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Abstract: The Tibet Plateau of Qinghai supports complex vegetation types that are ecologically fragile
and sensitive to climatic factors. Therefore, it is important to understand the changes in vegetation
and the factors responsible for these changes and to maintain the ecosystem balance and promote
sustainable development in the region. Therefore, this paper is based on annual SPOT/VEG NDVI
(Normalized Difference Vegetation Index) data, land use data, topographic data, temperature data,
and precipitation data from 1999 to 2019. The spatiotemporal variation in the NDVI over the Tibetan
Plateau in the last 21 years and its response to different driving factors were investigated by using the
Theil–Sen slope method, Mann–Kendall test, partial correlation analysis, and geographical detector
method. The results showed that (1) the vegetation coverage on the Qinghai–Tibet Plateau showed an
increasing trend from 1999 to 2019, with increases in approximately 67.00% of the plateau area. (2) The
spatial differences in vegetation coverage were large; notably, low-density vegetation areas decreased
obviously, moderate-density vegetation areas accounted for approximately 50% of the total area,
high-density vegetation areas were the least common, and the overall growth rate was significant.
(3) The NDVI was positively correlated with temperature and precipitation, and a positive correlation
was observed in more than 66% of the region. (4) The order of the influence of single driving factors
on the NDVI was as follows: precipitation > soil type > altitude > temperature > gradient > slope >
population density > GDP. (5) The combined effect of the factors was significantly higher than that of
single driving factors, with a notable nonlinear influence. The interactions between meteorological
factors, such as precipitation, and topographic factors, such as altitude, were important, with a
q-value over 0.79. The results of this study provide some methodological support for the ecological
conservation of the Tibetan Plateau, and at the same time establish a scientific and reasonable strategy
for vegetation restoration.

Keywords: Qinghai–Tibet plateau; Normalized Difference Vegetation Index (NDVI); spatial and
temporal changes; driving forces; geographic detector

1. Introduction

In recent years, with the intensification of global climate change, the impact on ter-
restrial ecosystems and the corresponding feedback have become popular research topics.
Vegetation, as an important component of ecosystems, links soil, the atmosphere, and
moisture through energy transfer and material transformation and can be indicative of
global changes to a certain extent [1,2]. The Normalized Difference Vegetation Index is
an important indicator used to characterize the growth status and quality of vegetation
communities, and it is an effective indicator that can quantitatively characterize the growth
status of vegetation [3]. At present, scholars around the world have performed extensive
research on the characteristics of vegetation change and the corresponding response to
climate change using the NDVI.

The Qinghai–Tibet Plateau is the largest plateau in the world and has the highest
average altitude of any area on Earth, known as the “roof of the world” and the “third
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pole of the Earth”; its unique geographical location and complex natural environment
make it the largest ecologically fragile area in China, as well as an area highly sensitive
to climate change in Asia and even the Northern Hemisphere [4,5]. The Qinghai–Tibet
Plateau, with its complex and diverse vegetation types, undulating terrain, and low and
relatively concentrated disturbances by human activities, is an ideal site for studying
vegetation cover changes and the corresponding response to climate change [6]. However,
with the expansion of towns, population migration, livestock development, and ecological
construction on the Tibetan Plateau in recent years, the impact of human activities on
vegetation of the plateau has been increasing [7], and large anthropogenic changes in land
cover types may alter the way vegetation responds to climate variations [8]. Therefore, an
increasing number of scholars has started to explore the response of vegetation to human
activities and quantified and determined the relative effects of climate change and human
activities on vegetation changes.

In previous studies on the relationship between the NDVI and various drivers,
scholars [9–12] first mainly used correlation coefficients to reflect the spatial and tem-
poral correlations between the NDVI and temperature and precipitation, and a few re-
searchers considered the indirect effects of interactions between climate factors on vegeta-
tion changes [13,14]; in these studies, partial or complex correlation coefficients were used
to analyze the direct and indirect effects of temperature and precipitation on vegetation
changes, but no specific magnitude of the driving forces of vegetation change influenced
by meteorological factors was obtained. Over time, multiple linear regression [15], artificial
neural networks [16], support vector machine models [17], geographically weighted re-
gression [18], residual analysis [19,20], and geographic probes [21,22] have been gradually
applied to quantify the effects of temperature, precipitation, land use type, elevation, popu-
lation, GDP, and other factors on the NDVI [23]. Although previous studies identified the
characteristics of vegetation cover changes on the Tibetan Plateau and the corresponding
response to climate factors to a certain extent, the influence of climate factors on NDVI
changes was not considered. Moreover, the influence of other factors, such as human
activities and topographic factors, on vegetation has not been comprehensively studied.

In view of these research gaps, the spatial and temporal variation characteristics of
the NDVI on the Tibetan Plateau from 1999 to 2019 are investigated in this paper based on
SPOT/VEG NDVI data, land use data, topographic data, and climate data from 1999 to
2019, supplemented by the Theil–Sen slope method and Mann–Kendall test. The aim is to
answer the following questions: (1) What are the dynamic spatial and temporal trends of
vegetation cover on the Tibetan Plateau over the period 1999–2019? (2) What is the degree
of response of the annual mean NDVI to natural factors and human activities, and how do
the interactions among different factors affect vegetation growth on the Tibetan Plateau?

2. Data Sources and Research Methods
2.1. Study Area Overview

The Qinghai–Tibet Plateau is in Southwest China, from the northern foot of the
West Kunlun Mountain–Qilian Mountain Range in the north to the southern foot of the
Himalayas and other mountain ranges in the south and from the Hengduan Mountains
in the east to the Pamir Plateau in the west. The plateau covers an area from 26◦00′12′′–
39◦46′50′′ N and 73◦18′52′′–104◦46′59′′ E, with an average altitude of 4400 m. The region
spans six provinces, namely, Tibet, Xinjiang, Qinghai, Gansu, Yunnan, and Sichuan, and
covers a total area of approximately 2.57 million km2, which is 26.8% of the total land
area of the country [24]. Due to the unique geographical characteristics of this region, the
climate is warm and humid in the southeast and dry and cold in the northwest, with a
typical plateau climate, characterized by a dry and clean atmosphere, strong solar radiation,
low temperatures, large diurnal temperature differences, small annual variations in major
climate factors, low precipitation, and significant differences between seasons. The climate
and topography of the Qinghai–Tibet Plateau are characterized by certain longitudinal
geographical differences, and the temperature and precipitation generally decrease as
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the elevation gradually increases from east to west. The land use types in the region
are grassland, unused land without any vegetation cover, and forestland, in descending
order of abundance, accounting for 48.5%, 32.0%, and 13.2% of the total area of the region,
respectively, with water, arable land, and urban land mixed among them (Figure 1).
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2.2. Data Sources
2.2.1. NDVI Data

