Improvement of Moso Bamboo (Phyllostachys pubescens) Properties Using a Heat Treatment Process for Landscaping Materials and Evaluation of Its Durability against Biotic/Abiotic Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bamboo Preparation
2.2. Drying and Heat Treatment Processes
2.3. Weight Loss, Moisture Content, and Specific Gravity
2.4. Chemical Composition
2.4.1. Ash Content
2.4.2. Extractives Content
2.4.3. Lignin Content
Volumefiltrate = volume of filtrate, 100 mL
ODWsample = weight of sample in milligrams
2.4.4. Polysaccharide Content
2.5. Microscopic Analysis
2.6. Durability Evaluation
2.6.1. Effects of Abiotic Factors
Accelerated Weathering
Hot/Cold Cycling
Contact Angle
2.6.2. Effects of Biotic Factors
Decay Resistance
Termite Resistance
Detection of Active Compounds by Thin-Layer Chromatography
Detection of Active Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)
3. Results and Discussion
3.1. Weight Loss, Moisture Content, and Specific Gravity
3.2. Chemical Composition
3.3. Microscopic Analysis
3.4. Accelerated Weathering Test
3.5. Hot/Cold Cycling Tests
3.6. Contact Angle
3.7. Decay Resistance Tests
3.8. Termite Resistance Tests
3.9. Identification of Bamboo-Derived Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoo, B.O. Distribution Status of Bamboo Forest Resources in Korea; National Institute of Forest Science: Seoul, Republic of Korea, 2016; p. 12. [Google Scholar]
- Yoo, B.O.; Park, J.H.; Park, Y.B.; Jung, S.Y.; Lee, K.S. Application of inventory construction for GIS-based bamboo resource assessment. J. Korean Assoc. Geogr. Inf. Stud. 2017, 20, 77–88. [Google Scholar]
- Kang, K.Y.; Jeon, K.S.; Park, M.S.; Park, N.C.; Yoon, S.L. A study on the utilization of ingredients and fibers from Korean bamboo species in value-added industry: Part 1—Changes in chemical composition of Moso, Henon, and Timber bamboo according to the bamboo ages. J. Korea TAPPI 2011, 43, 43–51. [Google Scholar]
- Cho, S.H.; Choi, Y.J.; Rho, C.W.; Choi, C.Y.; Kim, D.S.; Cho, S.H. Reactive oxygen species and cytotoxicity of bamboo (Phyllostachys pubescens) sap. Korean J. Food Preserv. 2008, 15, 105–110. [Google Scholar]
- Koide, C.L.; Collier, A.C.; Berry, M.J.; Panee, J. The effect of bamboo extract on hepatic biotransforming enzymes–Findings from an obese–diabetic mouse model. J. Ethnopharmacol. 2011, 133, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, J.; Ji, K.; Zhang, P. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci. Rep. 2016, 6, 32953. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Y.; Cheng, Y.L.; Cai, C.J.; Fan, L.; Gao, J.; Hou, C.L. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PLoS ONE 2014, 9, e95838. [Google Scholar] [CrossRef] [PubMed]
- Okahisa, Y.; Yoshimura, T.; Imamura, Y. Seasonal and height-dependent fluctuation of starch and free glucose contents in moso bamboo (Phyllostachys pubescens) and its relation to attack by termites and decay fungi. J. Wood Sci. 2006, 52, 445–451. [Google Scholar] [CrossRef]
- Sun, X.Y.; Tang, Y.Q.; Iwanaga, T.; Sho, T. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresour. Technol. 2011, 102, 10929–10935. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Lu, W.; Liu, G.Q.; Qin, Y. Physiochemical property changes and mineral element migration behavior of bamboo shoots during traditional fermentation process. J. Food Process. Preserv. 2020, 44, e14784. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, T.; Zhang, W.; Shi, J.; Fei, B.; Chen, H. Comparison of colors, microstructure, chemical composition and thermal properties of bamboo fibers and parenchyma cells with heat treatment. J. Wood Sci. 2021, 67, 56. [Google Scholar] [CrossRef]
