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Abstract: Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have gained
improved results in remote sensing image data classification. Multispectral image classification can
benefit from the rich spectral information extracted by these models for land cover classification. This
paper proposes a classification model called a hierarchical convolutional recurrent neural network
(HCRNN) to combine the CNN and RNN modules for pixel-level classification of multispectral
remote sensing images. In the HCRNN model, the original 13-band information from Sentinel-2
is transformed into a 1D multispectral sequence using a fully connected layer. It is then reshaped
into a 3D multispectral feature matrix. The 2D-CNN features are extracted and used as inputs to
the corresponding hierarchical RNN. The feature information at each level is adapted to the same
convolution size. This network structure fully leverages the advantages of CNNs and RNNs to
extract temporal and spatial features from the spectral data, leading to high-precision pixel-level
multispectral remote sensing image classification. The experimental results demonstrate that the
overall accuracy of the HCRNN model on the Sentinel-2 dataset reaches 97.62%, which improves
the performance by 1.78% compared to the RNN model. Furthermore, this study focused on the
changes in forest cover in the study area of Laibin City, Guangxi Zhuang Autonomous Region, which
was 7997.1016 km2, 8990.4149 km2, and 8103.0020 km2 in 2017, 2019, and 2021, respectively, with an
overall trend of a small increase in the area covered.

Keywords: pixel classification; CNN; RNN; RS image classification

1. Introduction

Land is a fundamental element for human survival and serves as a crucial founda-
tion for social and economic development. Land is closely related to the human living
environment and crop production, and yet it is also closely related to most of the pressing
challenges facing mankind [1–3]. The gradual development of remote sensing technology
makes it play an increasingly important role in the fields of environmental monitoring,
geological exploration, precision agriculture, and land cover mapping [4–9]. Among these
applications, land cover classification, which is a vital component of remote sensing tech-
nology, has always been a prominent area of research and a challenging task in extracting
valuable information from remote sensing images. How to recognize different features and
classify them with high accuracy using remote sensing images, as well as the statistics of
various types of feature information, is a key concern in the field.

In the past decades of research, scholars have studied and discussed various types
of supervised classification models. These models include the maximum likelihood
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(ML) [10,11], support vector machine (SVM) [12], and random forest(RF) [13,14]. In this
case, the maximum likelihood method is based on the assumption that the statistical distri-
bution of each category conforms to a normal distribution, and classification is achieved
by calculating the likelihood that an input pixel belongs to a particular category. Support
vector machine (SVM) is a supervised classification model that has been widely used
in various applications with great success. In the classification of multispectral images,
support vector machine has been proved an effective method. The model separates the
data by investigating the optimal classification decision hyperplane, making it possible
to better divide the training samples in a high-dimensional feature space. Random forest
is a supervised classification model based on multiple decision trees. The model obtains
the final prediction by randomly sampling the input spectral pixel sequences generating
multiple decision trees and then combining the outputs of these decision trees through
a voting mechanism. However, with the wide application of various multispectral or
high-resolution remote sensing satellite image products, the classification accuracy of the
traditional methods needs to be improved. To get around this problem, a deep learning
approach was used for land cover classification.

Deep learning methods have significantly enhanced the capabilities of land cover
classification by excelling in feature learning and prediction. Compared to traditional meth-
ods, deep learning techniques are capable of extracting more complex structural features
from the data and possess superior feature selection and data noise processing capabilities.
Particularly in recent years, deep learning has developed more and more rapidly, and it has
become the mainstream method for land cover classification [15–17]. Among these methods,
the backpropagation (BP) neural network, a widely adopted artificial neural network, has
demonstrated excellent performance in remote sensing classification. B. Ahmed et al. [18]
used the spectral and texture features of high-resolution images of Beijing as inputs to
a BP neural network and used a backpropagation neural network (BPNN) to find a set
of weights that minimized the error, thus completing the training of the network and
obtaining classification results. Semantic segmentation is the segmentation of an entire
remote sensing image by pixel-level classification, where each pixel is assigned to a different
category. This method can extract the classification result for each pixel in the image [19].
U-Net [20] is a classical network architecture for dealing with semantic segmentation prob-
lems, which was initially widely used in the field of biomedical images. In recent years,
U-Net and its variants have also been gradually used for land cover classification tasks
due to their ability to achieve better segmentation results with relatively less data and
in a shorter time. Stoian A et al. [21] proposed FG-Unet, a network architecture special-
ized in processing sparsely annotated data and maintaining high-resolution image output,
which was successfully used for land cover classification tasks in the Mediterranean region.
Zhang P et al. [22] proposed a model called Asp-Unet that consists of contraction paths
with high-level features and generates high-resolution outputs by creating expansion paths.
The model used the pyramid pooling (Aspp) technique for multi-scale feature fusion at the
bottom layer to generate discriminative features. Chen S et al. [23] enhanced the conven-
tional U-Net semantic segmentation network by replacing the original U-Net convolution
unit with a residual convolution module. This modification increased the network’s depth
and improved its segmentation performance, especially for small target categories.

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are
widely used deep learning models in remote sensing data classification, and they have
achieved good results in this field. Convolutional neural networks (CNNs) can learn and
extract advanced spatial features efficiently due to their multi-layer feature extraction
capability [24]. Ce Zhang et al. [25] came out with a new convolutional neural network
(OCNN) specifically applied to land use, whose functional unit is object-based segmen-
tation. In addition, Hu et al. [26] proposed a 1D-CNN network for hyperspectral data
classification, whose structure contains an input layer, a convolutional layer, a max-pooling
layer, and a fully connected layer. To improve classification accuracy, researchers have also
developed variant CNN structures, including 2D-CNN and 3D-CNN. Although CNN can
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extract spectral information and semantic features from satellite images, 1D-CNN can only
handle one-dimensional sequence data and cannot deal with time series features. Thus,
these new CNN variants can better handle multidimensional data and improve classifi-
cation accuracy. Lu Y et al. [27] presented a hybrid 2D and 3D CNN model, which firstly
utilizes multiple 3D-CNN modules to extract spatiotemporal features and downscale the
output feature sequence. Then, the downscaled features are used as inputs to the 2D-CNN
module, and, finally, the fully connected layer is used to predict the class of the feature.
Thus far, 2D-CNN cannot extract time-scale information, while 3D-CNN is computationally
complex with a much larger number of parameters [28].

Recurrent neural networks (RNNs) have great applications in processing time series
data in multispectral remote sensing images. R. Hang et al. [29] designed a backbone
network consisting of two RNN layers. The first RNN layer efficiently reduces redundant
information in adjacent spectral bands, simplifying the spectral feature information to
be fed into the second RNN layer for feature complementation. With the advancement
of RNNs, novel variants such as long short-term memory (LSTM) and gated recurrent
unit (GRU) have been introduced to tackle the gradient vanishing problem and capture
long-term dependencies. Feng Q et al. [30] designed a bi-directional LSTM model to obtain
spatio-temporal sequence features in UAV images. This model stacks two LSTMs, inputs
the hidden states of the first LSTM to the second LSTM, and, in this way, fully understands
the long-term dependencies between sequence signals. Erting Pan et al. [31] proposed
a hyperspectral image classification model based on a single-gate recursive unit (GRU),
which realizes the simultaneous computation and unfolding of spatial–spectral features
through a single GRU to improve computational efficiency and avoid the use of complex
models. The GRU is a simplified structure of the LSTM network, which is more concise.

A single model may not be able to fulfill multiple tasks simultaneously when used
independently [32]. For example, most convolutional neural networks (CNNs) are based
on convolutional operators only for spatial feature extraction and cannot utilize pixel
information about spatial correlations between pixels. To further improve the accuracy of
land cover classification, many scholars have proposed a combined modeling approach
in the last few years. Zhao W et al. [32] proposed a combined model architecture based
on a CNN and RNN, in which a CNN is utilized to extract robust features from SAR
noisy data, while an RNN is used to establish the relationship between optical information
and SAR to achieve the goal of agricultural monitoring. Cao et al. [33] utilized a CNN to
extract the height–depth features of ships, which were then passed to SVM for automatic
identification of ships. Yan C et al. [34] presented a classification framework fusing 2D-
CNN and Transformer, with 2D-CNN as the input to Transformer, to further improve the
classification accuracy of pixel sequences and complete the distribution of features in the
eastern part of Changxing County, Zhejiang Province.