NDVI data were obtained from the Resource and Environment Science and Data
Center of the Chinese Academy of Sciences (http://www.resdc.cn). (accessed on 1 July
2023). The annual vegetation index (NDVI) spatial distribution dataset in China was based
on a continuous time series of SPOT/VEGETATION NDVI satellite remote sensing data.
The product uses the maximum value synthesis method to obtain the NDVI value of
each image element, maximizing the removal of the influence of clouds, and generating
an annual vegetation index dataset at 1 km resolution since 1998 [25]. For the obtained
NDVI data, simple preprocessing was performed, and the year-by-year vegetation index
NDVI dataset was calculated based on mask-based cropping in ArcGIS 10.8 and the vector
boundary of the Tibetan Plateau using a raster calculator.

2.2.2. Climate Data

The temperature and precipitation data were obtained from the monthly average
temperature and precipitation datasets for China from January 1901 to December 2022
provided by the National Earth System Science Data Center (http://www.geodata.cn).
(accessed on 1 July 2023), with a spatial resolution of approximately 1 km. This dataset
was generated with the Delta spatial downscaling scheme in the Chinese region based on
the global 0.5◦ climate data released by the CRU and the global high-resolution climate
data released by WorldClim [26]. The data were validated with data from 496 independent
meteorological observation points, and the validation results were deemed to be accurate.
The dataset was preprocessed by using ArcGIS 10.8 software to mask, crop, resample,
and reproject the mean temperature and rainfall data based on the vector boundary of
the Tibetan Plateau to obtain a raster image dataset of year-by-year mean temperature
and rainfall with the same image size and coordinate system as the NDVI data. Then,
MATLAB R2022b software was used to analyze the Pearson correlations among variables
and significance of the raster data.

2.2.3. Resource Data

Land use resource data were provided by the Resource and Environment Science and
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn). (accessed on

http://www.resdc.cn
http://www.geodata.cn
http://www.resdc.cn
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1 July 2023), which provides a thematic database of Chinese national-scale multiperiod
land use/land cover constructed based on manual visual interpretation at a resolution of
30 m using Landsat remote sensing imagery from the United States Landsat as the main
information source [27]. Soil type data were obtained from the Resource and Environment
Science and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn).
(accessed on 1 July 2023). These data were digitally generated from the 1:1 million Soil
Map of the People’s Republic of China, prepared and published by the National Soil
Census Office in 1995. DEM (digital elevation model) data were provided by the National
Tibetan Plateau Science and Data Center (http://data.Tpdc.ac.cn). (accessed on 1 July 2023),
which generates 1 km data based on 1: 250,000 contour and elevation points in China [28].
Population density and GDP data were obtained from the Data Center for Resource and
Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn). (accessed
on 1 July 2023). Notably, a kilometer-grid dataset of the spatial distributions of population
and GDP in China at a spatial resolution of 1 km was obtained, and five periods of data
for the years 2000, 2005, 2010, 2015, and 2019 were selected [29–32]. The above data were
masked and cropped based on the vector boundary of the Tibetan Plateau using ArcGIS
10.8 software and then resampled to 1 km resolution and reclassified to obtain the data
required for the comprehensive geodetection analysis.

2.3. Research Methodology
2.3.1. Mann–Kendall Test

The Mann–Kendall (MK) test is a nonparametric test, which means that no prior
assumptions about the statistical distribution of the data are required [33–35]. The nor-
malized statistic Z is mainly used to test the trend and significance of time series. The
Mann–Kendall test is used to determine the significance of the trend, and the related
calculation is as follows:

Z =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0
(1)

n−1

∑
i=1

n

∑
j=i+1

sgn
(

NDVIj − NDVIi
)

(2)

sgn
(
NDVIj −NDVIi

)
1, NDVIj −NDVIi > 0
0, NDVIj −NDVIi = 0
−1, NDVIj −NDVIi < 0

(3)

var(S) =
n(n− 1)(2n + 5)

18
(4)

where n is the number of sample points in the time series. Sen + MK was combined to
determine the trend of increasing or decreasing vegetation coverage during the study
period. Based on the vegetation trend characterized by the β value and the results of the
significance test of the vegetation trend, the statistical Z value at the significance levels of
α = 0.05 and α = 0.01 was used as the threshold value, and the NDVI trend was classified
into seven classes: highly significant decrease (β < 0, |Z| > 2.58), significant decrease (β < 0,
1.96 < |Z| ≤ 2.58), lowly significant decrease (β < 0, 1.65 < |Z| ≤ 1.96), no significant
change (|Z| ≤ 1.65), lowly significant increase (β > 0, 1.65 < |Z| ≤ 1.96), significant
increase (β > 0, 1.96 < |Z| ≤ 2.58), and highly significant increase (β > 0, |Z| > 2.58).

2.3.2. Trend Analysis and Theil–Sen Trend Slope Estimation

In the case that the Mann–Kendall test is successful, the slope of that trend could
be estimated using the Theil–Sen slope estimator. Theil–Sen median trend analysis is a
nonparametric statistical method [36–39] with the advantages of not requiring the sample
to follow a specific distribution, being computationally efficient and insensitive to outliers

http://www.resdc.cn
http://data.Tpdc.ac.cn
http://www.resdc.cn
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without a reduction in accuracy, and having the powerful ability to avoid measurement
errors or errors associated with anomalous data. A comparison of different linear regression
models shows that the method has significant advantages in the case of small samples. The
corresponding equation is

β = Median
{

NDVIj −NDVIi

j− i

}
, ∀ j > i (5)

where β is the trend of vegetation change, and NDVIi and NDVIj are the NDVI values at
times i and j, respectively. β > 0 indicates an increasing NDVI trend, while the opposite
relation indicates a decreasing NDVI annual trend.

