the number of links directly connected to a certain node increases,
representing local centrality. The closeness centrality increases as the sum of the shortest
distances from a certain node to other nodes decreases, representing the global centrality
across the entire network [37,38]. Meanwhile, eigenvector centrality is an extended concept
of degree centrality, considering not only the number of nodes directly connected to a
certain node but also the centralities of the other nodes, reflected as weights. Thus, the
eigenvector centrality increases as it connects to a node with high centrality, and it is useful
in identifying the node with the largest impact on the entire network [36,39]. This study
used the ‘networkx’ library in Python to analyze the network among topics. Each topic
was set as a node, and the cosine similarity distance among topics was set as the link to
calculate the three centrality types. The cosign similarity distance was calculated using
the cosine similarity value for the term frequency-inverse document frequency (TF-IDF)
matrix of the top keywords of each topic. Here, TF-IDF is a traditional statistics-based text
similarity measure algorithm that constructs model using text word frequency vector [40].

3. Results
3.1. Dynamic Topic Modeling
3.1.1. Topic Interpretation

Figure 3 shows the number of peatland papers published in ScienceDirect from 1953 to
2022. Before 1980, the number of papers was negligible (less than 1%); however, it increased
exponentially thereafter. During the DTM analysis period from 1995 to 2022, the number of
papers was 9541, accounting for 94% of the total papers.
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The DTM results showed that peatland research was classified into 16 topics (Table 1).
The probability of a specific keyword appearing in each topic was calculated every year
and summed during the entire period. The keywords are presented in descending order of
the sum of these values in Table 1. The topics were named based on the top keywords and
representative papers of each topic.
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Table 1. Top keywords with high probability appearing in each topic calculated using dynamic topic modeling in peatland research.

No.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8

Geomorphology Land Use and Land Cover Production Greenhouse Gas Habitat Permafrost Management Deposit

1 sediment use energy soil restor(ation) surfac(e) ecosystem coal
2 deposit base product carbon agricultur(e) water servic(e) deposit
3 glaci(er) model use emiss(ion) conserv(ation) groundwat(er) base alkan
4 marin(e) area fuel flux habitat thaw sustain(ability) basin
5 eros(ion) variabl(e) wast(e) ecosystem land climat(e) global plant
6 coastal veget(ation) treatment warm area region manag(ement) format(ion)
7 river spatial biomass global farm temperatur(e) polic(y) isotop(e)
8 environ(ment) map remov(e) nitrogen palm layer review peat
9 channel result biofuel greenhous(e) speci(es) hydrolog(y) environ(ment) valu(e)
10 system resolut(ion) materi(al) increas(ing) landscap(e) arctic land lignit(e)
11 fluvial time system temperatur(e) natur(e) flow econom(y) seam
12 form classif(ication) industri(al) cycl(e) biodivers(sity) soil resourc(e) condit(ion)
13 area monitor(ing) base rate cover condit(ion) develop(ment) environ(ment)
14 valley scale biochar product plant snow mitig(ation) composit(ion)
15 lake approach peat effect increase(ing) zone climat(e) domin(ate)

No.
Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16

Fire Soil organic matter Peatland formation Forest Past environmental change Microbe Metal Hydrology

1 fire soil peat forest climat(e) commun(ity) metal wetland
2 atmospher(e) organ(ic) peatland boreal region speci(es) concentr(ation) water
3 burn matter water plant record microbi(al) mercuri(al) river
4 pollut(ion) concentr(ation) depth stand holocen(e) divers(ity) element lake
5 sourc(e) miner(al) restor(ation) increas(ing) lake abund(ance) organ(ic) stream
6 deposit properti(es) carbon tree reconstruct(ion) plant MeHg hydrolog(y)
7 wildfir(e) content tabl(e) speci(es) increas(ing) soil contamin(ation) flow
8 region condit(ion) moss disturb(ance) temperatur(e) composit(ion) iron area
9 concentr(ation) activ(e) drain site chang(e) bacteri(a) trace flood
10 emiss(ion) composit(ion) accumul(ation) nutrient china structur(e) humic coastal
11 anthropogen(ic) sampl(e) drainag(e) harvest mountain ecolog(y) water aquat(ic)
12 activ(e) decomposit(ion) surfac(e) pine veget(ation) group natur(e) catchment
13 area chemic(al) condit(ion) litter past testat(e) compound load
14 mine carbon increas(ing) root core function dissolv(e) qualit(y)
15 aerosol acid site effect pollen environ(ment) sediment concentr(ation)