Prior studies have indicated that many deep learning algorithms adopt a patchwise
approach for land cover classification in remote sensing images [35]. Nevertheless, the
patchwise method is not completely accurate in low-resolution remote sensing image
data [36]. This method takes each center pixel as the basis for deciding whether the
surrounding pixels belong to the same category or not, and its precision will affect the
classification results directly. Recently, researchers and scholars have more often selected
multispectral satellite data with higher resolutions, such as the Landsat-8 satellite data
with a 30 m resolution and the Sentinel-2 satellite data with a 10 m resolution, as open
satellite data sources for the realization of land cover classification. Resolution refers to
the actual ground area represented by each pixel, and a higher resolution provides more
details about the land cover, resulting in more accurate and finer feature classification
results. Nonetheless, a higher resolution also results in more complex computational
requirements, necessitating the selection of appropriate resolution satellite imagery. While
some unpublished hyperspectral data might have higher resolutions, they are unlikely to
be practical for most scientific research due to the high cost of data collection. To get around
this problem, we can choose a suitable mathematical method to turn 1D pixel spectral
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sequences into 3D spectral feature matrices to fit most 2D-CNN models, increasing the
applicability of the model and enabling pixel-level classification. Meanwhile, this method
avoids the overfitting problem of 3D-CNN caused by too many parameters.

Previously, several researchers and scholars have been concerned about classification
models with the combination of a CNN and RNN. Liu Q et al. [37] proposed a classification
model combining a CNN and LSTM to classify three publicly available hyperspectral
datasets. The CNN was used to replace the fully connected part of the LSTM for spatial
feature pixel block extraction, and the unfolded 3D matrix spectral information was se-
quentially fed into the bidirectional cyclically connected Bi-CLSTM network. Wu H and
Prasad S [38] used a convolutional recurrent neural network (CRNN) for the classification
of hyperspectral datasets. The architecture used 1D-CNN to extract features from the
input sequence, and subsampling using max-pooling reduced the length of the features to
half their original length, which forms the convolutional layer. The RNN part extracted
the contextual information from the feature information of the previous convolutional
layers, and the classification of hyperspectral images is achieved by the fusion of several
convolutional layers and several recurrent layers. For 10 m resolution Sentinel-2 images,
a pixel block may contain pixels of multiple classes, so the use of pixel blocks to extract
feature information is not conducive to accurate classification for Sentinel-2 multispectral
remote sensing data. The capability of 1D-CNN to extract spatial feature information is
slightly less than that of 2D-CNN, which is more effective in capturing the spatial feature
information required in classification tasks [39]. In the conventional combined CNN and
RNN model, feature extraction is mainly focused on the convolutional layer of the CNN
and the output layer of the RNN, which might lose some feature details.

In summary, this paper proposes a network framework called HCRNN consisting
of a 2D-CNN module and four parallel RNN structures for pixel-level classification of
multispectral images. Firstly, the original 13-band information of Sentinel-2 is adjusted to
a 1D multispectral sequence by using the fully connected layer and reshaped to the 3D
multispectral feature matrix. Secondly, extracting the 2D-CNN features of each convolu-
tional layer as inputs to the corresponding recurrent layer of the RNN captures spatial and
temporal features in more detail and adapts the feature information of each convolutional
layer to the same convolutional size. Finally, the feature information of the four levels is
added and fused to obtain the classification results of the image data.

The contribution of this paper to the literature is reflected in the following three areas:
(1) A multispectral remote sensing image classification model fusing a CNN and RNN

is proposed. The model extracts features from the four levels of the CNN as inputs to the
RNN, enabling the architecture to deliver more effective feature information to deeper
levels and improve classification accuracy.

(2) Land cover in Laibin City, Guangxi Zhuang Autonomous Region, is classified using
10 m resolution public optical satellite images, and three public hyperspectral datasets are
selected to test the generalizability of the classification model.

(3) The Forest, Sugarcane, and Rice areas of Laibin City, Guangxi Zhuang Autonomous
Region, the study area, are taken as the focused areas for land use analyses.

The structure of this paper is shown as follows: Section 2 describes the study area and
the data; Section 3 introduces the land cover classification algorithm proposed in this paper,
the HCRNN; Section 4 consists of analyzing the experimental results and comparing them
with various methods; and Section 5 presents the conclusions of this paper and the outlook
for future work.

2. Study Area and Datasets
2.1. Study Area Overview

In this paper, the city of Laibin in the Guangxi Zhuang Autonomous Region is selected as
the study area, which has coordinates ranging from 108°24′–110°28′ E to 23°16′–24°29′ N, with
a total land area of 13,411 square kilometers [40]. The region presents a hilly and mountainous
landscape with rolling mountain ranges and complex topography. The soil thickness is
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approximately 50 cm, and it falls within the subtropical monsoon climate zone. The climate
is warm and humid in summer under the influence of the monsoon circulation, which is
mainly characterized by sea-phase air masses; in winter, it is more influenced by cold and
dry continental air masses. The summer is long, and the winter is short. The rainfall and
temperature display contemporaneity. The climatic and soil conditions in Laibin are highly
conducive to the growth and sugar accumulation of sugarcane. Consequently, sugarcane
is one of the predominant crops in the Guangxi region, with the cultivated area accounting
for approximately 60% of the country’s total. Accurate and efficient estimation of sugarcane
acreage is of the utmost importance for local agricultural development, precision management,
and yield estimation. The geographical location of the study area is indicated in Figure 1.

Legend

Background

Laibin

Guangxi Province

Figure 1. Geographic location of the study area and corresponding Sentinel-2 remote sensing imagery.

(1) Image Preprocessing

The 10 m resolution data of Laibin City, Guangxi Zhuang Autonomous Region, ac-
quired by Sentinel-2 photography in 2017, 2019, and 2021, are used in this study, and the
data in this paper are from the European Space Agency’s data storage server. Sentinel-2
is an optical remote sensing satellite with a wide-range, high-resolution, multispectral
imaging mission, carrying a multispectral instrument (MSI) that can cover 13 spectral
bands covering visible (VNIR), near-infrared (NIR), and short-wave infrared (SWIR), and
has the uniqueness of containing three bands of data in the red-rimmed range, which
provides a new source of data for classifying and counting the features in Laibin, Guangxi.

In processing the data, Sen2Cor-02.10.01 software (available for download from
https://step.esa.int/main/snap-supported-plugins/sen2cor/, accessed on 16 June 2022)
was first applied to perform radiometric calibration, atmospheric correction, terrain cor-
rection, and cirrus correction on Level-1C data to improve the quality of remote sensing
images. Next, the SNAP 8.0 software (available for download from https://step.esa.int/
main/download/snap-download/, accessed on 16 September 2021) was applied to resam-
ple the resolution of the bands to 10 m. Finally, the 13 bands were sorted in the order in
the ENVI 5.6 software, and then waveband synthesis was performed. The image stitching
was completed using the seamless mosaic tool, and then the TIFF-formatted Laibin City,
Guangxi Zhuang Autonomous Region image data was exported.

https://step.esa.int/main/snap-supported-plugins/sen2cor/
https://step.esa.int/main/download/snap-download/
https://step.esa.int/main/download/snap-download/
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(2) Sample Collection

In this paper, we obtained sample bank data from Laibin City, Guangxi Zhuang
Autonomous Region, by collecting field data from the study area and labeling the region of
interest (ROI) using ENVI 5.6 software. The main feature types in the study area include
seven categories: sugarcane, forest, water, buildup, bareland, rice, and otherland. Samples
were selected by using a GPS camera for field acquisition of selected pure sample areas in
the study area, and then these samples were projected into the image and combined with
expert empirical data for sample selection. A total of 24,818 feature-type sample points
were obtained. During field collection of the sugarcane and rice samples, priority was given
to the selection of contiguous planting areas with an area larger than 100 square meters
to obtain data for the accumulation of a priori knowledge and later accuracy verification.
Through these data collection methods, a more comprehensive and accurate understanding
of the distribution of features in the study area can be obtained, providing data support
for subsequent feature classification studies. The details of the sample library in the study
area are shown in Table 1; each category has a standard training and testing set. A total
of 10% of the samples in each category are randomly selected as the training set, and the
remaining 90% of the samples are used as the testing set. The information for the 13 bands
of Sentinel-2 is shown in Table 2.