2.3.3. Pearson Correlation Analysis

To investigate the effects of climatic and anthropogenic factors on the NDVI, the
correlation between the NDVI and trends in mean temperature and precipitation was
calculated at the image scale [40] with the following equation:

Axy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(6)

where:
Axy—correlation of the trends of the two variables;
yi—the value of the NDVI in the i-th year;
xi—the values of average temperature and precipitation in the corresponding year;
y and x—the mean values of the NDVI and different variables in the study period.
At test was used to test significance, and the correlation between the NDVI and

climatic and anthropogenic factors was classified as highly significant (p < 0.01), significant
(p < 0.05), or not significant (p ≥ 0.05).

2.3.4. Geodetector Calculation

Changes in the NDVI are governed by multiple natural factors, in addition to climate
change, and are also influenced by a combination of human activities, topography, and
elevation [41]. To quantitatively evaluate and reveal the effects of natural and human
factors on vegetation cover, a geoprobe approach is applied in this paper.

A geodetector is a statistical tool based on spatial statistics and spatial autocorrelation,
and it can be used to explore spatial anisotropy, reveal the magnitude and significance of
the effects of individual factors on a selected variable, detect risk zones and interaction
strengths, and perform ecological detection [42]. In this study, we analyzed the drivers of
different impact factors in the study area through Microsoft Word 2019MSO software.

(1) Factor detection: The effects of the spatial heterogeneity of the dependent variable Y
(NDVI values) and the magnitude of the spatial heterogeneity of the independent variable X
(natural and socioeconomic factors) on Y, expressed as q, were calculated with the following
equations:

q = 1− 1
Nσ2

L

∑
h=1

Nhσ2
h = 1− SSW

SST
(7)

SSW =
L

∑
h=1

Nhσ2
h (8)

SSW = Nσ2 (9)

where h = 1, 2,... L, L is the classification of x or y; the value of q is in the range of [0, 1], and
the larger the value of q is, the stronger the influence of x on the spatial variance of y. Nh
and N denote the number of cells encompassed by the variable divided into h classes and
the number of cells in the entire spatial region, respectively. σ2

h and σ2 are the variances of
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h classes and Y in the region, respectively, and SSW and SST are the sum of the variances of
L classes and the total variance of the region, respectively.

(2) Interaction detection: The interactions among different independent variables x are
determined, and the result indicates whether the influence on y when the two factors act
together is correlated or independent. The q-value [q(X1∩X2)] is then output.

3. Results
3.1. Characteristics of Temporal Changes in Vegetation Cover

Based on the continuous time series of SPOT/VEGETATION NDVI satellite remote
sensing data, the maximum value synthesis method was used to generate the annual
vegetation index data from 1999–2019, from which the fitted curve of the mean change
in the annual NDVI was obtained. As shown in Figure 2, the annual average NDVI in
the Tibetan Plateau region in the study period showed an overall fluctuating upward
trend. Notably, the NDVI in the study area increased from 0.335 to 0.378 from 1999–2019,
with a growth rate of 12.8%, or 0.0024-a−1. The percentage of vegetation cover improved
significantly and showed an increasing trend. The change in vegetation cover in the study
area can be roughly divided into three stages. In the first stage, the NDVI increased rapidly
from 0.335 to 0.345, with a growth rate of 3%, or 0.0036-a−1, from 1999–2005. In the second
stage, the NDVI increased slowly from 0.359 to 0.363, with a growth rate of 1.1%, or
0.0018-a−1. In the third stage, from 2015–2019, the NDVI increased rapidly again from
0.363 to 0.378, with a growth rate of 4.1%, or 0.004-a−1.
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Figure 2. NDVI trends from 1999–2019 on the Tibetan Plateau.

The trends from 1999 to 2019 observed in this study are consistent with the results
of Mu Li et al. [43]. The changes in vegetation cover from 1999–2019 were closely related
to the implementation of environmental protection policies and a general increase in peo-
ple’s awareness regarding environmental protection in the region. From 2015–2019, the
provinces on the Qinghai–Tibet Plateau implemented a series of measures to protect the
ecological environment in response to the requirements of the national ecological civiliza-
tion construction policy, which led to significant changes in vegetation coverage in the
region. Additionally, the temperature in the region warmed and rainfall increased during
this period, conjectures which might have contributed to the NDVI increase, providing an
idea for subsequent correlation studies.
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3.2. Spatial Variation Characteristics of Vegetation Cover

To comprehensively evaluate the changes in spatial vegetation cover in the region,
the NDVI was divided into low vegetation cover areas (0~0.3), low to medium vegetation
cover areas (0.3~0.6), medium vegetation cover areas (0.6~0.8), and high vegetation cover
areas (0.8~1). As shown in Figure 3a, spatially, the vegetation cover in the region showed
obvious regional differences, and the NDVI displayed a gradual decrease from southeast
to northwest, which was consistent with the spatial distribution patterns of temperature,
rainfall, and elevation [44]. The predicted changes in NDVI were most closely related to
topographic and climate factors.
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As shown in Figure 3b and Table 1, the spatial distribution of vegetation cover in
the region was determined every five years from 1999–2019, and the spatial and temporal
changes in the spatial proportion of each vegetation coverage area in the region were
analyzed. The proportion of low-density vegetation cover areas was the highest, and the
change was significant, reaching 57.3% to 53.3%; moreover, the proportion area of this cover
class decreased at a rate of 0.206-a−1. The proportions of medium–low-density vegetation
cover and medium-density vegetation cover were similar and decreased year by year. The
change in medium–low-density vegetation cover areas was the least significant, varying
from 19% to 17.6%, with a rate of decrease of 0.068-a−1. The change in the medium-density
vegetation cover area was comparatively more significant, varying from 21.5% to 14.6%,
with a rate of decrease of 0.384-a−1. The high-density vegetation cover area increased from
2.1% to 14.6%, with the most significant increasing trend, reaching 0.668-a−1.

Table 1. Temporal variations in the area share of NDVI coverage zones.