Only the keywords extracted from the stem were noted and the full term is completed in parentheses for the integrity of the meaning.
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The interpretations for each topic are as follows: Topic 1 is ‘geomorphology’, which
covers studies on the geomorphological characteristics such as formation, development,
and erosion processes of peatlands in coasts, glaciers, rivers, and basins. Topic 2 is ‘land use
& land cover’, which is focused on studies that identify and classify the types of land use
and land cover, including peatlands, using remote sensing. Topic 3 is ‘production’, which
includes research on energy sources such as oil produced from peatland or other land
converted from peatland, development of materials that can replace peat and utilization of
peat for wastewater and pollutant treatment. Topic 4 is ‘greenhouse gas’, which deals with
the studies on the exchange of greenhouse gases, such as carbon dioxide (CO2), nitrogen
dioxide (N2O), and methane (CH4), between peatland soil and the atmosphere and their
controlling environmental factors. Topic 5 is ‘habitat’, which covers research on habitat
selection by various plants and animals inhabiting peatlands, biodiversity, and population
restoration. Topic 6 is ‘permafrost’, which includes research on the surface water and
groundwater in peatlands located in permafrost, freezing and thawing, and the role of
peatland in preventing permafrost thawing. Topic 7 is ‘management’, which is focused on
the sustainable management of various peatland ecosystem services and their synergy and
trade-off relationships. For example, maintaining sustainable peatlands requires balancing
the conflicting values of ecosystem conservation, mitigation of greenhouse gas emissions,
land use, and local economic development. Topic 8 is ‘deposit’, which covers research on the
composition and classification of deposits in ancient peatlands such as coal, brown coal, and
shale. Topic 9 is ‘fire’, which includes studies on fine dust, smoke, fog, pollution, and carbon
emissions caused by human-made or natural fires on peatland. Topic 10 is ‘soil organic
matter’, which mainly covers the quantity, concentration, and characteristics of organic
carbon, nitrogen, and other organic matter stored in a peatland soil. Topic 11 is ‘peatland
formation’, which includes studies on the impact of water level, moss, vegetation, and soil
water content, contributing to peatland formation and regeneration. Topic 12 is ‘forest’,
which deals with the growth and development, harvest, thinning, and decomposition
of trees growing on peatlands. Topic 13 is ‘past environmental change’, which mainly
comprises research that infers the change in climate and vegetation of the Holocene via
records of deposits, cores, and pollen in peatlands. Topic 14 is ‘microbe’, which covers
the diversity, classification, and functions of microorganisms such as bacteria, viruses,
amoebae, and fungi found in soil or organisms in peatlands. Topic 15 is ‘metal’, which
mainly includes research on heavy metal chemicals accumulated in deposits or organisms
on peatlands. For example, studies on methylmercury, lead, copper, and humic acid that
easily combine with these heavy metals are included. Topic 16 is ‘hydrology’, which mainly
deals with studies on the hydrological responses, amount of runoff, and concentration of
dissolved organic matter in rivers, lakes, basins, and coasts that include peatlands.

Figure 4 summarizes the proportions of each topic during the entire period. Topic 7
(management) accounted for the largest proportion at 15%. Topics 13 (past environmental
change) and 4 (greenhouse gas) followed, with approximately 12% each. Conversely, Topic
15 (metal) accounted for the smallest proportion, with less than 2%, followed by Topics 9
(fire), 8 (deposit), 6 (permafrost), and 1 (geomorphology), with less than 3% each.