Table 1. Sample size of the Laibin dataset.

Class No. Class Name
2017 Laibin 2019 Laibin 2021 Laibin

Training Testing Training Testing Training Testing

1 Buildup 531 4779 585 5267 455 4100
2 Forest 991 8925 1029 9264 903 8133
3 Water 391 3521 311 2802 271 2447
4 Bareland 24 225 59 533 55 499
5 Sugarcane 188 1701 251 2260 116 1047
6 Rice 16 152 17 162 17 158
7 Otherland 337 3037 216 1948 324 2922

Total 2478 22,340 2468 22,236 2141 19,306

Table 2. Sentinel-2’s 13 bands of information.

Band Spatial Resolution
(m)

Central Wavelength
(nm) Description

B1 60 443 Ultra blue (Coastal and Aerosol)
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Visible and Near Infrared (VNIR)
B6 20 740 Visible and Near Infrared (VNIR)
B7 20 783 Visible and Near Infrared (VNIR)
B8 10 842 Visible and Near Infrared (VNIR)

B8a 20 865 Visible and Near Infrared (VNIR)
B9 60 940 Short Wave Infrared (SWIR)

B10 60 1375 Short Wave Infrared (SWIR)
B11 20 1610 Short Wave Infrared (SWIR)
B12 20 2190 Short Wave Infrared (SWIR)

2.2. Hyperspectral Data Description

In order to discuss whether the model proposed in this paper has high accuracy and
better qualitative results for land cover classification on multiple-satellite remote sensing
image products with universal and generalizability, in the experiments of this paper, we
selected three hyperspectral publicly known available datasets. The Houston data, Indian
Pines data, and Pavia University data are described below.
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(1) The Houston data: The first set of data is a hyperspectral image of the University
of Houston and the surrounding areas in Texas, USA, acquired by the ITRES CASI-1500
sensor. The dataset was provided by the NSF-funded National Center for Airborne Laser
Mapping (NCALM) at the University of Houston. The image size is 349 × 1905 pixels and
contains 144 bands. The spectral range is between 364 nm and 1046 nm, and the spatial
resolution of the image is 2.5 m. Table 3 shows the category labels of the different categories
in the sample bank of this dataset, as well as the samples that are divided into the training
set and the testing set.

Table 3. Training and testing sets for different categories in the Houston dataset.

Class No. Class Name Training Testing

1 Healthy Grass 198 1053
2 Stressed Grass 190 1064
3 Synthetic Grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot1 192 1041
13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2832 12,197

(2) Indian Pines data: The second set of data was acquired in 1992 using the Airborne
Visual Infrared Imaging Spectrometer (Aviris) in the Indian Pines region of northwestern
Indiana, USA. The total size of the image data is 145 × 145 pixels with a spatial resolution of
20 m, covering a spectral range of 400–2500 nm with 220 bands. However, special attention
should be paid to the fact that from the 104th to the 108th, from the 150th to the 163rd,
and the 220th bands are identified as noisy bands and are therefore eliminated from the
subsequent analysis; the remaining 200 bands are finally used for the study. Table 4 shows
the category labels of the different categories in the sample bank of this dataset, as well as
the samples that are divided into the training set and the testing set.

(3) Pavia University data: The third set of data consists of images acquired in 2003,
in the city of Pavia, Italy, using the German Rosis-03 airborne reflectance optical spectral
imager. The dimensions of this dataset are 610 × 340 pixels with a spatial resolution
of 1.3 m. This dataset contains 115 spectral channels covering the wavelength range of
430–860 nm. Since 12 bands are affected by noise, we selected 103 noise-rejected bands for
the classification study. Table 5 shows the category labels of the different categories in the
sample bank of this dataset, as well as the samples that are divided into the training set
and the testing set.
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Table 4. Training and testing sets for different categories in the Indian Pines dataset.

Class No. Class Name Training Testing

1 Corn Notill 50 1384
2 Corn Mintill 50 784
3 Corn 50 184
4 Grass Pasture 50 447
5 Grass Trees 50 697
6 Hay Windrowed 50 439
7 Soybean Notill 50 918
8 Soybean Mintill 50 2418
9 Soybean Clean 50 564
10 Wheat 50 162
11 Woods 50 1244
12 Buildings Grass Trees Drives 50 330
13 Stones Steel Towers 50 45
14 Alfalfa 15 39
15 Grass Pasture Mowed 15 11
16 Oats 15 5

Total 695 9671

Table 5. Training and testing sets for different categories in the Pavia University dataset.

Class No. Class Name Training Testing

1 Asphalt 548 6304
2 Meadows 540 18,146
3 Gravel 392 1815
4 Trees 524 2912
5 Metal Sheets 265 1113
6 Bare Soil 532 4572
7 Bitumen 375 981
8 Bricks 514 3364
9 Shadows 231 795

Total 3921 40,002

3. Research Methods

The workflow of the method included the following steps: (1) preprocessing of the
Sentinel-2 data, which focused on processing the raw data with corrections, radiometric
corrections, atmospheric corrections, and geometric corrections to make the data more
accurate and usable (please refer to Section 2.1 for details); (2) production of sample library
data, which selected a certain number of areas with known land cover types, collected and
labeled within these areas, and constructed the sample library data used to train the model
(please refer to Section 2.1 for details); (3) training the model, using the CNN as a front-end
to receive spectral information, and the RNN was responsible for processing and predicting
the feature information output from CNN; and (4) prediction to realize the land cover-type
images of Laibin City, Guangxi Zhuang Autonomous Region.

The structure of the HCRNN neural network proposed in this paper is shown in
Figure 2, which achieves the pixel-level classification of multispectral remote sensing
images by fusing the CNN and RNN modules. Firstly, the original 13-band information of
Sentinel-2 is adjusted to the 1D multispectral sequence using the fully connected layer and
reshaped into a 3D multispectral feature matrix. The 2D-CNN structure, consisting of four
convolutional layers, is designed to extract multi-scale feature information and generate
higher-level, robust feature representations. The size of the input features is adjusted using
the stride size to capture deeper feature information. Then, the extracted 2D-CNN spatial
feature information at each level was input into the corresponding RNN structure, which
consisted of two GRU units. To facilitate the following information fusion operation and



Forests 2023, 14, 1881 9 of 27

to avoid overfitting, the global average pooling is used to adjust the 2D-CNN feature
information at each level to the same convolution size before inputting the spectral–spatial
feature information of the 2D-CNN into the RNN. The RNN is more sensitive to time
series information, so the structure that contains four parallel RNNs can utilize the feature
information generated by each convolutional layer to extract the contextual information
among them, and capture the dependencies between different bands in multispectral
images, thus making the classification task more stable and effective. Finally, the pixel
superposition of the four levels of feature information through the add operation enriches
the amount of information under the image features and realizes the fusion summation
of the features, and then the fused features are processed by the activation function ReLU
and sent to the MLP Head for classification, which achieved the high-precision pixel-level
multispectral remote sensing image classification. The ReLU introduced the nonlinearities
as the activation function. The network structure makes full use of the advantages of CNNs
and RNNs to better mine time series information as well as spatial features in spectral data.
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Figure 2. Hierarchical convolutional recurrent neural network (HCRNN) network infrastructure.