Year
Low Vegetation Cover (0–0.3) Low to Medium Vegetation Cover

(0.3–0.6) Medium Vegetation Cover (0.6–0.8) High Vegetation Cover (>0.8)

Area
(km2)

Proportion
(%)

Growth
Rate (%)

Area
(km2)

Proportion
(%)

Growth
Rate (%)

Area
(km2)

Proportion
(%)

Growth
Rate (%)

Area
(km2)

Proportion
(%)

Growth
Rate (%)

1999 147.3 57.3 48.8 19 55.3 21.5 5.4 2.1

2004 145.7 56.7 −1.09 47.5 18.5 −2.66 52.7 20.5 −4.70 11.1 4.3 105.56

2009 142.9 55.6 −1.92 47.3 18.4 −0.42 55 21.4 4.36 11.6 4.5 4.50

2014 139.8 54.4 −2.17 46 17.9 −2.75 38.8 15.1 −29.45 32.6 12.7 181.03

2019 137.0 53.3 −2.00 45.2 17.6 −1.74 37.5 14.6 −3.35 37.5 14.6 15.03

Overall, although the proportion of the area characterized by low vegetation density
decreased year by year, this classification is dominant in half of the study area. In contrast,
the proportion of high-density vegetation cover area to the total study area is the lowest,
but the growth trend is the most significant, indicating that although the vegetation cover in
the area is not very high, the ecological conditions have had positive effects on vegetation.
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3.3. Trend Analysis of Vegetation Cover Change

Based on the MK test, the significance of the vegetation cover trend in the study area
was assessed. As shown in Figure 4b, NDVI changes in the study area were dominated
by nonsignificant changes, significant increases, and highly significant increases. Most of
the areas with slight significant increases and no significant changes were distributed in
the central and western parts of the study area, and the areas with significant increases
and highly significant increases were mainly distributed in the eastern part of the study
area. Moreover, the areas with slight significant decreases, significant decreases, and highly
significant decreases were distributed along the northern part of the study area. The Z
values of the statistics at the significance levels of α = 0.05 and α = 0.01 were used as the
critical values, and the image element values were reclassified (Table 2). The results showed
that the areas of very significant decreases, significant decreases, marginally significant
decreases, no significant change, marginally significant increases, significant increases, and
marginally significant increases accounted for 3.1%, 5.4%, 3.2%, 39.9%, 4.7%, 10.8%, and
33.0% of the total area of the region, respectively.
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Table 2. NDVI trends and significant trend proportions on the Tibetan Plateau from 1999–2019.

Area (km2) Proportion (%)

trend analysis
Decreasing trend 83.800 32.64

Increasing trend 173.200 67.36

Significance Test

highly significant reduction 8.000 3.14

Significant reduction 13.900 5.41

lowly significant reduction 8.200 3.15

not significant change 102.500 39.86

lowly significant increase 12.100 4.67

Significant increase 27.800 10.79

highly significant increase 84.800 32.99

Theil–Sen median trend analysis was used to study the trend of vegetation cover
changes in the region from 1999–2019. The effect of vegetation restoration in the region
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is remarkable, as shown in Figure 4a. The NDVI increase in the southeast and northeast
areas of the region is most obvious, and the NDVI in the central and southwest areas is
basically unchanged. Additionally, the NDVI in the northwest is decreasing. Using β = 0
as the critical value of the vegetation trend, we reclassified the image element values to
obtain Table 2, which shows that the NDVI in the whole region displays a clear increasing
trend, and the areas with increasing trends and decreasing trends account for 67% and 33%
of the total area, respectively.

In general, there is obvious spatial variability in vegetation cover trends in the region,
and these trends are mainly increasing. The areas that displayed a significant increase
accounted for nearly 50% of the total area, which far exceeds the area of those with a
significant decrease. This result indicates that the overall effect of the Qinghai–Tibet Plateau
ecosystem management is good.

3.4. Effect of Climate Factors on Vegetation Cover

According to Chen et al. [45], climate change is an important reason for the increase
in the NDVI on the Tibetan Plateau, and temperature and precipitation are important
indicators of climate change. Correlation analysis based on the image metric scale was
used to explore the correlations between the NDVI and temperature and precipitation in
space over time. As shown in Figure 5, the temperature showed a decreasing trend from
1999–2019, with the annual average temperature decreasing from −1.86 ◦C to −2.06 ◦C,
a decrease of 10.8% or 0.0095-a−1. Precipitation showed an increasing trend during the
period, increasing from 32.46 mm to 33.33 mm, an increase of 2.7% or 0.041-a−1.
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The results of the correlation analysis and significance test between the temperature
and precipitation distributions and the NDVI are shown in Figures 6 and 7. Then, the
image values of the results were reclassified to obtain Table 3. An analysis of the results
in Figure 6 and Table 3 showed that the percentage of the area with a positive correlation
between the NDVI and mean temperature was 66.82%, mainly in the central–eastern part
of the study area, which is consistent with the results of Zhao Qianqian [46]. The areas in
the region in which the NDVI values showed highly significant and significant positive
correlations with mean temperature, accounting for 2.73% and 7.97% of the total area
of the region, respectively, were mainly concentrated in the eastern and central parts of
the region, and insignificant correlations were observed in most other areas. This result
indicated that there is high spatial heterogeneity in terms of the promotion of vegetation
due to increasing average temperatures, and the correlation was not significant or of low
significance. The effect of increased temperatures on the NDVI was most obvious in the
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eastern region, where the average temperature is relatively high. In Figure 7 and Table 3,
the percentage of areas that displayed a positive correlation between the NDVI and mean
annual precipitation was 66.29%, mainly in the northeastern and southwestern parts of
the study area, which is basically consistent with the results of Wang Zhipeng [47]. The
proportions of areas with highly significant and significant positive correlations were 4.87%
and 9.55%, respectively, indicating that the NDVI and mean annual precipitation showed
a simultaneous increase in most areas of the Tibetan Plateau during the study period.
The spatial distributions of the NDVI and mean annual precipitation were highly and
significantly correlated in the northeastern region, and the significance of trends in other
regions was relatively weak. In general, the overall NDVI and precipitation correlation
reached 14.4%, which was significantly higher than that of the NDVI and temperature
correlation at 10.7%, indicating that precipitation has a greater influence on vegetation
cover change on the Tibetan Plateau.
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Table 3. Spatial distribution of NDVI correlation with temperature and precipitation in the Tibetan
Plateau as a percentage of area.

