Assessment of Soil Quality in the Transformation from Pure Chinese Fir Plantation to Mixed Broad-Leaved and Cunninghamia lanceolata Plantation in Subtropical China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Soil Sample Collection
2.4. The Determination of Soil Properties
2.5. The Determination of Soil Properties
2.5.1. Principal Component Analysis Method to Construct the Minimal Data Set
2.5.2. Calculation of Soil Quality Index (SQI)
2.6. Statitical Data Analysis
3. Results
3.1. Changes in Soil Quality Index after Interplanting Broad-Leaved Tree Species into a Chinese Fir Pure Forest
3.2. Screening of Minimum Data Set (MDS) Indicators for Soil Quality Evaluation
3.3. Comprehensive Evaluation of Soil Quality
4. Discussion
4.1. Changes in Soil Physical, Chemical, and Biological Properties in Two Types of Forest Stands
4.2. Screening of MDS Indicators
4.3. Soil Quality Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Conforti, M.; Lucà, F.; Scarciglia, F.; Matteucci, G.; Buttafuoco, G. Soil carbon stock in relation to soil properties and landscape position in a forest ecosystem of southern Italy (Calabria region). Catena 2016, 144, 23–33. [Google Scholar] [CrossRef]
- Gispert, M.; Pardini, G.; Emran, M.; Doni, S.; Masciandaro, G. Seasonal evolution of soil organic matter, glomalin and enzymes and potential for C storage after land abandonment and renaturalization processes in soils of NE Spain. Catena 2018, 162, 402–413. [Google Scholar] [CrossRef]
- Fernández-Martínez, M.; Vicca, S.; Janssens, I.A.; Sardans, J.; Luyssaert, S.; Campioli, M.; Peñuelas, J. Erratum: Corrigendum: Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 2015, 5, 386. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setala, H.; Van, W.H. Ecological linkages between aboveground and belowground biota. Science 2004, 304, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A. Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 2016, 27, 646–653. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Bockheim, J.G. Pedodiversity in an old-growth northern hardwood forest in the Huron Mountains, Upper Peninsula, Michigan. Can. J. For. Res. 2007, 37, 1106–1117. [Google Scholar] [CrossRef]
- Kreitinger, J.P.; Klein, T.M.; Novick, N.J.; Alexander, M. Nitrification and characteristics of nitrifying microorganisms in an acid forest soil. Soil Sci. Soc. Am. J. 1985, 49, 1407–1410. [Google Scholar] [CrossRef]
- Yakovchenko, V.; Sikora, L.J.; Kaufman, D.D. A biologically based indicator of soil quality. Biol. Fertil. Soils. 1996, 21, 245–251. [Google Scholar] [CrossRef]
- Bergstrom, D.W.; Monreal, C.M.; King, D.J. Sensitivity of soil enzyme activities to conservation practices. Soil Sci. Soc. Am. J. 1998, 62, 1286–1295. [Google Scholar] [CrossRef]
- Guo, J.; Feng, H.; Mcnie, P.; Liu, Q.; Xu, X.; Pan, C.; Yan, K.; Feng, L.; Goitom, E.A.; Yu, Y. Species mixing improves soil properties and enzymatic activities in Chinese fir plantations: A meta-analysis. Catena 2023, 220, 106723. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Soil Science Society of America: Madison, WI, USA, 1994; Volume 35, pp. 3–21. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Schoenholtz, S.H.; Miegrort, H.V.; Burger, J.A. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. For. Ecol. Manag. 2000, 138, 335–356. [Google Scholar] [CrossRef]
- Marzaioli, R.; Ascoli, R.D.; De Pascale, R.A.; Rutigliano, F.A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 2010, 44, 205–212. [Google Scholar] [CrossRef]