3.1.2. Temporal Change in Topics

The temporal changes in the number of papers on each topic (i.e., topic frequency)
and the ratio of the number of papers on a topic to the total number of papers (i.e., topic
proportion) were analyzed. For the topic frequencies, all topics were categorized as hot
topics (all p < 0.05, Table 2). Among them, Topics 7 (management) and 8 (deposit) showed
the strongest and weakest rates of increase, respectively.

For the topic proportions, there were hot topics, cold topics, and some topics that were
neither hot nor cold (Table 2, Figure 5). There were three hot topics with increasing trends:
Topics 7 (management), 13 (past environmental change), and 3 (production). Conversely,
there were four cold topics with decreasing trends: Topics 10 (soil organic matter), 12
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(forest), 8 (deposit), and 5 (habitat). The others did not significantly increase or decrease
over time.
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calculated as the ratio of the number of papers corresponding to a specific topic to the total number
of papers from 1995 to 2022.

Table 2. Regression coefficients and p-values of topic frequency and topic proportion in peatland
research from 1995 to 2022.

Frequency Proportion

Topic Coefficient p-Value Hot/Cold Coefficient p-Value Hot/Cold

Topic 1 0.715 1.35 ×10−8 Hot −0.0005 0.097 Normal
Topic 2 2.576 3.19 × 10−13 Hot 0.0005 0.236 Normal
Topic 3 1.387 2.77 × 10−8 Hot 0.0009 0.013 Hot
Topic 4 3.936 6.96 × 10−12 Hot 0.0005 0.558 Normal
Topic 5 1.401 2.88 × 10−8 Hot −0.0011 0.039 Cold
Topic 6 0.762 2.85 × 10−7 Hot 0.0002 0.928 Normal
Topic 7 6.416 2.3 × 10−9 Hot 0.0064 3.12 × 10−9 Hot
Topic 8 0.556 1.64 × 10−5 Hot −0.0014 0.006 Cold
Topic 9 0.829 2.09 × 10−8 Hot 0.0004 0.106 Normal

Topic 10 2.144 3.75 × 10−9 Hot −0.005 1.41 × 10−6 Cold
Topic 11 0.850 1.58 × 10−11 Hot −0.0005 0.149 Normal
Topic 12 0.938 1.87 × 10−9 Hot −0.0028 8.86 × 10−5 Cold
Topic 13 4.241 4.47 × 10−13 Hot 0.0023 0.003 Hot
Topic 14 1.913 1.93 × 10−10 Hot 0.00052 0.307 Normal
Topic 15 0.589 3.5 × 10−7 Hot −0.0001 0.586 Normal
Topic 16 1.761 2.8 ×10−12 Hot −0.0009 0.125 Normal

3.1.3. Temporal Changes in Keyword Occurrence Probability within Topics

To examine the temporal changes in keyword occurrence probability within topics
in detail, we selected two topics as examples: (1) Topic 7 (management), which had the
largest topic proportion and sharpest increasing rate, and (2) Topic 8 (deposit), which had
one of the smallest topic proportions and the weakest increasing rate. The changes in
occurrence probability were analyzed for all keywords that appeared within the top five
ranking keywords every year. Since the keywords could both climb into the ranking (i.e.,
appearance) or fall out of the ranks (i.e., disappearance), the number of keywords included
in the graph could be more than five.
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First, the temporal change in the keyword occurrence probability in Topic 7 (man-
agement) was dynamic (Figure 6). The keyword ecosystem appeared within the ranking
during the entire period, and its probability increased with time. Servic(e) began to appear
in the ranking in 1999, and its probability also increased with time. Both words consis-
tently maintained their high ranking. In contrast, the probability of the appearance of
develop, manag(ement), and environ(ment) gradually decreased, and they disappeared from
the ranking after 1998, 2002, and 2001, respectively. The probability of the appearance
of polic(y) increased up to 1998, then decreased again and disappeared from the ranking
after 2005. Sustain(ability) appeared within the ranking in 1999, and this position was
consistently maintained up to 2017. Base, global, and resourc(e) were initially not within
the ranking; however, they appeared after 2003, 2006, and 2018, respectively. As such, the
appearance, disappearance, and change in probability of keywords within the ranking
frequently occurred within Topic 7.