- Ra, J.; Kim, K.; Leem, K. Effect of heat treatment conditions on color change and termite resistance of heat-treated wood. J. Korean Wood Sci. Technol. 2012, 40, 370–377. [Google Scholar] [CrossRef]
- Li, Z.Z.; Luan, Y.; Hu, J.B.; Fang, C.H.; Liu, L.T.; Ma, Y.F.; Fei, B.H. Bamboo heat treatments and their effects on bamboo properties. Constr. Build. Mater. 2022, 331, 127320. [Google Scholar] [CrossRef]
- Li, X.; Peng, H.; Niu, S.; Liu, X.; Li, Y. Effect of high-temperature hydrothermal treatment on chemical, mechanical, physical, and surface properties of Moso bamboo. Forests 2022, 13, 712. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A. Recent development of thermal wood treatments: Relationship between modification processing, product properties, and the associated environmental impacts. In Proceedings of the International Symposium on Wood Science and Technology, Tokyo, Japan, 15–17 March 2015; pp. 55–59. [Google Scholar]
- Esteves, B.M.; Pereira, H.M. Wood modification by heat treatment: A review. Bioresources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Kim, Y.S. Research trend of the heat-treatment of wood for improvement of dimensional stability and resistance to biological degradation. J. Korean Wood Sci. Technol. 2016, 44, 457–476. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal modification of wood—A review: Chemical changes and hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Zheng, Z.; Yan, N.; Lou, Z.; Jiang, X.; Zhang, X.; Chen, S.; Xu, R.; Liu, C.; Xu, L. Modification and application of bamboo-based materials: A review—Part I: Modification methods and mechanisms. Forests 2023, 14, 2219. [Google Scholar] [CrossRef]
- Park, Y.G.; Park, J.H.; Yang, S.Y.; Chung, H.W.; Kim, H.B.; Han, Y.J.; Yeo, H.M. Evaluation of physico-mechanical properties and durability of Larix kaempferi wood heat-treated by superheated steam. J. Korean Wood Sci. Technol. 2016, 44, 776–784. [Google Scholar] [CrossRef]
- Park, Y.G.; Eom, C.D.; Park, J.H.; Jang, Y.S.; Kim, K.M.; Kang, C.W.; Yeo, H.M. Evaluation of physical properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) lumber heat-treated by superheated steam. J. Korean Wood Sci. Technol. 2012, 40, 257–267. [Google Scholar]
- Deng, L.; Chen, F.; Ren, X.; Jiang, Z. An environmentally friendly and efficient method to improve the acoustic vibration performance of bamboo for musical instruments: Nitrogen-protected heat treatment. Ind. Crops Prod. 2022, 188, 115554. [Google Scholar] [CrossRef]
- Schmidt, G.; Stute, T.; Lenz, M.T.; Melcher, E.; Ressel, J.B. Fungal deterioration of a novel scrimber composite made from industrially heat treated African highland bamboo. Ind. Crops Prod. 2020, 147, 112225. [Google Scholar] [CrossRef]
- Lee, C.H.; Yang, T.H.; Cheng, Y.W.; Lee, C.J. Effects of thermal modification on the surface and chemical properties of moso bamboo. Constr. Build. Mater. 2018, 178, 59–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Lu, Y.; Yu, W.; Wang, S. Effects of heat treatment on surface physicochemical properties and sorption behavior of bamboo (Phyllostachys edulis). Constr. Build. Mater. 2021, 282, 122683. [Google Scholar] [CrossRef]
- KS F 2199; Determination of Moisture Content of Wood. Korean Standard (KS): Seoul, Republic of Korea, 2022.
- KS F 2198; Determination of Density and Specific Gravity of Wood. Korean Standard (KS): Seoul, Republic of Korea, 2022.
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- KS F 2213; Laboratory Test Method of Natural Decay Resistance of Wood. Korean Standard (KS): Seoul, Republic of Korea, 2018.