3.1. Recurrent Neural Network

The recurrent neural network (RNN) has become a popular method for processing
sequence data and is distinct from the feedforward neural network in that the RNN is able
to use recurrent edges to connect the neurons to themselves, which allows the probability
distributions of the sequence data to be modeled at different time steps [41]. Figure 3 shows
the classical recurrent neural network (RNN) structure.

In multispectral image classification, give a sequence data x = (x1, x2, ..., xt), and
include among these xt,t ∈ {1, 2, ..., t}. In general, the information at moment t is denoted
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as the input vector xt, and the output of the hidden layer at the t− th time step is denoted
as st. The output of the hidden layer can be calculated using the following formula:

st = f (uxt + wst−1 + bs), (1)

The st in Equation (1) denotes the hidden state of the current time step, xt denotes the
input of the current time step, w is the weight matrix from the input to the hidden state,
wst−1 is the weight matrix from the hidden state of the previous time step to the hidden
state of the current time step, and bs is the bias vector.

The output layer can be represented as:

ot = f (vst + bo), (2)

The v in Equation (2) is the weight matrix, and bo is the bias vector.
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Figure 3. Classical structure of recurrent neural network (RNN).

The RNN encountered the long-term dependency problem, i.e., it is difficult to train
and process long-term sequential data because the gradient fades away as it propagates over
time. To solve this problem, the LSTM [42] and GRU [43] were proposed. In comparison to
the LSTM, the GRU has fewer parameters and can be trained faster or requires fewer data to
generalize. Therefore, we choose the GRU to constitute the RNN module in our proposed
framework. We can overcome the problem of vanishing gradient by using the GRU while
reducing model complexity and training time. The RNN used in the experiments of this
paper is composed of two GRU recurrent layers. The structure of the GRU is shown in
Figure 4.

For the pixel-level input of the multispectral images, each pixel point in the image data
is taken as an input in the form of xt. The spatial feature vector of the image extracted by
the 2D-CNN is taken as the hidden state of the previous time step of ht−1 together with xt
as the input to the GRU, thus realizing the pixel-level classification of multispectral images.
The expressions for the reset gate and update gate are as follows:

rt = σ(xtwr + urht−1 + br), (3)

zt = σ(xtwz + uzht−1 + bz), (4)

where σ(·) represents the logistic sigmoid function; wr, ur, wz, and uz are the weight
matrices; and br, bz represent the bias vectors in the neural network. xt is denoted as
s× 1 vectors in the pixel-level classification of multispectral images; s is the number of
wavebands; and, in this paper’s experiments, we have chosen the number of wavebands to
be 13, i.e., s = 13.

The formula for calculating the candidate’s hidden state is:

h̃ = tanh(wh̃xt + uh̃(rt � ht−1) + bh̃), (5)

In Equation (5), tanh(·) represents the hyperbolic tangent function, wh̃, uh̃ are the
weight matrices, and bh̃ represents the bias vector. This part integrates the spectral feature
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information stored in the GRU, which needs to be combined with the information of the
update gate for the next calculation of the hidden state:

ht = zt � ht−1 + (1− zt)� h̃, (6)

In the GRU, the hidden state is passed to the output layer, and then the output layer
computation at a time step t is expressed as:

yt = htwq + bq, (7)

where wq is the weight matrix, and bq represents the bias vector.

tanh

Reset Gate

Update Gate

1th 

tx

th

h

tr tz

x x

x

 



1

Figure 4. Gated recurrent unit (GRU) structure.

3.2. 2D-CNN

The convolutional neural network (CNN) was proposed by Yann Lecun of New York
University in 1998 [44]. The convolutional neural network (CNN) is a deep learning model
that is commonly used in image recognition, speech recognition, and other fields.

The following equation is applied to define the multispectral image in this paper:
X = {xi}H×W×1

i=1 ∈ RH×W×C. In the above equation, xi ∈ R1×1×C represents the i-th pixel
in the image, and H, W, and C represent the height, width, and number of bands of the
multispectral image, respectively.

yi = wxi + b, (8)

In this paper, w and b represent the weight matrix and bias vector of the fully connected
layer, respectively. xi denotes the input 1D-pixel sequence, m is the output dimension of
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the fully connected layer, and yi represents the remodeling output with yi
′, yi ∈ R1×1×m,

yi
′ ∈ Rn×n× m

n2 where m = 13 and n = 256.
Throughout this section, we designed a 2D-CNN module as shown in Figure 5. Firstly,

we used a fully connected layer to linearly stretch the input 1D pixel sequence to resize it
into a 1D pixel sequence. To enhance the dimensionality and as an input to the 2D-CNN,
we reshaped the 1D pixel sequence to a 3D pixel feature matrix. This stretch 2D-CNN
module contains four convolutional layers. The first convolutional layer contains 32
convolutional kernels, the second convolutional layer contains 64 convolutional kernels,
the third convolutional layer contains 128 convolutional kernels, and the last convolutional
layer contains 256 convolutional kernels. In the selection of convolution kernels, except for
the first convolutional layer, which uses a convolution kernel of size 1 × 1, the remaining
three convolutional layers use a convolution kernel of size 2 × 2. With the above design,
we can achieve feature extraction and increase the dimensions of the input image for better
application in subsequent tasks.

8

8

4

32@1×1Conv 64@2×2Conv

8

8

32

4

4
64

2

2
128

128@2×2Conv

1

1
256

256@2×2Conv

Pixel
256

13bands

…
…

Reshape

Figure 5. 2D-CNN module.

3.3. Loss Function

Cross-entropy is a commonly used loss function that is particularly suitable for multi-
classification problems. In deep learning, the cross-entropy loss function can be used to
evaluate the difference between the model output results and the true labels and update
and optimize the model parameters accordingly. With a separate calculation for each node,
cross-entropy can effectively measure the difference between the probability distribution
of the model output and the probability distribution of the true labels. During the model
training process, the back-propagation algorithm is used to calculate the gradient, and the
model parameters are continuously adjusted to minimize the cross-entropy loss function.
Eventually, a classification model with high accuracy can be obtained by continuously
optimizing the cross-entropy loss function. The expression is as follows:

L =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yic log(pic), (9)

where M represents the number of categories; yic represents the sign function (0 or 1),
taking 1 when the true category of sample i is equal to c, and 0 otherwise; and pic is the
predicted probability that the observation sample i belongs to category c.

3.4. Evaluation Metrics

A confusion matrix is a common method for evaluating the performance of classifica-
tion models. For the multispectral pixel-level classification problem, the article used three
confusion matrix-based evaluation metrics, namely, the accuracy rate, precision rate, and
Kappa coefficient. The accuracy rate refers to the ratio of the number of samples correctly
classified by the classifier to the total number of samples. The precision rate measures the
percentage of samples that belong to a category out of all the samples classified by the
classifier as belonging to that category. The Kappa coefficient, on the other hand, which
considers the distribution of classification errors, is evaluated based on the classification
consistency between samples. It is a more comprehensive and reliable indicator for model
evaluation. The calculation of these three metrics is based on the confusion matrix, which
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can reflect the performance of the classifier more comprehensively. The three expressions
are as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
, (10)

Precision =
TP

TP + FP
, (11)

Kappa =
Po − Pe

1− Pe
, (12)

In the above equations, TP (true positive) is the number of samples correctly predicted
to be positive, FP (false positive) is the number of samples that are negative but incorrectly
predicted to be positive, TN (true negative) is the number of samples that are correctly
predicted to be negative, FN (false negative) is the number of samples that are positive but
incorrectly predicted to be negative, Po is the overall classification accuracy, and Pe is the
expected consistency rate.

3.5. Experimental Setting

The experiments in this paper used ENVI software to obtain the coordinate point data
of sample points and regions of interest collected outdoors and export them to text files as
a dataset. During the model training, a batch size of 32, a maximum number of iterations
of 300, and a learning rate decay multiplier of 0.9 were used. The experimental code is all
implemented by Python 3.9 in PyTorch 1.10.2. The training environment for the model is
Windows 11 + 12th Gen Intel(R) Core(TM) i5-12400F + NVIDA GeForce RTX 3060 GPU.