Forests 2023, 14, x FOR PEER REVIEW 9 of 23 
 

 

Topic 16 1.761 2.8 ൈ 10ିଵଶ Hot −0.0009 0.125 Normal 

 
Figure 5. Topic proportions of (a) hot topics that increase over time and (b) cold topics that decrease 
over time from 1995 to 2022. 

3.1.3. Temporal Changes in Keyword Occurrence Probability within Topics 
To examine the temporal changes in keyword occurrence probability within topics 

in detail, we selected two topics as examples: (1) Topic 7 (management), which had the 
largest topic proportion and sharpest increasing rate, and (2) Topic 8 (deposit), which had 
one of the smallest topic proportions and the weakest increasing rate. The changes in oc-
currence probability were analyzed for all keywords that appeared within the top five 
ranking keywords every year. Since the keywords could both climb into the ranking (i.e., 
appearance) or fall out of the ranks (i.e., disappearance), the number of keywords in-
cluded in the graph could be more than five. 

First, the temporal change in the keyword occurrence probability in Topic 7 (man-
agement) was dynamic (Figure 6). The keyword ecosystem appeared within the ranking 
during the entire period, and its probability increased with time. Servic(e) began to appear 
in the ranking in 1999, and its probability also increased with time. Both words consist-
ently maintained their high ranking. In contrast, the probability of the appearance of de-
velop, manag(ement), and environ(ment) gradually decreased, and they disappeared from 
the ranking after 1998, 2002, and 2001, respectively. The probability of the appearance of 
polic(y) increased up to 1998, then decreased again and disappeared from the ranking after 
2005. Sustain(ability) appeared within the ranking in 1999, and this position was consist-
ently maintained up to 2017. Base, global, and resourc(e) were initially not within the rank-
ing; however, they appeared after 2003, 2006, and 2018, respectively. As such, the appear-
ance, disappearance, and change in probability of keywords within the ranking frequently 
occurred within Topic 7. 

Second, the temporal change in keyword occurrence probability in Topic 8 (deposit) 
was relatively static (Figure 7). The probability of the appearance of coal continuously re-
duced with time; however, it was still maintained within the ranking. Deposit, alkan, basin, 
and plant did not show significant change within the ranking. Peat, isotop(e), and seam dis-
appeared from the ranking after 1996, 1999, and 1995, respectively.  

Figure 5. Topic proportions of (a) hot topics that increase over time and (b) cold topics that decrease
over time from 1995 to 2022.

Forests 2023, 14, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 6. Temporal changes of keyword occurrence probabilities in Topic 7 (management) of peat-
land research studies between 1995 and 2022. 

 
Figure 7. Temporal changes of keyword occurrence probabilities in Topic 8 (deposit) of peatland 
research studies between 1995 and 2022. 

3.2. Network Analysis 
Network analysis showed that Topic 4 had the highest degree, closeness, and eigen-

vector centralities among the 16 topics (Table 3). Topics 5 (habitat), 9 (fire), and 13 (past 
environmental change) also followed with overall high centrality. This result can be inter-
preted as topics 4, 5, and 9 having numerous direct links with other topics (i.e., high de-
gree centrality). The total sum of the distance of the links that connect other topics was 

Figure 6. Temporal changes of keyword occurrence probabilities in Topic 7 (management) of peatland
research studies between 1995 and 2022.