- Rahmanipour, F.; Marzaioli, R.; Bahrami, H.A.; Fereidouni, Z.; Bandarabadi, S.R. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- Li, R.R.; Kan, S.S.; Zhu, M.K.; Chen, J.; Ai, X.Y.; Chen, Z.Q.; Zhang, J.J.; Ai, Y.W. Effect of different vegetation restoration types on fundamental parameters, structural characteristics and the soil quality index of artificial soil. Soil Till. Res. 2018, 184, 11–23. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Karlen, D.L.; Andrews, S.S.; Stott, D.E. Protocol for indicator scoring in the soil management assessment framework(SMAF). Renew. Agric. Food Syst. 2009, 24, 260–266. [Google Scholar] [CrossRef]
- Xue, Y.J.; Liu, S.G.; Hu, Y.M.; Yang, J.F. Soil quality assessment using weighted fuzzy association rules. Pedosphere 2010, 20, 334–341. [Google Scholar] [CrossRef]
- Shao, G.D.; Ai, J.J.; Sun, Q.W.; Hou, L.Y.; Dong, Y.F. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- Chen, Y.D.; Wang, H.Y.; Zhou, J.M.; Xing, L.; Zhu, B.S.; Zhao, Y.C.; Chen, X.Q. Minimum data set for assessing soil quality in farmland of northeast China. Pedosphere 2013, 23, 564–576. [Google Scholar] [CrossRef]
- Liu, J.; Wu, L.C.; Chen, D.; Yu, Z.G.; Wei, C.J. Development of a soil quality index for Camellia oleifera forestland yield under three different parent materials in southern China. Soil Till. Res. 2018, 176, 45–50. [Google Scholar] [CrossRef]
- Sione, S.M.J.; Wilson, M.G.; Lado, M.; González, A.P. Evaluation of soil degradation produced by rice crop systems in a vertisol using a soil quality index. Catena 2017, 150, 79–86. [Google Scholar] [CrossRef]
- Li, G.L.; Chen, J.; Sun, Z.Y.; Tan, M.Z. Establishing a minimum dataset for soil quality assessment based on soil properties and land-use changes. Acta Ecol. Sin. 2007, 27, 2715–2724. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agr. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Qi, Y.B.; Darilek, J.L.; Huang, B.; Zhao, Y.C.; Sun, W.X.; Gu, Z.Q. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Ye, Y.Q.; Sun, X.D.; Zhao, J.H.; Wang, M.Q.; Guan, Q.W. Establishing a soil quality index to assess the effect of thinning on soil quality in a Chinese fir plantation. Eur. J. For. Res. 2022, 141, 999–1009. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Shoch, D.; Ellis, P.W. Dynamic global monitoring needed to use restoration of forest cover as a climate solution. Nat. Clim. Chang. 2021, 11, 366–368. [Google Scholar] [CrossRef]
- SFA. The Ninth National Forest Resources Inventory Report in China; SFA: Beijing, China, 2018. [Google Scholar]
- Selvaraj, S.; Duraisamy, V.; Huang, Z.J.; Guo, F.T.; Ma, X.Q. Influence of long-term successive rotations and stand age of Chinese fir (Cunninghamia lanceolata) plantations on soil properties. Geoderma 2017, 306, 127–134. [Google Scholar] [CrossRef]
- Zhou, L.L.; Addo-Danso, S.D.; Wu, P.F.; Li, S.B.; Zou, X.H.; Zhang, Y.; Ma, X.Q. Leaf resorption efficiency in relation to foliar and soil nutrient concentrations and stoichiometry of Cunninghamia lanceolata with stand development in southern China. J. Soil. Sediment. 2016, 16, 1448–1459. [Google Scholar] [CrossRef]
- Wu, H.L.; Xiang, W.H.; Chen, L.; Ouyang, S.; Xiao, W.F.; Li, S.G.; Forrester, D.I.; Lei, P.F.; Zeng, Y.L.; Deng, X.W.; et al. Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations. Ecosystems 2019, 23, 973–988. [Google Scholar] [CrossRef]