4. Results of the Experiment

The study area classification experiments in this paper are conducted using the data
in Table 1, and the hyperspectral dataset classification experiments are conducted using
Tables 3–5.

To evaluate the performance and effectiveness of our models, we selected SVM, KNN
(k-nearest neighbor), RF (random forest), ViT (vision Transformer), SpectralFormer, 1D-
CNN, an RNN, and the HCRNN for comparison on the study area Guangxi Laibin dataset,
the Houston dataset, the Indian Pines dataset, and the Pavia University dataset.

(1) SVM: In the SVM model, the penalty factor is set to 10, which helps to limit model
overfitting. Meanwhile, we use the radial basis function (RBF) as the kernel function to
transform the SVM into a nonlinear model. When choosing the decision function, we use
the “ovr” (one-vs.-rest) strategy to deal with multi-category classification problems.

(2) KNN: The number of nearest neighbors (the k value) is set to three, i.e., for each
test data. The European distance is used as the distance metric.

(3) RF: Random forest with 100 trees.
(4) ViT: The structure of ViT is set up as five encoders. Each encoder’s module

consists of four self-attentive layers, eight hidden layers of MLPs, and a dropout layer
that suppresses 0% of the neurons, with an arbitrary grouping embedded in a spectral
dimension of 64.

(5) SpectralFormer: The SpectralFormer module is designed with five encoder mod-
ules, each containing four self-attentive layers, eight hidden layers of MLPs, and a dropout
layer that suppresses 10% of the neurons. The length of any group of spectral embedding
vectors is 64.

(6) 1D-CNN: The 1D-CNN structure consists of a convolutional layer, a batch nor-
malization layer, a maximum-pooling layer, a fully connected layer, an output layer, and
a ReLU activation function.

(7) RNN: The structure of RNN is a two-layer gated recurrent unit (GRU).
(8) HCRNN: THe HCRNN model contains a CNN module and an RNN module. The

fully connected layer of the CNN module has an input dimension of 13 and an output
dimension of 256, which is transformed into an 8× 8× 4 3D feature matrix after the reshap-
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ing operation. The convolutional layers are set up as follows: the first convolutional layer
has 32 convolutional kernels, the second convolutional layer has 64 convolutional kernels,
the third convolutional layer has 128 convolutional kernels, and the last convolutional layer
has 256 convolutional kernels. The RNN module consists of two layers of GRUs.

4.1. Comparative Analysis of Multiple Methods

In this section, we compared the proposed method with other representative and
advanced models to obtain the corresponding qualitative results. Table 6 gives the classifi-
cation results of different models on the study area dataset with quantitative classification
accuracies, OA, AA, and Kappa. Table 6 shows the classification results of the 2017 Laibin
dataset with different classification methods. In general, 1D-CNN performs the worst. The
qualitative indexes’ OA, AA, and Kappa values are the lowest among all the classification
methods, 92.79%, 82.54%, and 0.9031, respectively, and, for sugarcane and rice, the classifi-
cation ability is weaker, only 72.03% and 37.50%. The reason for the poor classification effect
of 1D-CNN on multispectral data is probably because multispectral data have multiple
dimensions spatially, whereas 1D-CNN can only learn and extract features from the data in
one dimension, which cannot make full use of the spatially rich information of multispectral
data. SVM, KNN, and RF are traditional machine learning classification algorithms, and
their classification performances are comparable as measured by the qualitative metrics
OA, AA, and Kappa. The OA of SVM is 95.08%, the AA is 84.73%, and the Kappa is 0.9340,
and the classification ability for rice is the worst among all of the compared methods with
only 28.29%, but, in the classification performance for bareland, SVM achieves a classifi-
cation accuracy of 100%, which is the best result among all of the classification methods.
The classification methods for deep learning are ViT, SpectralFormer, the RNN, and our
proposed HCRNN algorithm in addition to the 1D-CNN analyzed above. ViT also achieves
a promising classification performance for bareland, with a classification accuracy of 100%,
and SpectralFormer has the best classification ability of all classification methods for for-
est, with a classification accuracy of 99.31%. However, our proposed HCRNN algorithm
outperforms the other models on the 2017 dataset, achieving an OA of 97.62%, an AA of
94.68%, and a Kappa value of 0.9681. The HCRNN has the best classification performance
for the six feature classes of buildup, water, bareland, rice, sugarcane, and otherland with
classification accuracies of 97.09%, 98.35%, 100%, 92.83%, 78.95%, and 96.34%, respectively.
Our combined model algorithm, the HCRNN, compares favorably with the single RNN
model with improvements in buildup (+1.76%), water (+1.39%), sugarcane (+4.65%), rice
(+9.9%), and otherland (+4.7%). Undoubtedly, the HCRNN algorithm is better at mining
time series information as well as spatial features in spectral data, and its classification
accuracy is better than other methods.

Table 6. Classification results of different classification methods on the Laibin 2017 dataset. The best
results for each row are shown in bold.

Class No.
Method

SVM KNN RF 1D-CNN ViT SpectralFormer RNN HCRNN

1 94.89 90.83 94.56 91.80 96.00 95.40 95.33 97.09
2 98.42 98.10 98.88 98.30 99.04 99.31 98.92 99.22
3 96.39 96.45 95.60 95.80 97.61 97.13 96.96 98.35
4 100.00 96.44 92.89 93.33 100.00 99.56 99.11 100.00
5 79.19 85.89 84.30 72.03 90.65 90.83 88.18 92.83
6 28.29 33.55 39.47 37.50 71.05 69.74 69.08 78.95
7 95.92 91.77 92.10 89.06 90.18 93.94 91.64 96.34

OA (%) 95.08 94.04 94.94 92.79 96.14 96.55 95.84 97.62
AA (%) 84.73 84.72 85.40 82.54 92.08 92.27 91.32 94.68
Kappa 0.9340 0.9201 0.9321 0.9031 0.9482 0.9538 0.9442 0.9681
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The land cover-type maps of different classification methods to classify the city of
Laibin in Guangxi are shown in Figure 6. We marked and magnified the red boxes of
the classification map based on the sample points information obtained from fieldwork
and prior knowledge. In the red boxes are buildup, forest, water, bareland, sugarcane,
rice, and otherland. 1D-CNN has a poor classification performance overall, but, for the
better-differentiated categories (e.g., buildup, water, etc.), the differentiation is also higher.
However, 1D-CNN is confused when facing indistinguishable categories, e.g., mistakenly
detecting rice in categories such as bareland and otherland. SVM performs poorly in
distinguishing rice and bareland and is prone to recognition errors in localized areas.
Four deep learning classification models, ViT, SpectralFormer, the RNN, and the HCRNN
are chosen for our experiments, and they perform well in terms of overall classification
results, being able to clearly extract the outlines of feature classes and better identify classes
with smaller differences. However, we find that the HCRNN performs much better when
observed on a local scale, and it is significantly better at identifying otherland and sugarcane
than the other classification methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Classification results of different classification methods on Guangxi Laibin dataset: (a) SVM,
(b) KNN, (c) RF, (d) 1D-CNN, (e) ViT, (f) SpectralFormer, (g) RNN, and (h) HCRNN.

Now, we will discuss whether the model proposed in this paper has a high accuracy
and better qualitative results for land cover classification of multiple-satellite remote sensing
image products with universal and general applicability. In the Houston dataset, the Indian
Pines dataset, and the Pavia University dataset, our proposed classification method is
compared with other advanced and representative models to produce qualitative results.
The classification results of different models on the Houston dataset, the Indian Pines
dataset, and the Pavia University dataset with quantitative classification accuracies, the
OA, AA, and, Kappa are given in Tables 7–9. The data in bold in each row is the best result
of classification for each category. From Table 9, it can be concluded that as a whole ViT is
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the worst (the OA, AA, and Kappa are all lower than the other models), but interestingly,
ViT has the best classification ability for shadows with 99.87%; meanwhile, SVM and
1D-CNN also have 99.87% classification accuracy for shadows. Figures 7–9 indicate the
classification maps obtained from different classification models on the Houston dataset,
the Indian Pines dataset, and the Pavia University dataset.