Forests 2023, 14, 1818 10 of 22

Second, the temporal change in keyword occurrence probability in Topic 8 (deposit)
was relatively static (Figure 7). The probability of the appearance of coal continuously
reduced with time; however, it was still maintained within the ranking. Deposit, alkan,
basin, and plant did not show significant change within the ranking. Peat, isotop(e), and seam
disappeared from the ranking after 1996, 1999, and 1995, respectively.
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3.2. Network Analysis

Network analysis showed that Topic 4 had the highest degree, closeness, and eigen-
vector centralities among the 16 topics (Table 3). Topics 5 (habitat), 9 (fire), and 13 (past
environmental change) also followed with overall high centrality. This result can be in-
terpreted as topics 4, 5, and 9 having numerous direct links with other topics (i.e., high
degree centrality). The total sum of the distance of the links that connect other topics was
shortest in Topics 4, 5, and 13, contributing to the fast transfer of information over the
entire network (i.e., high closeness centrality). Additionally, Topics 4, 9, and 13 not only
had many links but also high centralities of the linked topics, indicating that they had the
greatest impact on the whole network structure (i.e., high eigenvector centrality, as shown
in Figure 8). In contrast, Topics 3 (production) and 15 (metal) showed the lowest degree,
closeness, and eigenvector centralities, suggesting that they were independently studied
rather than closely linked to other topics.

Table 3. Degree centrality, closeness centrality, and eigenvector centrality of the 16 topics of peat-
land research.

Topic Degree Centrality Closeness Centrality Eigenvector Centrality

4 0.467 0.625 0.362
9 0.467 0.556 0.324
13 0.333 0.575 0.289
12 0.333 0.556 0.288
5 0.453 0.577 0.287
16 0.400 0.575 0.283
11 0.333 0.556 0.277
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Table 3. Cont.

Topic Degree Centrality Closeness Centrality Eigenvector Centrality

14 0.333 0.556 0.275
8 0.333 0.536 0.267
6 0.267 0.517 0.228
1 0.267 0.556 0.208
10 0.267 0.500 0.207
7 0.267 0.536 0.197
2 0.267 0.484 0.155
15 0.134 0.395 0.103
3 0.067 0.333 0.030

Topics are arranged in descending order of the eigenvector centrality score.
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Figure 8. Network analysis of the 16 topics of peatland research. The size of a node (i.e., circle)
represents the value of eigenvector centrality, and the link (i.e., line) represents similarity among
topics calculated using the term frequency-inverse document frequency (TF-IDF) matrix and cosine
similarity. The node sizes increase as the value of eigenvector centrality of each topic increases. The
link length shortens as the cosine similarity among topics increases. Numerals inside each node
indicate the topic number.

4. Discussion
4.1. Toward Sustainable Management of Peatland under Climate Change

To understand the global trends in peatland research, this study performed DTM and
network analysis using text data extracted from titles and abstracts of papers published
from 1995 to 2022, searching for using the keyword ‘peatland’ in ScienceDirect. As a
result of classifying 16 topics with DTM, hot topics with significant increases in the topic
proportions over time were identified. These hot topics were Topics 7 (management),
13 (past environmental change), and 3 (production), which were mainly related to the
management and utilization of peatlands. In contrast, cold topics, with a significant
decrease in the topic proportions over time, were Topics 10 (soil organic matter), 12 (forest),
8 (deposit), and 5 (habitat), which were mainly related to the fundamental biological,
physical, and chemical characteristics of peatlands. Thus, it can be interpreted that the
recent trend is more focused on applied research relevant to the use and management
of peatlands in a sustainable way rather than fundamental research focused on biology,
physics, and chemistry. This result is in the same context as the results derived by Van
Bellen and Larivière [24]. They reported that keywords such as climate change, biodiversity,
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management, and restoration significantly increased with time in peatland research, which
reflected the increase in studies dealing with problem solving and interactions between
humans and the environment.