- Pan, C.; Sun, C.C.; Yu, W.; Guo, J.H.; Yu, Y.C.; Li, X.G. Mixed planting enhances soil multi-nutrient cycling by homogenizing microbial communities across soil vertical scale. Land Degrad. Dev. 2023, 34, 1477–1490. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Berninger, F.; Duan, B. Net primary production of Chinese fir plantation ecosystems and its relationship to climate. Biogeosciences 2014, 11, 5595–5606. [Google Scholar] [CrossRef]
- Feng, Y.H.; Schmid, B.; Loreau, M.; Forrester, D.I.; Fei, S.L.; Zhu, J.X.; Tang, Z.Y.; Zhu, J.L.; Hong, P.B.; Ji, C.J.; et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 2022, 376, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Bristow, M.; Vanclay, J.K.; Brooks, L.; Hunt, M. Growth and species interactions of Eucalyptus pellita in a mixed and monoculture plantation in the humid tropics of North Queensland. For. Ecol. Manag. 2006, 233, 285–294. [Google Scholar] [CrossRef]
- Li, W.Q.; Huang, Y.X.; Chen, F.S.; Liu, Y.Q.; Lin, X.F.; Zong, Y.Y.; Wu, G.Y.; Yu, Z.R.; Fang, X.M. Mixing with broad-leaved trees shapes the rhizosphere soil fungal communities of coniferous tree species in subtropical forests. For. Ecol. Manag. 2021, 480, 118664. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Li, Y.; Luo, X.Q.; Liu, Y.; Huang, P.; Yao, B.; Zhang, L.Y.; Li, W.L.; Xue, J.M.; Gao, H.J.; et al. Mixed plantations enhance more soil organic carbon stocks than monocultures across China: Implication for optimizing afforestation/reforestation strategies. Sci. Total Environ. 2022, 821, 153449. [Google Scholar] [CrossRef]
- Knoke, T.; Ammer, C.; Stimm, B.; Mosandl, R. Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics. Eur. J. For. Res. 2008, 127, 89–101. [Google Scholar] [CrossRef]
- Oxbrough, A.; French, V.; Irwin, S.; Kelly, T.C.; Smiddy, P.; O’Halloran, J. Can mixed species stands enhance arthropod diversity in plantation forests? For. Ecol. Manag. 2012, 270, 11–18. [Google Scholar] [CrossRef]
- Wang, W.B.; Chen, D.S.; Sun, X.M.; Zhang, Q.; Koide, R.T.; Insam, H.; Zhang, S.G. Impacts of mixed litter on the structure and functional pathway of microbial community in litter decomposition. Appl. Soil Ecol. 2019, 144, 72–82. [Google Scholar] [CrossRef]
- Zhang, S.X.; Lei, R.D.; Chen, C.G.; Liu, J.J. “Close-to-nature forest”—“A prospect manmade natural forest”. J. Northwest. For. Uni. 1996, 11, 157–162. [Google Scholar]
- Pan, Y.L.; Lin, G.W.; Chen, Z.W.; Fan, Y.; Chen, X.F.; Wu, C.Z.; Hong, T. Effect of Cunninghamia lanceolata-Aleurites montana Mixed Forests on Soil Enzyme Activity. Chin. J. Trop. Crops 2018, 39, 846–851. [Google Scholar] [CrossRef]
- Liao, L.P.; Yang, Y.J.; Wang, S.L.; Gao, H. Distribution, Decomposition and nutrient return of the fine root in pure Cunninghamia lanceolata, Michelia macclurei and the mixed plantations. Acta Ecol. Sin. 1999, 19, 342–346. [Google Scholar] [CrossRef]
- Wang, Q.K.; Wang, S.L. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations. J. For. Res. 2008, 19, 131–135. [Google Scholar] [CrossRef]
- Guo, J.X. Comparison of soil organic carbon and nitrogen pool between mixed and pure forests of Chinese fir. J. Fujian For. Sci. Tech. 2008, 35, 5–9. [Google Scholar] [CrossRef]