Table 7. Classification accuracy of different classification models in the Houston dataset. The best
results for each row are shown in bold.

Class No.
Method

SVM KNN RF 1D-CNN ViT SpectralFormer RNN HCRNN

1 82.53 83.19 83.57 84.24 84.14 83.38 83.29 85.09
2 98.68 96.15 98.40 97.56 92.76 97.37 98.12 95.77
3 99.01 99.60 98.02 99.60 98.81 99.41 99.41 99.41
4 97.63 98.30 97.16 98.48 96.12 97.92 98.11 90.44
5 95.93 96.69 96.31 97.06 96.40 97.25 95.08 96.50
6 74.13 94.41 97.20 99.30 94.41 99.30 97.02 95.10
7 82.56 83.58 76.49 89.27 76.77 75.40 76.49 81.92
8 30.48 48.91 38.08 73.41 47.77 47.10 38.08 63.44
9 78.94 69.69 71.67 72.71 72.99 68.84 71.67 65.34

10 27.41 70.46 66.41 67.47 47.68 52.32 66.41 77.12
11 87.29 81.50 75.33 83.11 80.46 80.55 75.33 75.14
12 36.12 50.62 60.61 65.32 40.92 52.16 60.61 75.98
13 29.47 41.75 51.58 58.95 44.91 46.32 51.58 65.26
14 97.98 98.38 100.00 98.79 99.19 97.17 100.00 98.79
15 98.10 98.10 91.54 97.67 98.94 98.52 91.54 98.10

OA (%) 73.63 79.42 77.59 84.15 75.82 77.31 78.07 82.32
AA (%) 74.42 80.76 80.41 85.53 78.15 79.56 80.19 84.23
Kappa 0.7141 0.7769 0.7625 0.8280 0.7383 0.7541 0.7625 0.8084

Table 8. Classification accuracy of different classification models in the Indian Pines dataset. The best
results for each row are shown in bold.

Class No.
Method

SVM KNN RF 1D-CNN ViT SpectralFormerRNN HCRNN
1 37.07 56.14 58.38 62.64 47.98 62.57 73.63 63.29
2 20.41 53.70 57.65 42.73 38.90 62.37 42.98 73.34
3 76.09 77.17 82.61 89.67 71.74 91.85 27.72 88.59
4 45.19 80.71 84.79 82.10 76.06 88.14 24.38 75.62
5 79.34 77.33 79.91 82.64 72.45 86.08 79.91 80.49
6 98.86 94.99 95.90 96.13 95.67 96.58 97.27 95.22
7 52.94 62.96 75.71 72.98 57.52 71.68 6.97 83.22
8 53.35 43.67 59.10 65.22 30.07 72.70 42.18 71.22
9 24.29 45.04 57.80 65.07 25.18 62.77 18.44 82.27

10 98.77 94.44 95.68 96.91 95.68 98.77 91.98 98.77
11 96.06 73.55 88.10 91.88 69.21 93.89 93.89 84.24
12 11.82 35.15 56.67 62.42 18.48 49.09 26.06 73.03
13 91.11 97.78 97.78 100.00 95.56 100.00 97.78 97.78
14 0.00 79.49 56.41 74.36 17.95 71.79 28.21 94.87
15 0.00 81.82 81.82 63.64 45.45 90.91 18.18 90.91
16 0.00 80.00 100.00 100.00 40.00 100.00 80.00 100.00

OA (%) 55.32 60.56 69.66 71.74 50.64 75.38 53.27 76.79
AA (%) 49.08 71.40 76.77 78.03 56.12 81.20 53.10 84.55
Kappa 0.4916 0.5564 0.6576 0.6787 0.4486 0.7192 0.4673 0.7365
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Table 9. Classification accuracy of different classification models in the Pavia University dataset. The
best results for each row are shown in bold.

Class No.
Method

SVM KNN RF 1D-CNN ViT SpectralFormerRNN HCRNN
1 70.11 75.52 80.44 73.89 64.70 75.21 79.92 76.59
2 73.98 61.18 53.90 82.04 65.74 69.43 72.21 83.81
3 30.03 52.78 46.39 66.94 53.11 71.46 63.47 60.88
4 98.70 96.77 98.49 95.88 96.02 97.91 98.11 96.12
5 99.37 99.37 98.65 99.37 99.28 99.01 98.47 99.46
6 35.28 69.20 76.22 72.35 51.66 67.61 78.26 78.30
7 89.30 83.89 78.90 93.58 91.34 92.15 82.10 93.27
8 93.25 84.42 89.77 91.97 77.50 77.44 87.51 92.69
9 99.87 96.10 97.36 99.87 99.87 99.50 96.48 96.60

OA (%) 71.97 70.83 69.28 81.93 68.83 74.95 78.35 83.57
AA (%) 76.65 79.92 80.01 86.21 77.69 83.30 84.05 86.41
Kappa 0.6320 0.6323 0.6196 0.7628 0.6018 0.6797 0.7223 0.7847

Overall, the traditional classifiers RF, KNN, and SVM appear to have similar clas-
sification performances on all three hyperspectral datasets, i.e., they are all ordinary in
qualitative evaluation, with the OA, AA, and Kappa values in the lower-middle range
of all the classifiers. However, their performance is more prominent in the individual
classification categories. SVM has the highest classification accuracy in the Houston dataset
for the categories of stressed grass, road, and railway with 98.68%, 78.94%, and 87.29%,
respectively. RF even achieves 100% classification accuracy for the category of tennis court
in the Houston dataset. Deep learning has powerful learning skills, the recurrent neural
network (RNN) and SpectralFormer perform more prominently, and the three qualitative
metrics of OA, AA, and Kappa are higher than the traditional classifiers on both the Hous-
ton dataset and the Pavia University dataset. However, in the Indian Pines dataset, the
RNN has an overfitting problem for soybean notill, a category with more training and
testing samples, which results in a classification accuracy of only 6.97% but still reflects
the superiority of deep learning in land cover classification. 1D-CNN is more excellent at
capturing spatial features in a large number of continuous spectral data, such as hyperspec-
tral data, so 1D-CNN performs well in the three hyperspectral datasets, especially in the
Houston dataset where OA, AA, and Kappa are the highest values among all classification
methods. The HCRNN algorithm proposed in this paper can better mine the time series
information as well as the spatial features in the spectral data, and its classification accuracy
is better than the other methods, with the highest OA, AA, and Kappa values in the Indian
Pines dataset and the Pavia University dataset. Additionally, for categories with a small
number of training samples, such as alfalfa, oats, and grass pasture mowed, in the Indian
Pines dataset, the HCRNN presents a better performance capability, with classification
accuracies of 94.87%, 100%, and 90.91%. Figures 10 and 11 show the accuracy curves and
loss curves of the HCRNN during training on the four datasets.

4.2. Analysis of Land-Use Change in the Study Area

In this paper, the land cover classification of Laibin was carried out using Sentinel-
2 series imagery for 2017, 2019, and 2021, downloaded from the official ESA website
(https://scihub.copernicus.eu, accessed on 3 February 2023). After the preprocessing
operation of the image data (please refer to Section 2.1 for details), the ENVI software was
used to mark the region of interest (ROI) of the sample data collected in the field, and the
ROI coordinate point data were exported to text files. The training and testing sets were
divided using a ratio of 1:9. Table 1 shows the sample data for the years 2017, 2019, and
2021. The algorithm proposed in this paper was used to classify the land cover, analyze the
land use changes, and compare and analyze with the previously accumulated classification
knowledge and models. Focused analyses of forest, rice, and sugarcane in Laibin were
conducted, and we delineated these portions of the area as the key areas of focus for

https://scihub.copernicus.eu
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the region. The analysis of changes in these areas enables a better understanding of the
distribution of forests and agricultural production in the region. According to the data in
Tables 6, 10, and 11, it can be concluded that the HCRNN algorithm is the best at classifying
the Sentinel-2 images of Laibin City for the years 2017, 2019, and 2021. Therefore, land
use change in Laibin City was analyzed in this section using the classification proposed in
this article.