In particular, Topic 7 (management) accounted for the largest ratio of the number of
studies among the total number of studies, and the increase in the rate of topic proportion
was also the sharpest. These results suggest that research on the sustainable management
of trade-offs and synergy between various ecosystem services in peatlands has recently
gained more interest. Topic 7 includes studies that not only consider peatlands as a target
of preservation and development but also regard them as a response measure to climate
change, such as a means for greenhouse gas reduction. For example, Puspitaloka et al. [41]
proposed the restoration of peatlands as a cost-effective measure of conserving biodiversity
and reducing greenhouse gases. They emphasized that peatland restoration could be a
means to offset carbon emissions to achieve the nationally determined contributions (NDC)
to the Paris Agreement, which is a target for greenhouse gas reduction and adaptation vol-
untarily set by each nation. Bonn et al. [42] pointed out that peatland restoration is eligible
for recognition as a means of investment for alleviating greenhouse gas emissions in the
carbon market and presented a method of utilizing peatlands for greenhouse gas reduction.
Ziegler et al. [43] introduced the usefulness of paludiculture, which involves planting crops
while peatlands are rewetted, to prevent drainage and greenhouse gas emission from the
peatland. These trends toward sustainable management of peatlands under climate change
can be found at national or sub-national levels. For example, Western countries [44,45]
and Southeast Asia tropical countries such as Indonesia and Malaysia recently designed a
national-level peatland management plan to mitigate climate change [46,47]. Our results
also support the view that peatlands are changing over time toward a sustainable manage-
ment under climate change. Thus, it is necessary to promote integrated and sustainable
peatland management at the national and sub-national levels, which includes the preser-
vation and development of various ecosystem services in peatlands and the expansion of
reduction to mitigate climate change.

As such, peatlands are increasingly recognized in academia as a means to respond
to climate change. In terms of policies, as the Kyoto Protocol adopted detailed execution
rules (Decision 2/CMP7) of land use, land-use change, and forestry to be applied during
the second commitment in the 16th Conference of the Parties, wetland drainage and
rewetting were added as a greenhouse gas reduction method, preparing the basis for the
policy. Nevertheless, less than 15% of nations containing peatlands include peatlands in
their means of greenhouse gas reduction for their NDC due to the prioritizing goals of
development and food security above climate mitigation, a lack of incentives for farmers
to improve management practices, and the difficulty of accurate monitoring [48,49]. In
this regard, the practical use of peatland as a means of greenhouse gas reduction falls
short of expectations. Therefore, a political, technological, and scientific foundation must
be prepared by developing national emission factors related to peatlands and models for
predicting long-term greenhouse gas reduction so that peatlands can be recognized and
utilized as effective reduction methods for NDCs.

4.2. Dynamic Change in Keywords in Topics with a Large Number of Studies and
Increasing Trends

This present study also analyzed the temporal change in keyword occurrence proba-
bility within topics. The results suggested that Topic 7 (management), with the largest topic
frequency and the sharpest increase in topic proportion over time, had relatively frequent
appearances, disappearances, and changes in the appearance probability of keywords
within the top five ranked keywords. This was attributed to the reflection of the relatively
dynamically evolving change in research interest within the topic. Despite the frequent
changes, there were noticeable keywords such as ecosystem and servic(e) that consistently
maintained their high ranking together, suggesting that the ecosystem service has recently
gained more interest in peatland management. On the other hand, for Topic 8 (deposit),
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which showed one of the lowest topic frequencies and the weakest increase in topic pro-
portion over time, the appearance, disappearance, and change probability of keywords
within the ranking were relatively stagnant, indicating that the temporal change in research
interest was not significant and similar research was continuously conducted. For example,
the probabilities of the appearance of coal, deposit, alkan, basin, and plant were continuously
maintained within the ranking, indicating that they were consistently interesting themes
in ancient peatland deposits. Topic 13 (past environmental change), another topic with a
large topic frequency and a sharp increase in topic proportion, showed frequent changes
in the probability of keyword appearance, similar to Topic 7, while Topic 15 (metal), with
a low topic frequency and weak increase in topic proportion, showed limited changes
of probability in keywords, similar to Topic 8. Therefore, our result showed the more
frequently topics are studied, the more various interests are developed dynamically over
time, which was opposite to that of Gao et al. [50], showing that the popularity of a topic
and the evolving dynamics of a topic are unrelated.