Temperature Precipitation

Area (km2) Proportion (%) Area (km2) Proportion (%)

Relevance

negative
correlation 85.30 33.18 86.60 33.71

positive
correlation 171.70 66.82 170.40 66.29

t-Test sig-
nificance

highly significant
reduction 7.00 2.73 12.50 4.87

significant
reduction 20.50 7.97 24.50 9.55

not significant
change 229.50 89.30 220.00 85.58

3.5. Analysis of the Influence of Each Driver on Vegetation Cover Change

The geodetector is an algorithm used for discrete data, so continuous variables (among
the eight independent variables in this paper, all are continuous variables except elevation,
soil type, slope, and slope direction) are discretized. In this paper, the natural breakpoint
method [48] was adopted, and all the driving factors used were divided into 9 categories,
except for soil type, which was divided into 22 categories, as shown in Figure 8.

First, the magnitude of the single-factor q-value was analyzed, and then the dominant
driving factors were discerned. The driving factors in the analysis were series of data, such
as temperature, precipitation, elevation, slope, slope angle, soil type, population density,
and GDP, among which temperature and precipitation were climate factors; elevation,
slope, slope angle, and soil type were topographic factors; and population density and GDP
were anthropogenic factors. The results of the analysis based on the q-values of each driver
in the region calculated with the geographic probe method are shown in Figure 9a, which
indicates that the influence of each driver on the NDVI in the region ranked as follows:
precipitation (0.709) > soil type (0.289) > elevation (0.252) > temperature (0.252) > slope
(0.097) > slope direction (0.011) > population density (0.004) > GDP (0.003). The spatial
variation in the NDVI in the region is the result of the combined effects of natural and
human factors, among which precipitation, soil type, elevation, and temperature make
strong contributions, with q-values greater than 0.25. Slope, slope direction, population
density, and GDP make relatively small contributions. Among the factors that lead to
spatial variations in the NDVI in the region, climate factors such as precipitation and
temperature dominate, topographic factors such as soil type and elevation are the next
most important, and anthropogenic factors contribute the least to the NDVI.

To focus on the changes in vegetation cover considering the interactions between
natural and anthropogenic factors, the relationships between different driving factors and
the spatial variations in the NDVI were analyzed by using the geographic probe method,
and the results are shown in Figure 9b. Based on the comparison of the data in Figure 9,
it can be seen that (1) the combined effect of any two driving factors has a greater effect
on the NDVI than the independent effect of a single factor, mainly showing two-factor
enhancement and nonlinear enhancement trends. (2) The interaction between precipitation
and other factors is significant, with q-values greater than 0.7, among which the interaction
between precipitation and elevation is the largest, with a q-value of 0.797, followed by
the interaction between temperature and precipitation, with a q-value of 0.793. Overall,
the magnitude of the NDVI in the region is most obviously influenced by climate factors
such as rainfall. (3) The interactions between anthropogenic factors and other factors have
the smallest influence on the NDVI values in the region, except for the interaction with
precipitation, which has a q-value of 0.7. The significance of the interaction with other
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factors is very low, and the q-values are all below 0.3. The results indicate that natural
factors play a dominant role in influencing NDVI changes on the Tibetan Plateau, and
anthropogenic factors have little effect, likely because of the high altitude and harsh climate
in most areas of the Tibetan Plateau, the poor suitability of the living environment, the
low and concentrated population density in the region, and the fact that most areas are
uninhabited, resulting in the very limited influence of anthropogenic factors on the NDVI.
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4. Discussion and Conclusions
4.1. Discussion

In this paper, the spatial and temporal characteristics of vegetation cover changes
are studied, and a quantitative analysis of the driving factors of vegetation on the Tibetan
Plateau over the past 21 years is performed. The correlations between precipitation and
temperature and the NDVI were analyzed, as were the levels of significance of these corre-
lations, and the driving forces associated with relevant natural and anthropogenic factors
were calculated using a geographic probe method. The main factors driving NDVI changes
in the region were identified. Compared with existing studies of the Tibetan Plateau, this
paper quantifies the driving forces of a series of factors influencing NDVI changes on
the Tibetan Plateau with the help of a geoprobe method, and the driving force values are
calculated for individual and multiple factors. Compared with the existing studies [49–52]
of the spatial and temporal evolution trends of vegetation on the Tibetan Plateau and the
corresponding influential factors, this paper quantifies the effects of topographic factors and
human activities to determine specific drivers. In combination with the existing findings
of Tibetan Plateau studies, a correlation analysis between the anthropogenic and natural
factors that affect the NDVI on the Tibetan Plateau was performed, and it was found that
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precipitation displayed the strongest positive correlation with the NDVI and was the pri-
mary factor affecting vegetation growth and interannual variations in the region, which is
consistent with the results of previous studies [53]. However, the research in this paper still
has some limitations, such as that the influence of anthropogenic factors focuses more on
population density and economy, and does not make a specific analysis for anthropogenic
factors such as forest fires, land use and land cover change, forest resource development,
and forest degradation, which is also the focus of the subsequent research.

Generally, the correlation between the NDVI and drivers is studied using correlation,
partial correlation, and complex correlation coefficients. However, most studies that focused
on the correlation between the NDVI and drivers only considered the correlation between
the NDVI and climate factors (temperature, precipitation, etc.), and did not consider the
spatial and temporal correlations between the NDVI and topographic factors (e.g., elevation
and slope) or anthropogenic factors (e.g., population and GDP). In addition, the gray
correlation [54], which is similar to the correlation coefficient approach, is used to measure
the relationship between the NDVI and other factors; only the measurement algorithms are
different, and, thus, the major limitations of these methods is the lack of quantifying the
relationships between the NDVI and anthropogenic and topographic factors, whereas the
Granger causality test [55] is mainly used to test for causal relationships between variables
and cannot make inferences about complex relationships between multiple variables. The
existing quantitative assessment methods also have various shortcomings; for example, the
regression modeling method cannot yield the spatial distribution of, or spatial differences
in, the contribution of each factor, and modeling methods based on biophysical processes
can easily introduce large uncertainties due to the complex model structures and numerous
model parameters; moreover, residual analysis cannot account for the differences in the
climatic factors that affect vegetation growth in different ecosystems [56]. The geographic
probe method can be used to separate the effects of natural and anthropogenic factors
on vegetation change and calculate the corresponding effects on NDVI separately [57];
therefore, the magnitude of different driving forces of vegetation change can be assessed
through a novel approach. However, it also has certain limitations, such as the difficulty
of determining the causal relationship between specific influencing factors, the lack of
in-depth explanations of the mechanisms and processes behind them, and the difficulty
of adequately capturing and explaining these complexities in the face of the complex
interactions between environmental factors and human activities such as nonlinearities
and delayed effects.