Training Testing

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Classification results obtained by different classification models on the hyperspectral
Houston dataset with spatial distribution of the Houston training and test sets: (a) SVM, (b) KNN,
(c) RF, (d) 1D-CNN, (e) Transformer(ViT), (f) SpectralFormer, (g) RNN, and (h) HCRNN.

Training

Testing

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Classification results obtained by different classification models on the hyperspectral Indian
Pines dataset with spatial distribution of the Houston training and test sets: (a) SVM, (b) KNN, (c) RF,
(d) 1D-CNN, (e) Transformer(ViT), (f) SpectralFormer, (g) RNN, and (h) HCRNN.
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(e) (f) (g) (h)

Figure 9. Classification results obtained by different classification models on the hyperspectral Pavia
University dataset with spatial distribution of the Houston training and test sets: (a) SVM, (b) KNN,
(c) RF, (d) 1D-CNN, (e) Transformer(ViT), (f) SpectralFormer, (g) RNN, and (h) HCRNN.

(a) (b)

(c) (d)

Figure 10. Accuracy curves of the proposed HCRNN algorithm during the training process: (a) the
Laibin dataset, (b) the Houston dataset, (c) the Indian Pines dataset, and (d) the Pavia Univer-
sity dataset.
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(a) (b)

(c) (d)

Figure 11. Loss curves of the proposed HCRNN algorithm during the training process: (a) the Laibin
dataset, (b) the Houston dataset, (c) the Indian Pines dataset, and (d) the Pavia University dataset.

Table 10. Classification results of different classification methods on the Laibin 2019 dataset. The best
results for each row are shown in bold.

Class No.
Method

SVM KNN RF 1D-CNN ViT SpectralFormerRNN HCRNN
1 98.35 98.01 99.30 96.81 99.11 99.13 98.99 98.93
2 97.87 95.65 97.31 93.87 97.19 97.88 97.01 99.03
3 97.47 97.89 97.32 96.25 97.64 98.64 97.04 98.07
4 93.06 97.00 92.50 93.25 93.80 95.86 95.31 97.56
5 87.7 88.89 86.81 84.44 89.77 85.42 89.54 91.50
6 70.99 75.93 67.28 65.22 80.86 76.54 72.84 74.07
7 74.08 80.34 77.05 71.84 81.20 88.49 81.39 89.09

OA(%) 94.50 94.35 94.61 91.76 95.34 95.98 95.14 97.03
AA(%) 88.50 90.53 88.23 85.95 91.37 91.71 90.93 92.61
Kappa 0.9247 0.9232 0.9262 0.8877 0.9366 0.9452 0.9337 0.9596

Table 11. Classification results of different classification methods on the Laibin 2021 dataset. The best
results for each row are shown in bold.

Class No.
Method

SVM KNN RF 1D-CNN ViT SpectralFormerRNN HCRNN
1 96.27 94.32 96.31 94.60 95.09 95.36 95.12 96.49
2 92.99 90.95 90.42 91.32 94.22 96.03 93.99 96.64
3 96.46 96.51 95.64 94.59 97.32 96.93 97.66 97.80
4 71.53 79.36 73.67 57.47 74.73 87.54 89.50 93.42
5 92.69 89.91 91.42 85.70 85.83 91.86 87.45 89.57
6 16.06 38.32 14.60 1.82 69.23 64.47 46.52 73.26
7 63.86 68.34 71.12 49.55 78.98 71.84 75.63 85.95

OA(%) 89.03 88.51 88.97 84.43 90.85 91.58 90.70 93.93
AA(%) 75.69 79.67 76.17 67.87 85.06 86.29 83.70 90.45
Kappa 0.8600 0.8541 0.8598 0.8002 0.8836 0.8629 0.8818 0.9230
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The classification results obtained by the different classification methods on the
datasets of Guangxi Laibin City for the years 2017, 2019, and 2021 are shown in
Tables 6, 10, and 11. It is possible to clearly and unambiguously conclude that the
qualitative results of the classification of the HCRNN model for all three phases of the
city of Laibin, in Guangxi, are optimal. The HCRNN has OA values of 97.62%, 97.03%, and
93.93% in the 2017, 2019, and 2021 datasets, respectively. In comparison to the classification
performance of a single RNN model, the HCRNN improves the OA values by 1.78%, 1.89%,
and 3.23% over the RNN. For the focused forest region, the HCRNN performs well in
the 2017 Laibin dataset, and even better in the 2019 and 2021 Laibin datasets, i.e., it is
the most prominent in classifying this category of forest, with the highest classification
accuracy of all the classification methods. In the agricultural cultivation area, focusing on
rice and sugarcane regions, rice and sugarcane had the highest classification accuracy of
all classification methods on the 2017 Laibin dataset, with the sugarcane category having
a more favorable classification performance in 2019, and the rice category having the op-
timal classification in 2021, in comparison with the remaining methods. As a result, it is
more appropriate to use the land cover classification results of Laibin City obtained from
the HCRNN for land-use change analysis.

It is concluded from Table 12 that the area occupied by the forest area is the largest in
the city of Laibin, followed by otherland. The extent of the area covered by buildup varied
considerably over the three years. The area of buildup is mainly concentrated around
the areas of active agricultural cultivation in the central part of the city of Laibin, with a
growing trend in general. The area covered by bareland is a small proportion of the size of
the city of Laibin. It is mainly concentrated in the vicinity of the buildup area. The bareland
region has seen a relatively small change in area, showing a downward trend from year to
year over the three years. The water area is extensive in the city of Laibin, with the river
spanning the entire city of Laibin, covering an area range that appears to be decreasing
and then increasing over the three years and still showing an overall decreasing trend. The
reason for this phenomenon may be attributed to the fact that there has been less rain and
a significant increase in extreme weather in recent years. The type of crop cultivation in
Laibin City mainly includes sugarcane and rice. The area range covered by sugarcane is
increasing year by year, and the area range covered by rice shows an expansion and then
a decline, but the overall observation is that it is still increasing. The detailed land cover
distribution map of Laibin City is shown in Figure 12.

Table 12. Changes in land-use types in the Laibin City area, Guangxi, during the three years of 2017,
2019, and 2021.

Class No. Class Name
Area (km2) Area Change Rate (%)

2017 2019 2021 2017–2019 2019–2021 2017–2021
1 Buildup 848.1643 680.2361 957.4973 −19.80 40.80 12.89
2 Forest 7997.1016 8990.4149 8103.0020 12.42 −9.87 1.32
3 Water 456.4951 249.7476 377.0088 −45.29 −50.95 −17.41
4 Bareland 140.5018 131.5372 125.2932 −6.38 −4.75 −10.82
5 Sugarcane 832.3258 965.4852 1546.5997 14.92 60.76 85.82
6 Rice 110.5949 184.1268 164.9849 66.49 −10.40 49.18
7 Otherland 2988.1359 2171.7716 2098.9335 −27.32 −3.35 −29.76

The vegetation cover type of Laibin City is mainly forest, sugarcane, and rice. To
better monitor the vegetation change and understand the ecological development, we
considered the forest, sugarcane, and rice areas as the focus areas of the study in this
region. In the spatial feature distribution maps of forest, rice, and sugarcane in Laibin City,
the other feature categories were unified in the same color, as shown in Figure 13. It is
clear from the graph that the forest and rice areas had the largest acreage in 2019 of the
last three years, while the sugarcane area had the largest planting acreage in 2021 of the
last three years. An in-depth study of the changes in these key areas can help us better
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understand the trends in land resource use and changes in the region, further promoting
optimization of resource allocation, balance in ecological development, and enhancement
of agricultural and plantation production capacity. The land use analyses of forest, rice,
and sugarcane have significant implications for achieving sustainable development and
ecological protection in Laibin City.