- Glass, S.; Zelinka, S. Moisture Relations and Physical Properties of Wood; Chapter 4 in FPL-GTR-282; Forest Service, U.S. Department of Agriculture: Washington, DC, USA, 2021. [Google Scholar]
- Soares, L.S.Z.R.; Fraga, I.; Paula, L.; Arroyo, F.; Ruthes, H.; Aquino, V.; Lahr, F. Influence of moisture content on physical and mechanical properties of Cedrelinga catenaeformis wood. BioResources 2021, 16, 6758. [Google Scholar] [CrossRef]
- Wakchaure, M.R.; Kute, S.Y. Effect of moisture content on physical and mechanical properties of bamboo. Asian J. Civ. Eng. (Build. Hous.) 2012, 13, 753–763. [Google Scholar]
- Wang, X.; Cheng, D.; Huang, X.; Song, L.; Gu, W.; Liang, X.; Xu, B. Effect of high-temperature saturated steam treatment on the physical, chemical, and mechanical properties of moso bamboo. J. Wood Sci. 2020, 66, 1–9. [Google Scholar] [CrossRef]
- Eratodi, I.G.L.B.; Triwiyono, A.; Awaludin, A.; Prayitno, T.A. The Effect of Specific Gravity on Embedding Strength of Glued-Laminated (Glulam) Bamboo: Numerical Analysis and Experiment. In Proceedings of the 4th ASEAN Civil Engineering Conference Laminated Bamboo, Yogyakarta, Indonesia, 22–23 November 2011. [Google Scholar]
- Tang, T.; Chen, X.; Zhang, B.; Liu, X.; Fei, B. Research on the physico-mechanical properties of moso bamboo with thermal treatment in tung oil and its influencing factors. Materials 2019, 12, 599. [Google Scholar] [CrossRef]
- Meng, F.D.; Yu, Y.L.; Zhang, Y.M.; Yu, W.J.; Gao, J.M. Surface chemical composition analysis of heat-treated bamboo. Appl. Surf. Sci. 2016, 371, 383–390. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, X.; Yuan, C.; Lou, Z.; Li, Y. Effect of saturated steam heat treatment on physical and chemical properties of bamboo. Molecules 2020, 25, 1999. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Yang, X.; Ji, H.; Zhong, T.; Wang, G. A comparative study of the microstructure and water permeability between flattened bamboo and bamboo culm. J. Wood Sci. 2019, 65, 1–14. [Google Scholar] [CrossRef]
- Fabiani, M.; Greco, S.; Mentrasti, L.; Molari, L.; Valdrè, G. Thermal treatment of bamboo with flame: Influence on the mechanical characteristics. Adv. Bamboo Sci. 2023, 2, 100015. [Google Scholar] [CrossRef]
- Yildiz, S.; Tomak, E.D.; Yildiz, U.C.; Ustaomer, D. Effect of artificial weathering on the properties of heat treated wood. Polym. Degrad. Stab. 2013, 98, 1419–1427. [Google Scholar] [CrossRef]
- Yoon, K.J.; Eom, C.D.; Park, J.H.; Kim, H.Y.; Choi, I.G.; Lee, J.J.; Yeo, H.M. Color control and durability improvement of yellow poplar (Liriodendron tulipifera) by heat treatments. J. Korean Wood Sci. Technol. 2009, 37, 487–496. [Google Scholar]
- Cheng, D.; Li, T.; Smith, G.D.; Xu, B.; Li, Y. The properties of Moso bamboo heat-treated with silicon oil. Eur. J. Wood Wood Prod. 2018, 76, 1273–1278. [Google Scholar] [CrossRef]
- Manalo, R.D.; Garcia, C.M. Termite resistance of thermally-modified Dendrocalamus asper (Schultes f.) Backer ex Heyne. Insects 2012, 3, 390–395. [Google Scholar] [CrossRef]
- Brito, F.M.S.; Paes, J.B.; da Silva Oliveira, J.T.; Arantes, M.D.C.; Dudecki, L. Chemical characterization and biological resistance of thermally treated bamboo. Constr. Build. Mater. 2015, 262, 120033. [Google Scholar] [CrossRef]
- Yu, H.; Yu, W.; Yang, L.; Fang, C.; Xu, M. Surface discoloration analysis and lignin degradation fragments identification of UV-irradiated moso bamboo (Phyllostachys pubescens Mazel). BioResources 2020, 10, 1617–1626. [Google Scholar] [CrossRef]