4.3. Greenhouse Gas Had the Greatest Impact on Other Topics in Peatland Research

Lastly, network analysis was performed to identify the structural relationship between
the topics. The most important topic in terms of degree, closeness, and eigenvector centrali-
ties was Topic 4 (greenhouse gas). This result implies that Topic 4 had the most direct links
with other topics, disseminated information to the entire network at the fastest rate, and
was related to other topics with high impact [35,51]. Given the characteristics of peatlands
to accumulate peat that stores carbon and emits greenhouse gases when exposed to air, it
was considered that greenhouse gas was commonly covered in most studies as the research
subject. This result implies that managing and studying peatlands to respond to climate
change and to reduce greenhouse gases could promote comprehensive research because
the topic related to greenhouse gases significantly impacted other topics in the network.
Following Topic 4, Topic 9 (fire) and Topic 13 (past environmental change) also had signif-
icant impacts on the network structure in that Topic 9 included research on greenhouse
gases emitted from fire in peatland (e.g., Shi et al. [52]), and Topic 13 included research that
tracks past climate change based on greenhouse gas data recorded in peatland deposits
(e.g., Hong et al. [53] and Zhang et al. [54]).

4.4. Limitations of This Study

This present study identified which topics recently attracted more attention in peatland
research, to what extent the keywords within the topics changed dynamically, and in what
structure the topics were linked to each other. While the previously analyzed trends in
peatland research simply focused on which individual keywords were appearing at the
time [24], this study used improved tools in that it classified topics based on the groups
of keywords and tracked the temporal changes of the topics using DTM and examined
structural relationships among topics using network analysis. Since there is a limitation
that the details of each topic can only be inferred by relying on the knowledge of the
researchers, cross-examination by several researchers with abundant theoretical knowledge
and practical experience is required to overcome this limitation, as was conducted in this
study. Additionally, the results may be sensitive to the hyperparameters; therefore, it is
essential to adjust the hyperparameters to obtain reliable results [31], as was conducted
in this study. For further analysis, if qualitative research such as content analysis can be
conducted in parallel to explain the changes to each topic in detail, it will be possible to
obtain a deeper understanding of the trends of peatland research.

5. Conclusions

This study analyzed the temporal change in global trends of peatland research via
DTM and network analysis. Based on the results of DTM, we found that the recent trend of
peatland research is focused on sustainable management under climate change rather than
on its fundamental biological, physical, and chemical characteristics. The more frequently
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the topics are studied, the more various interests are developed dynamically over time.
In network analysis, the impact of topics related to greenhouse gases on other topics in
peatland research was the greatest; therefore, if peatlands are studied in response to climate
change, it is expected that overall peatland research will be promoted. However, a gap
between academia and policies was found in the field of managing peatlands as a means
of responding to climate change, such as Nationally Determined Contributions (NDC),
which supported the necessity of effective policies, research, and technology for the use of
peatlands as a means of greenhouse gas reduction. This gap should be filled with follow-up
studies. Finally, DTM and network analysis are useful tools providing insights about the
global trends of peatland research toward sustainable management of peatland under
climate change and finding a gap that needs to be dealt with in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14091818/s1, Table S1: List of stop-words for data pre-processing
in dynamic topic modeling, Table S2: Representative papers in peatland research for each topic
classified by dynamic topic modeling. References of Table S2 were cited from [18,53–213].
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