- Ding, K.; Zhang, Y.T.; Wang, L.; Ge, S.Y.; Zhang, Y.M.; Yang, Q.; Huang, H.H.; Tong, Z.K.; Zhang, J.H. Forest conversion from pure to mixed Cunninghamia lanceolata plantations enhances soil multifunctionality, stochastic processes, and stability of bacterial networks in subtropical southern China. Plant Soil. 2023, 488, 411–429. [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Soil and Agricultural Chemistry Analyses; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Guan, S.Y. Soil Enzyme and Its Research Methods; Chinese Agricultural Press: Beijing, China, 1986; pp. 295–323. [Google Scholar]
- Sinsabaugh, R.L.; Klug, M.J.; Collins, H.P.; Yeager, P.E.; Petersen, S.O.; Robertson, G.P.; Coleman, D.C.; Bledsoe, C.S.; Sollins, P. Characterizing soil microbial communities. In Standard Soil Methods for Long-Term Ecological Research; Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P., Eds.; Oxford University Press: Oxford, UK, 1999; Volume 104, p. 183. [Google Scholar]
- Nakajima, T.; Lal, R.; Jiang, S. Soil quality index of a crosby silt loam in central Ohio. Soil Till. Res. 2015, 146 Pt B, 323–328. [Google Scholar] [CrossRef]
- Rezaei, S.A.; Gilkes, R.J.; Andrews, S.S. A minimum data set for assessing soil quality in rangelands. Geoderma 2006, 136, 229–234. [Google Scholar] [CrossRef]
- Brejda, J.J.; Moorman, T.B.; Karlen, D.L.; Dao, T.H. Identification of regional soil quality factors and indicators. I. Central and Southern High Plains. Soil Sci. Soc. Am. J. 2000, 64, 2115–2124. [Google Scholar] [CrossRef]
- Mandal, U.K.; Warrington, D.N.; Bhardwaj, A.K.; Bar-Tal, A.; Kautsky, L.; Minz, D.; Levy, G.J. Evaluating impact of irrigation water quality on a calcareous clay soil using principal component analysis. Geoderma 2008, 144, 189–197. [Google Scholar] [CrossRef]
- Zhang, G.L.; Bai, J.H.; Xi, M.; Zhao, Q.Q.; Lu, Q.Q.; Jia, J. Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set. Ecol. Indic. 2016, 66, 458–466. [Google Scholar] [CrossRef]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Zhang, F.P.; Gao, Z.; Ma, Q.Q.; Song, Z.Y.; Li, G.W.; Li, X.P.; Su, Y.B. Construction of minimum data set for soil quality assessment in the Dunhuang Oasis. Chin. J. Soil Sci. 2017, 48, 29–36. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The soil management assessment framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Tiunov, A.V.; Scheu, S. Biodiversity and Litter Decomposition in Terrestrial Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 191–218. [Google Scholar] [CrossRef]
- Verstraeten, G.; Baeten, L.; De Frenne, P.; Vanhellemont, M.; Thomaes, A.; Boonen, W.; Muys, B.; Verheyen, K. Understorey vegetation shifts following the conversion of temperate deciduous forest to spruce plantation. For. Ecol. Manag. 2013, 289, 363–370. [Google Scholar] [CrossRef]
- Liu, S.Q.; Yang, R.; Peng, X.D.; Hou, C.L.; Ma, J.B.; Guo, J.R. Contributions of Plant Litter Decomposition to Soil Nutrients in Ecological Tea Gardens. Agriculture 2022, 12, 957. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y.H. Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest. J. Ecol. 2017, 105, 237–245. [Google Scholar] [CrossRef]
- Wang, Q.K.; Wang, Y.P.; Wang, S.L.; He, T.X.; Liu, L. Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers. Soil Biol. Biochem. 2014, 72, 145–151. [Google Scholar] [CrossRef]
- Schwarz, M.T.; Bischoff, S.; Blaser, S.; Boch, S.; Schmitt, B.; Thieme, L.; Fischer, M.; Michalzik, B.; Schulze, E.D.; Siemens, J.; et al. More efficient aboveground nitrogen use in more diverse central European forest canopies. For. Ecol. Manag. 2014, 313, 274–282. [Google Scholar] [CrossRef]