In general, the evaluation system of the relative roles of natural factors and human
activities in the analysis of vegetation change drivers has been formed, but it still needs to
be improved for special regions and special influencing factors, and there is still a lack of
quantitative research on the impacts of anthropogenic and natural factors on the NDVI in a
continuous and long time series, so as to further improve its accuracy and applicability.

4.2. Conclusions

The NDVI on the Qinghai–Tibet Plateau rapidly increased from 1999 to 2019. Notably,
1999–2005, 2005–2015, and 2015–2019 were the three periods with the most obvious NDVI
growth rates. The corresponding growth rates were 0.0036-a−1, 0.0018-a−1, and 0.004-a−1,
respectively; spatially, the NDVI pattern over the whole Tibetan Plateau was dominated by
increases from northwest to southeast, and areas of growth accounted for 67% of the total
area of the region.

During the study period, the spatial variation in vegetation cover in the study area
was large. Notably, the area share of low-vegetation-density cover decreased from 57.3%
to 53.3%, and the rate of decrease was second only to that of medium-density-vegetation
cover. However, low-vegetation-density cover remained the main type of vegetation cover
in the region. In contrast, the proportion of high-density-vegetation cover in the total study
area was the lowest, but it displayed the most significant growth during the study period,
increasing from 2.1% to 14.6% of the area, a growth rate of 0.668-a−1.
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The correlations between the NDVI and mean temperature and precipitation were
mainly positive, indicating that the effects of temperature and rainfall on NDVI in the
Qinghai–Tibet Plateau region are mainly positive. From the correlation test results, a corre-
lation between the NDVI and temperature is only observed in 10.6% of the whole region,
while the correlation between the NDVI and precipitation is more extensive, reaching 14.4%.

The driving factors of NDVI changes in the past 21 years are precipitation > soil type
> elevation > temperature > slope > slope direction > population density > GDP, and the
main driving factors are precipitation, soil type, elevation, and temperature, with q-values
of 0.709, 0.289, 0.252, and 0.252, respectively. This finding suggests that natural factors such
as precipitation, soil type, elevation, and temperature dominate the spatial variation in the
NDVI in the region, and anthropogenic factors such as population density and GDP have
little influence on NDVI changes and environmental evolution.

The analysis of the interactions among different drivers and their effects on the spatial
variations in NDVI using the geodetector indicated that the combined effects of multiple
drivers are greater than the effects of individual drivers, with two-factor and nonlinear
enhancement trends. Specifically, the influence of meteorological factors on the NDVI
values in the region is high, and the interactions between meteorological factors such as pre-
cipitation and topographic factors such as elevation have the most significant influence on
the changes in NDVI values in the region, with a q-value of 0.797. This value is significantly
higher than that of the interactions between anthropogenic factors and other factors.

Author Contributions: Conceptualization, T.X. and H.W.; methodology, T.X.; software, T.X.; valida-
tion, T.X. and H.W.; formal analysis, T.X.; data curation, T.X.; writing—original draft preparation, T.X.;
writing—review and editing, T.X.; project administration, H.W. All authors have read and agreed to
the published version of the manuscript.

Funding: Project support: Construction of Talent Innovation Team and Laboratory Platform of Tibet
University—Construction of Plateau Geothermal New Energy Innovation Team and Laboratory Plat-
form, Project No. 2022ZDTD10; Tibetan Finance Pre-indication [2022] No. 1 Central Support for Local
Ministry and Regional Joint Construction/First-class Everest Construction Project—Construction of
Geological Resources and Geological Engineering Characteristics.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The information used in the analysis is accessible from the public data
sources.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cao, M.; Woodward, F.I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 1998, 393,

249–252. [CrossRef]
2. Zhang, G.L.; Xu, X.L.; Zhou, C.P.; Zhang, H.B.; Ouyang, H. Responses of vegetation changes to climatic variations in Hulun Buir

grassland in past 30 years. Acta Geogr. Sin. 2011, 66, 47–58.
3. Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to

climate changes in China. Glob. Environ. Chang. 2006, 16, 330–348. [CrossRef]
4. Yao, T.; Chen, F.; Cui, P.; Ma, Y.; Xu, B.; Zhu, L.; Zhang, F.; Wang, W.; Ai, L.; Yang, X. From Tibetan Plateau to Third Pole and

Pan-third Pole. Bull. Chin. Acad. Sci. 2017, 32, 924–931.
5. Zhang, R.; Su, F.; Jiang, Z.; Gao, X.J.; Guo, D.L.; Ni, J.; You, Q.L.; Lan, C.; Zhou, B.T. An overview of projected climate and

environmental changes across the Tibetan Plateau in the 21st century. Chin. Sci. Bull. 2015, 60, 3036–3047.
6. Alley, R.B.; Meese, D.A.; Shuman, C.A.; Gow, A.J.; Taylor, K.C.; Grootes, P.M.; White, J.W.C.; Ram, M.; Waddington, E.D.;

Mayewski, P.A.; et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 1993, 362,
527–529. [CrossRef]

7. Li, S.C.; Wu, J.S.; Gong, J.; Li, S. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Sci.
Total Environ. 2018, 621, 18–29. [CrossRef] [PubMed]

8. Wang, X.H.; Zheng, D.; Shen, Y.C. Land use change and its driving forces on the Tibetan Plateau during 1990–2000. Catena 2008,
72, 56–66. [CrossRef]

https://doi.org/10.1038/30460
https://doi.org/10.1016/j.gloenvcha.2006.02.002
https://doi.org/10.1038/362527a0
https://doi.org/10.1016/j.scitotenv.2017.11.216
https://www.ncbi.nlm.nih.gov/pubmed/29175618
https://doi.org/10.1016/j.catena.2007.04.003


Forests 2023, 14, 1835 16 of 17

9. Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990.
Int. J. Remote Sens. 2002, 23, 3873–3878. [CrossRef]

10. Mao, D.; Wang, Z.; Luo, L.; Ren, C. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with
climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 528–536. [CrossRef]

11. Lu, Q.Q.; Jiang, T.; Liu, D.L.; Liu, Z.Y. The response characteristics of NDVI with different vegetation cover types to temperature
and precipitation in China. Ecol. Environ. Sci. 2020, 29, 23–34.