(a) (b) (c)

Figure 12. Spatial feature distribution of Sentinel-2 imagery for the three years of (a) 2017, (b) 2019,
and (c) 2021, for the city.

(e)(d) (f)

(g) (h) (i)

Legend

Other

Forest

(a) (b) (c)

Rice

Sugar cane

Figure 13. Spatial feature distribution of forest for the three years of (a) 2017, (b) 2019, and (c) 2021;
spatial feature distribution of rice for the three years of (d) 2017, (e) 2019, and (f) 2021; spatial feature
distribution of sugarcane for the three years of (g) 2017, (h) 2019, and (i) 2021.

In Table 12, we analyze the change in land-use types in the Laibin City area of Guangxi
during the three years of 2017, 2019, and 2021. For the forest area, which has the largest
coverage, the change in area is relatively small, with 7997.1016 km2 in 2017, and a three-year
peak of 8990.4149 km2 in 2019, which is an increase of 12.42% compared to 2017. The
area covered by forest area was 8103.0020 km2 in 2021, which is a decrease of 9.87% in
comparison with 2019, but still shows a small increase in comparison with the area covered
in 2017, with an improvement of 1.32%. This may be due to the call to return farmland
to forests in recent years, so the forest area still shows an increasing trend. The gradual
expansion of sugarcane cultivation areas to fulfill the needs of the development of the
agricultural economy in Laibin City is probably the reason for the reduction of forest cover
during a short period in the year 2021. The cultivated rice area was 110.5949 km2 in 2017,
184.1268 km2 in 2019, and 164.9869 km2 in 2021. The rate of change in the area under
cultivation for rice improved by 66.49% from 2017 to 2019 and then decreased by 10.40%
from 2019 to 2021, compared to 2017–2021, when the rice area under cultivation was still
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growing, improving by 49.18%. It is possible that due to the advancement of modernization
of food crops in Laibin in recent years, the cultivation range is wider than before, so the rice
cultivation area shows a substantial increase in 2017–2019, and the agricultural cultivation
area is more stable. Therefore, this may be the reason for a slight decline in rice acreage in
2019–2021. The sugarcane region is more variable in terms of acreage. The cultivation area
for sugarcane is 832.3258 km2 in 2017, which increases to 965.4852 km2 in 2019, and further
expands to 1546.5997 km2 in 2021. The growth rate of the cultivation area for sugarcane has
shown improvement over these years, with a 14.92% increase from 2017 to 2019, a 60.76%
increase from 2019 to 2021, and a substantial 85.52% increase from 2017 to 2021. This is
due to the vigorous development of modern characteristic agriculture in Laibin City in
recent years, and the climate and soil conditions in Laibin City are suitable for cultivating
sugarcane. The annual sugarcane production in Laibin City can account for one-eighth of
China’s total sugarcane production. Sugar production in Laibin City in 2021 has reached
another historical high, which proves that the area of sugarcane cultivation has changed so
much and grown so rapidly. Figure 14 shows the dynamics of forest, rice and sugarcane in
Laibin City over three years.

Legend

Other

Gain

Loss

(d)

No change

(e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 14. Dynamics of forest in the city of Laibin for three periods: (a) 2017–2019, (b) 2019–2021, and
(c) 2017–2021; dynamics of rice in the city of Laibin for three periods: (d) 2017–2019, (e) 2019–2021,
and (f) 2017–2021; dynamics of sugarcane in the city of Laibin for three periods (g) 2017–2019,
(h) 2019–2021, and (i) 2017–2021.

4.3. Analysis of Samples with Different Proportions

In order to assess the impact of the small number of training samples on the experimen-
tal results, in this paper, we randomly selected different proportions of training samples
from a given dataset in our sample data of Laibin City in 2017, 2019, and 2021, and run it
nine times with 10%, 20%, . . . , 90% intervals of 10%, and the remaining samples in each
run were used as the testing set without setting up the validation set. The classification
accuracies obtained by the HCRNN algorithm proposed in this paper with different pro-
portions of training samples in the 2017, 2019, and 2021 Laibin data are shown in Figure 15.
As the training samples increase, the classification accuracy becomes higher and higher,
while the noise gradually decreases. For example, when the proportion of training samples
reaches 70%, 80%, and 90%, the classification accuracy is further improved, and the OA
value stabilizes more and more, which shows that the HCRNN algorithm is reliable.
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Figure 15. Classification accuracies obtained with different proportions of training samples in the
2017, 2019, and 2021 Laibin data, respectively.

4.4. Discussion

In this article, the Sentinel-2 image data of Laibin City was selected for the experiments,
and all 13 bands were included to achieve the land cover classification of the study area.
The aim is to obtain more complete information about the land, which will help to achieve
a more detailed and comprehensive classification of features for the identification of the
different land cover types. Meanwhile, 13 bands are selected so that we can also flexibly
combine them according to different classification requirements. In the study area dataset
and the three hyperspectral public datasets, the traditional classification methods SVM,
KNN, and RF, and the deep learning classification methods 1D-CNN, ViT, SpectralFormer,
the RNN, and the HCRNN present different experimental results. SVM and RF have the
advantage of lower computational cost and the ability to handle relatively complex classifi-
cation tasks with fewer training samples [45]. However, their classification performance is
not superior enough when compared to deep learning methods such as RNN and Spectral-
Former, which are good at capturing deep feature information, such as sequences [46]. In
multispectral datasets, the performance of SVM and RF is not outstanding compared to the
RNN and SpectralFormer in deep learning methods. KNN can learn from a limited number
of samples to complete the classification task, but KNN is similarly not sensitive enough
to sequence information [47] and performs moderately well in experiments. 1D-CNN is
widely used in problems related to time series and is better at capturing spatial features in
large amounts of continuous spectral data, such as hyperspectral data [48]. Thus, 1D-CNN
performs well in the three hyperspectral datasets, with the best classification performance
in the Houston dataset. The reason for the weak performance in multispectral data may be
that multispectral data has multiple dimensions in space, whereas 1D-CNN can only learn
and extract features from one dimension of the data. ViT still outperforms traditional meth-
ods in multispectral datasets due to its ability to long-term dependence on modeling [49].
In contrast, although the RNN can process time-series data in multispectral remote sensing
images, it does not work as well as the HCRNN which combines a CNN and an RNN,
when the RNN is used alone.

Based on the experimental results presented in this paper, it can be concluded that
the proposed HCRNN model outperforms the other classification methods in achieving
pixel-level classification of Sentinel-2 remote sensing images. The HCRNN model exhibits
the best classification performance in the multispectral dataset and produces good results in
the three hyperspectral datasets, demonstrating its reliability and universality in different
scenarios. However, it is worth noting that the HCRNN model has a larger number of
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parameters due to the extraction of multi-scale features. As a result, the computation time
is longer, and the computation cost is higher than single deep learning classification models,
such as a CNN or an RNN. Therefore, it is essential to explore more efficient methods of
combining a CNN and RNN, which will be a focus of future work.

5. Conclusions

In this study, the city of Laibin, Guangxi Zhuang Autonomous Region, is used as
the study area, and the Sentinel-2 series of images from 2017, 2019, and 2021 are utilized
to classify the features. We proposed a multispectral remote sensing image classification
model fusing a CNN and RNN, which improves the classification accuracy and realizes
pixel-level classification by extracting feature information at four levels of the 2D-CNN
module as the input to the RNN, ensuring that the effective feature information is delivered
to deeper levels. The experimental results show that our network structure is superior
to traditional models and other deep learning models in land cover classification, which
provides a new technical model with practical significance for agricultural monitoring.
However, the 2D-CNN module designed in this paper is relatively simple, and, in future
work, we can continue to explore ways to upgrade the dimension of 1D pixel feature
sequences into 2D or 3D pixel feature matrices to enrich the feature information and
enhance the diversity of features. In addition, the recently proposed Transformer model
also performs well in classification tasks on pixel sequences, so the fusion of 2D-CNN and
Transformer can be considered to further improve the classification performance.
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