- Goldmann, K.; Schöning, I.; Buscot, F.; Wubet, T. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front. Microbiol. 2015, 6, 1300. [Google Scholar] [CrossRef]
- Cui, J.Y.; Yuan, P.; Zhang, Q.F.; Yuan, X.C.; Zeng, Q.X.; Chen, Y.M. Correlations between dominant vegetation type and composition.and diversity of soil bacterial communities in a subtropical forest. Soil Sci. Soc. Am. J. 2022, 86, 1123–1137. [Google Scholar] [CrossRef]
- Brandtberg, P.O.; Lundkvist, H.; Bengtsson, J. Changes in forest-floor chemistry caused by a birch admixture in Norway spruce stands. For. Ecol. Manag. 2000, 130, 253–264. [Google Scholar] [CrossRef]
- Bravo-Oviedo, A.; Pretzsch, H.; Ammer, C.; Andenmatten, E.; Barbati, A.; Barreiro, S.; Brang, P.; Bravo, F.; Coll, L.; Corona, P.; et al. European mixed forests: Definition and research perspectives. For. Syst. 2014, 23, 518–533. [Google Scholar] [CrossRef]
- Löf, M.; Ammer, C.; Coll, L.; Drössler, L.; Huth, F.; Madsen, P.; Wagner, S. Regeneration patterns in mixed-species stands. In Dynamics, Silviculture and Management of Mixed Forests; Managing Forest Ecosystems; Springer: Cham, Switzerland, 2018; Volume 31, pp. 103–130. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.Y.; Li, W.N.; Mo, Y.F.; Yang, M. Growth and soil physicochemical properties in the mixed Forest of Cunninghamia lanceolata and Tsoongioden odorum in different aged and multi-layer forests. J. Northwest For. Univ. 2022, 37, 125–130. [Google Scholar] [CrossRef]
- Sun, S.Y.; Lu, S.X.; Lu, Y.M.; Xu, E.L.; Wu, D.M.; Liu, C.H.; Jiang, Z.K.; Guo, J.F. Effects of Chinese Fir Interplanted with Broadleaved Trees on Soil Ecological Enzyme Activity and Stoichiometry. For. Res. 2021, 34, 106–113. [Google Scholar] [CrossRef]
- Garcia-Pausas, J.; Paterson, E. Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol. Biochem. 2011, 43, 1705–1713. [Google Scholar] [CrossRef]
- Ushio, M.; Balser, T.C.; Kitayama, K. Effects of condensed tannins in conifer leaves on the composition and activity of the soilmicrobial community in a tropical montane forest. Plant Soil. 2013, 365, 157–170. [Google Scholar] [CrossRef]
- Gao, H.; Huang, Y.M. Impacts of the three-north shelter forest program on the main soil nutrients in northern Shaanxi China: A metaanalysis. For. Ecol. Manag. 2020, 458, 117808. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Liu, K.; Yao, S.H.; Zhang, Y.L.; Zhang, X.D.; He, H.B.; Feng, W.T.; Ndzana, G.M.; Chenu, C.; Olk, D.C.; et al. Formation efficiency of soil organic matter from plant litter is governed by clay mineral type more than plant litter quality. Geoderma 2022, 412, 115727. [Google Scholar] [CrossRef]
- Maisto, G.; De Marco, A.; Meola, A.; Sessa, L.; De Santo, V.A. Nutrient dynamics in litter mixtures of four Mediterranean maquis species decomposing in situ. Soil Biol. Biochem. 2011, 43, 520–530. [Google Scholar] [CrossRef]
- Zeng, X.H.; Zhang, W.J.; Cao, J.S.; Liu, X.P.; Shen, H.T.; Zhao, X. Changesin soil organic carbon, nitrogen, phosphorus, and bulk density afterafforestation of the “Beijing–Tianjin Sandstorm Source Control” Program in China. Catena 2014, 118, 186–194. [Google Scholar] [CrossRef]
- Yang, L.; Deng, C.C.; Chen, Y.M.; He, R.L.; Zhang, J.; Liu, Y. Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China. Chin. J. Appl. Ecol. 2015, 26, 3602–3610. [Google Scholar] [CrossRef]