12. Yonaba, R.; Koïta, M.; Mounirou, L.; Tazen, F.; Queloz, P.; Biaou, A.; Niang, D.; Zouré, C.; Karambiri, H.; Yacouba, H. Spatial
and transient modelling of land use/land cover (LULC) dynamics in a Sahelian landscape under semi-arid climate in northern
Burkina Faso. Land Use Policy 2021, 103, 105305. [CrossRef]

13. Wang, X.Y.; Lian, J.; Yang, X.P.; Zhao, X.Y.; Wang, X.J.; Ma, Z.W.; Gong, C.K.; Qu, H.; Wang, B. Variation in vegetation and its
response to environmental factors in Maqu County. Acta Ecol. Sin. 2019, 39, 923–935.

14. Xu, M.H.; Xue, X. Correlation among vegetation characteristics, temperature and moisture of alpine meadow in the Qinghai-
Tibetan Plateau. Acta Ecol. Sin. 2013, 33, 3158–3168.

15. Liang, H.; Huang, S.; Meng, E.; Huang, Q. Runoff prediction based on multiple hybrid models. J. Hydraul. Eng. 2020, 51, 112–125.
16. Mao, H.; Yan, Y.; Zhang, J. The present situation and prospect of the hydrographic forecasting methods. J. Libr. Inf. Sci. 2005, 15,

172–173.
17. Chen, M.; Lu, W.; Hou, Z.; Huang, H.; Li, P. The assesement of groundewater quality based on support vector machine in Western

Jilin. Water Sav. Irrig. 2013, 38, 29–33.
18. Ma, Y.; Huang, Z.X. Study on spatial-temporal evolution and measurement of green development index of urban agglomerations

in the middle reaches of Yangtze River: GWR model based. Ecol. Environ. Sci. 2017, 26, 794–807.
19. Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57,

535–554. [CrossRef]
20. Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.; VanZyl, D. Can human-induced land degradation be distinguished

from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 2007, 68, 271–297. [CrossRef]
21. Zhao, S.; Wu, X.Q.; Zhou, J.X.; Pereira, P. Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in

rocky desertification area. Sci. Total Environ. 2021, 752, 13. [CrossRef] [PubMed]
22. Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI

variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [CrossRef]
23. Gbohoui, Y.P.; Paturel, J.-E.; Tazen, F.; Mounirou, L.A.; Yonaba, R.; Karambiri, H.; Yacouba, H. Impacts of climate and environ-

mental changes on water resources: A multi-scale study based on Nakanbé nested watersheds in West African Sahel. J. Hydrol.
Reg. Stud. 2021, 35, 100828. [CrossRef]

24. Zhang, Y.L.; Liu, L.S.; Wang, Z.F.; Bai, W.; Ding, M.; Wang, X.; Yan, J.; Xu, E.; Wu, X.; Zhang, B.; et al. Spatial and temporal
characteristics of land use and cover changes in the Tibetan Plateau. Chin. Sci. Bull. 2019, 64, 2865–2875.

25. Xu, X. Annual Vegetation Index (NDVI) Spatial Distribution Dataset in China. Data Registration and Publication System
of the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences. 2018. Available online: https:
//www.resdc.cn/DOI/doi.aspx?DOIid=49 (accessed on 1 July 2023). [CrossRef]

26. Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci.
Data 2019, 11, 1931–1946. [CrossRef]

27. Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. Multi-Period Land Use Remote Sensing Monitoring Dataset in China (CNLUCC).
Data Registration and Publication System of the Data Center for Resource and Environmental Sciences, Chinese Academy of
Sciences. 2018. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=54 (accessed on 1 July 2023). [CrossRef]

28. Tang, G. Digital Elevation Model of China (1 KM). A Big Earth Data Platform for Three Poles. 2019. Available online: https:
//data.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734 (accessed on 1 July 2023).

29. Ling, Y.I.; Xiong, L.Y.; Yang, X.H. Method of Pixelizing GDP Data Based on the GIS. J. Gansu Sci. 2006, 18, 54–58.
30. Liu, H.; Jiang, D.; Yang, X.; Luo, C. Spatialization Approach to 1 km Grid GDP Supported by Remote Sensing. Geo-Inf. Sci. 2005,

7, 120–123.
31. Huang, Y.; Bao, A.-M.; Chen, X.; Liu, H.L.; Yang, G.H. A study of regional GDP kilometer grid based on oasis land use. J. Glaciol.

Geocryol. 2009, 31, 162–169.
32. Xu, X. A Kilometer Grid Dataset of Spatial Distribution of Chinese Population. Data Registration and Publication System

of the Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences. 2017. Available online: https:
//www.resdc.cn/DOI/doi.aspx?DOIid=32 (accessed on 1 July 2023). [CrossRef]

33. Chen, T.; Xia, J.; Zou, L.; Hong, S. Quantifying the influences of natural factors and human activities on NDVI changes in the
Hanjiang River basin, China. Remote Sens. 2020, 12, 3780. [CrossRef]

34. Li, P.; Wang, J.; Liu, M.; Xue, Z.; Bagherzadeh, A.; Liu, M. Spatio-temporal variation characteristics of NDVI and its response to
climate on the Loess Plateau from 1985 to 2015. CATENA 2021, 203, 105331. [CrossRef]

35. Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River
Basin. Ecol. Indic. 2015, 51, 117–126. [CrossRef]

36. Zhao, W.; Gao, B.; Lu, Q.; Zhong, Z.-Q.; Liang, X.-M.; Liu, M.; Ma, S.-X.; Sun, J.-R.; Chen, L.-G.; Fan, S.-J. Ozone pollution trend in
the Pearl River Delta region during 2006–2019. Environ. Sci. 2021, 42, 97–105.

https://doi.org/10.1080/01431160110119416
https://doi.org/10.1016/j.jag.2011.10.007
https://doi.org/10.1016/j.landusepol.2021.105305
https://doi.org/10.1016/S0140-1963(03)00121-6
https://doi.org/10.1016/j.jaridenv.2006.05.015
https://doi.org/10.1016/j.scitotenv.2020.141770
https://www.ncbi.nlm.nih.gov/pubmed/32889264
https://doi.org/10.1016/j.ecolind.2020.106545
https://doi.org/10.1016/j.ejrh.2021.100828
https://www.resdc.cn/DOI/doi.aspx?DOIid=49
https://www.resdc.cn/DOI/doi.aspx?DOIid=49
https://doi.org/10.12078/2018060601
https://doi.org/10.5194/essd-11-1931-2019
https://www.resdc.cn/DOI/doi.aspx?DOIid=54
https://doi.org/10.12078/2018070201
https://data.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734
https://data.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734
https://www.resdc.cn/DOI/doi.aspx?DOIid=32
https://www.resdc.cn/DOI/doi.aspx?DOIid=32
https://doi.org/10.12078/2017121101
https://doi.org/10.3390/rs12223780
https://doi.org/10.1016/j.catena.2021.105331
https://doi.org/10.1016/j.ecolind.2014.07.031