- Sekine, N.; Shibutani, S. Chemical structures of p-menthane monoterpenes with special reference to their effect on seed germination and termite mortality. J. Wood Sci. 2013, 59, 229–237. [Google Scholar] [CrossRef]
Average Weight Loss (%) | Antifungal Grades |
---|---|
0–10 | Highly resistant |
11–24 | Resistant |
25–44 | Moderately resistant |
45> | Slightly resistant or nonresistant |
Moisture Content (%) | Specific Gravity | ||
---|---|---|---|
Dry Basis | Wet Basis | ||
Untreated | 51.56 (15.84) a | 33.33 (6.70) a | 0.62 (0.08) a |
Heat-treated | 2.85 (0.27) b | 2.77 (0.26) b | 1.12 (0.08) b |
Untreated | Heat-Treated | |
---|---|---|
Ash | 0.93 (±0.46) a | 0.90 (±0.43) a |
Extractives | 3.76 (±1.19) a | 3.44 (±0.86) a |
Total lignin | 28.80 (±1.35) a | 29.48 (±1.24) a |
Klason lignin | 27.36 (±1.32) a | 28.13 (±1.21) a |
Soluble lignin | 1.45 (±0.06) a | 1.35 (±0.09) a |
Glucose | 53.39 (±4.51) a | 49.50 (±0.91) a |
Xylose | 15.58 (±0.42) a | 16.35 (±0.69) a |
Untreated | Heat-Treated | |
---|---|---|
FOM | 10.51 (±0.62) a | 6.05 (±0.51) b |
TRA | 12.52 (±0.51) a | 5.04 (±1.02) b |
Untreated | Heat-Treated | |
---|---|---|
Weight loss | 5.31 (±0.26) a | 2.04 (±0.11) b |
Mortality | 38.70 (±23.88) a | 66.70 (±16.03) a |
RT | Untreated | Heat-Treated |
---|---|---|
17.692 | 4-Trimethylsilyloxybenzaldehyde | |
17.779 | Trimethyl-(3-trimethylsilyloxyphenoxy)silane | |
17.827 | Trimethyl-(4-trimethylsilyloxyphenoxy)silane | Trimethyl-(4-trimethylsilyloxyphenoxy)silane |
19.683 | Vanillin | |
20.616 | p-Hydroxybenzoic acid | |
20.731 | 4-Hydroxyphenylacetic acid | |
21.548 | Syringaldehyde | Syringaldehyde |
22.096 | Vanillic acid | |
22.106 | p-Hydroxybenzoic acid | |
22.442 | p-Coumaryl alcohol | |
22.615 | Benzoic acid, 3,4-bis(trimethylsiloxy)-, trimethyl silyl ester | |
23.356 | Trimethylsilyl 3,5-dimethoxy-4-(trimethylsilyloxy)benzoate | |
23.442 | Syringic acid | |
23.452 | Trimethylsilyl 3,5-dimethoxy-4-(trimethylsilyloxy)benzoate | |
23.923 | p-Coumaric acid | p-Coumaric acid |
24.644 | Sinapaldehyde | Sinapaldehyde |
25.337 | Ferulic acid | Ferulic acid |
26.644 | Sinapinic acid | Sinapinic acid |
29.115 | Arbutin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kim, B.; Park, H.; Choi, Y.-H.; Kim, K.-J.; Park, S.-Y. Improvement of Moso Bamboo (Phyllostachys pubescens) Properties Using a Heat Treatment Process for Landscaping Materials and Evaluation of Its Durability against Biotic/Abiotic Factors. Forests 2024, 15, 101. https://doi.org/10.3390/f15010101
Kim Y, Kim B, Park H, Choi Y-H, Kim K-J, Park S-Y. Improvement of Moso Bamboo (Phyllostachys pubescens) Properties Using a Heat Treatment Process for Landscaping Materials and Evaluation of Its Durability against Biotic/Abiotic Factors. Forests. 2024; 15(1):101. https://doi.org/10.3390/f15010101
Chicago/Turabian StyleKim, Yesun, Byeongho Kim, Hanna Park, Yong-Hui Choi, Kyoung-Jung Kim, and Se-Yeong Park. 2024. "Improvement of Moso Bamboo (Phyllostachys pubescens) Properties Using a Heat Treatment Process for Landscaping Materials and Evaluation of Its Durability against Biotic/Abiotic Factors" Forests 15, no. 1: 101. https://doi.org/10.3390/f15010101
APA StyleKim, Y., Kim, B., Park, H., Choi, Y. -H., Kim, K. -J., & Park, S. -Y. (2024). Improvement of Moso Bamboo (Phyllostachys pubescens) Properties Using a Heat Treatment Process for Landscaping Materials and Evaluation of Its Durability against Biotic/Abiotic Factors. Forests, 15(1), 101. https://doi.org/10.3390/f15010101