- Swanepoel, P.A.; Du Preez, C.C.; Botha, P.R.; Snyman, H.A.; Habig, J. Soil quality characteristics of kikuyu-ryegrass pastures in South Africa. Geoderma 2014, 232–234, 589–599. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Multivariate assessment of soil quality indicators for crop rotation and tillage in Illinois. Soil Till. Res. 2017, 174, 147–155. [Google Scholar] [CrossRef]
- Bünemanna, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Niemeyer, J.C.; Lolata, G.B.; De Carvalho, G.M.; Da Silva, E.M.; Sousa, J.P.; Nogueira, M.A. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl. Soil Ecol. 2012, 59, 96–105. [Google Scholar] [CrossRef]
- Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012, 44, 9–20. [Google Scholar] [CrossRef]
- Wu, C.S.; Liu, G.H.; Huang, C.; Liu, Q.S. Soil quality assessment in Yellow River Delta: Establishing a minimum data set and fuzzy logic model. Geoderma 2019, 334, 82–89. [Google Scholar] [CrossRef]
- Wang, L.H.; Fu, Q. Soil quality assessment of vegetation restoration after a large forest fire in Daxing’anling, northeast China. Can. J. Soil Sci. 2020, 100, 167–174. [Google Scholar] [CrossRef]
- Quideau, S.A.; Chadwick, O.A.; Benesi, A.; Graham, R.C.; Anderson, M.A. A direct link between forest vegetation type and soil organic matter composition. Geoderma 2001, 104, 41–60. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Johnson, C.E. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma 2003, 111, 123–149. [Google Scholar] [CrossRef]
- Jien, S.H.; Chen, T.H.; Chiu, C.Y. Effects of afforestation on soil organic matter characteristics under subtropical forests with low elevation. J. For. Res. 2011, 16, 275–283. [Google Scholar] [CrossRef]
- Liu, C.L.C.; Kuchma, O.; Krutovsky, K.V. Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Glob. Ecol. Conserv. 2018, 15, e00419. [Google Scholar] [CrossRef]
- Meng, M.J.; Lin, J.; Guo, X.P.; Liu, X.; Wu, J.; Zhao, Y.P.; Zhang, J.C. Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests. Catena 2019, 175, 167–173. [Google Scholar] [CrossRef]
- Wei, X.H.; Blanco, J.A. Significant Increase in Ecosystem C Can Be Achieved with Sustainable Forest Management in Subtropical Plantation Forests. PLoS ONE 2014, 9, e89688. [Google Scholar] [CrossRef] [PubMed]
- Mason, W.L.; Connolly, T. Mixtures with spruce species can be more productive than monocultures: Evidence from the Gisburn experiment in Britain. Forestry 2014, 87, 209–217. [Google Scholar] [CrossRef]
Forest Types | Species | Aspect | Slope | Altitude | Slope | Height | DBH | Stand Density | Coverage |
---|---|---|---|---|---|---|---|---|---|
(m) | (°) | (m) | (cm) | (plants·ha−1) | (%) | ||||
Pure stand | C. lanceolata | Northeast | Mesoslope | 815 | 25 | 7.9 | 10.2 | 2386 | 61 |
Mixed stand | C. lanceolata | East | Mesoslope | 803 | 21 | 8.7 | 11.6 | 1685 | 72 |
M maudiae | 6.18 | 5.94 | 215 | ||||||
K. paniculata | 5.8 | 6.9 | 209 | ||||||
L. chinense | 11.6 | 10.4 | 212 |
Indicators | PC1 | PC2 | PC3 | PC4 | Group | Norm |
---|---|---|---|---|---|---|
BD | −0.771 | 0.549 | 0.066 | −0.069 | 2 | 2.1671 |
TOP | 0.729 | −0.636 | 0.047 | 0.128 | 2 | 2.1591 |
CP | 0.373 | −0.550 | −0.375 | 0.499 | 2 | 1.6261 |
NCP | 0.503 | −0.162 | 0.524 | −0.445 | 3 | 1.6371 |
WHC | 0.812 | −0.559 | −0.026 | −0.015 | 1 | 2.6223 |
AK | 0.211 | 0.550 | −0.089 | 0.651 | 4 | 1.4263 |
TN | 0.837 | 0.480 | 0.109 | −0.096 | 1 | 2.2684 |
AN | 0.955 | 0.211 | 0.029 | −0.038 | 1 | 2.4083 |
AP | −0.039 | 0.251 | 0.819 | 0.440 | 3 | 1.4896 |
SOM | 0.893 | 0.243 | 0.007 | −0.023 | 1 | 2.2660 |
PH | −0.482 | −0.325 | 0.707 | 0.189 | 3 | 1.7578 |