Forests 2023, 14, 1835 17 of 17

37. Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [CrossRef]
38. Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics: Design and Analysis, and Time-Series; Charles Griffin & Company

Limited: London, UK, 1968; Volume 3.
39. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
40. Xing, Y.; He, Z.H. An NDVI-based analysis of the temporal and spatial characteristics of vegetation coverage in Guizhou province.

J. S. China Norm. Univ. (Nat. Sci. Ed.) 2021, 53, 84–95.
41. Wang, J.; Zhang, S.; Gao, Y. Current status and perspectives of research on the interrelationship between vegetation dynamics and

environmental factors on the Qinghai-Tibet Plateau. Earth Sci. Front. 2021, 28, 70–82.
42. Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134.
43. Miao, L.; Lu, Q.; Liu, G.L.; Wei, X.J. Spatial and temporal evolution characteristics of NDVI and its response to climate factors for

different vegetation types on the Tibetan Plateau from 1999–2019. Res. Soil Water Conserv. 2023, 30, 97–105.
44. Chen, H.; Ju, P.; Zhang, J.; Wang, Y.; Zhu, Q.; Yan, L.; Kang, X.; He, Y.; Zeng, Y.; Hao, Y.; et al. Attribution analyses of changes in

alpine grasslands on the Qinghai-Tibetan Plateau. Chin. Sci. Bull. 2020, 65, 2406–2418. [CrossRef]
45. Chen, J.H.; Wu, K.; Hu, C.M.; Yang, H. Spatial and temporal variability of vegetation sensitivity in the Tibetan Plateau during the

growing season 2000–2021. Acta Ecol. Sin. 2023, 43, 4054–4065.
46. Zhao, Q.Q.; Zhang, J.P.; Zhao, T.B.; Li, J.H. Vegetation changes and its response to climate change in China since 2000. Plateau

Meteorol. 2021, 40, 292–301.
47. Wang, Z.P.; Zhang, X.Z.; He, Y.T.; Li, M.; Shi, P.L.; Zu, J.X.; Niu, B. Responses of normalized difference vegetation index (NDVI) to

precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015. Chin. J. Appl. Ecol. 2018, 29, 75–83.
48. Liu, Y.; Li, J. Geographical Detection and Optimal Decision Making of the Divergent Mechanism of Rural Poverty in Chinese

Counties. Acta Geogr. Sin. 2017, 72, 161–173.
49. Ji, Z.; Pei, T.; Chen, Y.; Hou, Q.Q.; Xie, B.P.; Wu, H.W. Spatial and temporal variation of NDVI in grasslands on the Qinghai-Tibet

Plateau from 2001 to 2020 and analysis of the driving factors. Acta Agrestia Sin. 2022, 30, 1873–1881.
50. Yuan, Q.; Yang, J. Phenological changes of grassland vegetation on the Qinghai-Tibet Plateau and its response to climate change.

Chin. J. Grassl. 2021, 43, 32–43.
51. Zhong, L.; Ma, Y.; Xue, Y.; Piao, S. Climate Change Trends and Impacts on Vegetation Greening Over the Tibetan Plateau. J.

Geophys. Res. Atmos. 2019, 124, 7540–7552. [CrossRef]
52. Wang, C.; Wang, J.; Naudiyal, N.; Wu, N.; Cui, X.; Wei, Y.; Chen, Q. Multiple Effects of Topographic Factors on Spatio-Temporal

Variations of Vegetation Patterns in the Three Parallel Rivers Region, Southeast Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 151.
[CrossRef]

53. Liu, N.; Peng, S.; Chen, Y. Temporal effects of climate factors on vegetation growth on the Tibetan Plateau. J. Plant Ecol. 2022, 46,
18–26.

54. Li, P.; He, Z.; He, D.; Xue, D.; Wang, Y.; Cao, S. Fractional vegetation coverage response to climatic factors based on grey relational
analysis during the 2000-2017 growing season in Sichuan Province, China. Int. J. Remote Sens. 2020, 41, 1170–1190. [CrossRef]

55. Zhou, Y.K. Granger effect analysis of NDVI response of vegetation to climate factors on the Qinghai-Tibet Plateau. Progress. Geogr.
2019, 38, 718–730.

56. Ma, Q.M.; Jia, X.P.; Wang, H.B.; Li, X.S.; Li, S.N. A review of methods for evaluating the effects of climate and anthropogenic
factors on vegetation change. J. Desert Res. 2019, 39, 48–54.

57. Zheng, K.; Tan, L.; Sun, Y.; Wu, Y.; Duan, Z.; Xu, Y.; Gao, C. Impacts of climate change and anthropogenic activities on vegetation
change: Evidence from typical areas in China. Ecol. Indic. 2021, 126, 107648. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2307/1907187
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1360/TB-2019-0619
https://doi.org/10.1029/2019JD030481
https://doi.org/10.3390/rs14010151
https://doi.org/10.1080/01431161.2019.1657605
https://doi.org/10.1016/j.ecolind.2021.107648

	Introduction 
	Data Sources and Research Methods 
	Study Area Overview 
	Data Sources 
	NDVI Data 
	Climate Data 
	Resource Data 

	Research Methodology 
	Mann–Kendall Test 
	Trend Analysis and Theil–Sen Trend Slope Estimation 
	Pearson Correlation Analysis 
	Geodetector Calculation 


	Results 
	Characteristics of Temporal Changes in Vegetation Cover 
	Spatial Variation Characteristics of Vegetation Cover 
	Trend Analysis of Vegetation Cover Change 
	Effect of Climate Factors on Vegetation Cover 
	Analysis of the Influence of Each Driver on Vegetation Cover Change 

	Discussion and Conclusions 
	Discussion 
	Conclusions 

	References