ACP | 0.805 | 0.356 | −0.161 | −0.262 | 1 | 2.1485 |
INV | 0.303 | 0.871 | 0.065 | −0.014 | 2 | 1.7567 |
CAT | 0.590 | −0.043 | 0.579 | 0.313 | 3 | 1.7788 |
URE | −0.098 | −0.197 | 0.531 | −0.431 | 2 | 1.1010 |
Eigenvalue | 5.962 | 3.079 | 2.261 | 1.485 | ||
Variance contribution/% | 39.746 | 20.529 | 15.072 | 9.902 | ||
Cumulative variance contribution/% | 39.746 | 60.275 | 75.346 | 85.249 |
BD | TOP | CP | NCP | WHC | AK | TN | AN | AP | SOM | PH | ACP | INV | CAT | URE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD | 1 | ||||||||||||||
TOP | −0.91 ** | 1 | |||||||||||||
CP | −0.55 * | 0.70 ** | 1 | ||||||||||||
NCP | −0.53 * | 0.46 * | −0.31 | 1 | |||||||||||
WHC | −0.95 ** | 0.94 ** | 0.58 ** | 0.53 ** | 1 | ||||||||||
AK | −0.02 | −0.10 | 0.05 | −0.19 | −0.19 | 1 | |||||||||
TN | −0.37 | 0.31 | −0.04 | 0.41 * | 0.51 ** | 0.35 * | 1 | ||||||||
AN | −0.59 ** | 0.53 ** | 0.23 | 0.43 ** | 0.66 ** | 0.23 | 0.91 ** | 1 | |||||||
AP | 0.22 | −0.07 | −0.26 | 0.23 | −0.20 | 0.33 * | 0.11 | 0.02 | 1 | ||||||
SOM | −0.49 * | 0.53 ** | 0.30 | 0.33 * | 0.58 ** | 0.23 | 0.88 ** | 0.91 ** | 0.01 | 1 | |||||
PH | 0.22 | −0.09 | −0.14 | 0.06 | −0.20 | −0.28 | −0.43 ** | −0.49 ** | 0.54 * | −0.47 | 1 | ||||
ACP | −0.40 * | 0.28 | 0.02 | 0.35 * | 0.43 ** | 0.23 | 0.81 ** | 0.86 ** | −0.18 | 0.73 ** | 0.75 ** | 1 | |||
INV | 0.28 | −0.29 | −0.32 | 0.01 | −0.22 | 0.45 ** | 0.74 ** | 0.48 ** | 0.23 | 0.59 ** | −0.28 | 0.43 ** | 1 | ||
CAT | −0.43 ** | 0.44 * | 0.18 | 0.36 * | 0.45 ** | 0.19 | 0.47 ** | 0.59 * | 0.55 ** | 0.46 ** | 0.15 | 0.41 ** | 0.08 | 1 | |
URE | 0.19 | 0.05 | −0.12 | 0.21 | −0.07 | −0.41 ** | −0.05 | −0.12 | 0.01 | 0.01 | 0.38 * | −0.08 | −0.14 | 0.15 | 1 |
Indicators | TDS | MDS | ||
---|---|---|---|---|
Communality | Weight | Communality | Weight | |
BD | 0.905 | 0.071 | 0.911 | 0.179 |
TOP | 0.954 | 0.075 | 0.930 | 0.183 |
CP | 0.831 | 0.065 | ||
NCP | 0.752 | 0.059 | ||
WHC | 0.973 | 0.076 | ||
AK | 0.778 | 0.061 | 0.735 | 0.144 |
TN | 0.951 | 0.074 | 0.724 | 0.142 |
AN | 0.959 | 0.075 | ||
AP | 0.930 | 0.073 | ||
SOM | 0.857 | 0.067 | ||
PH | 0.873 | 0.068 | 0.916 | 0.181 |
ACP | 0.869 | 0.068 | ||
INV | 0.856 | 0.067 | ||
CAT | 0.783 | 0.061 | 0.872 | 0.171 |
URE | 0.516 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Zhang, Z.; Yan, W.; Mo, Y.; Wu, S.; Wang, M.; Peng, Y. Assessment of Soil Quality in the Transformation from Pure Chinese Fir Plantation to Mixed Broad-Leaved and Cunninghamia lanceolata Plantation in Subtropical China. Forests 2023, 14, 1867. https://doi.org/10.3390/f14091867
Cao X, Zhang Z, Yan W, Mo Y, Wu S, Wang M, Peng Y. Assessment of Soil Quality in the Transformation from Pure Chinese Fir Plantation to Mixed Broad-Leaved and Cunninghamia lanceolata Plantation in Subtropical China. Forests. 2023; 14(9):1867. https://doi.org/10.3390/f14091867
Chicago/Turabian StyleCao, Xiaoyu, Zelian Zhang, Wende Yan, Yongjun Mo, Shuping Wu, Menglei Wang, and Yuanying Peng. 2023. "Assessment of Soil Quality in the Transformation from Pure Chinese Fir Plantation to Mixed Broad-Leaved and Cunninghamia lanceolata Plantation in Subtropical China" Forests 14, no. 9: 1867. https://doi.org/10.3390/f14091867
APA StyleCao, X., Zhang, Z., Yan, W., Mo, Y., Wu, S., Wang, M., & Peng, Y. (2023). Assessment of Soil Quality in the Transformation from Pure Chinese Fir Plantation to Mixed Broad-Leaved and Cunninghamia lanceolata Plantation in Subtropical China. Forests, 14(9), 1867. https://doi.org/10.3390/f14091867