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Abstract: Siberian pine (Pinus sibirica Du Tour) is a widespread and long-lived species in the northern
hemisphere, which makes it a good potential proxy for climatic data. However, the tree-ring growth
of this species weakly correlates with climatic conditions, which prevents its use in dendroclimatic
reconstruction. It was proposed to use the measurements of tracheid characteristics as model
predictors to reconstruct the smoothed temperature of the key periods in tree growth. In this study,
algorithms for preprocessing tracheids and temperature data, as well as for model cross-validation,
were developed to produce reliable high-resolution (weekly-based) temperature reconstructions. Due
to the developed algorithms, the key time periods of Siberian pine growth were identified during
the growing season—early June (most active cell development) and mid-July (setting new buds for
the next growing season). For these time periods, reliable long-term temperature reconstructions
(R2 > 0.6, p < 10−8) were obtained over 1653–2018. The temperature reconstructions significantly
correlated (p < 10−8) with independent reanalysis data for the 19th century. The developed approach,
based on preprocessing tracheid and temperature data, shows new potential for Siberian pine in
high-resolution climate reconstructions and can be applied to other tree species that weakly respond
to climate forcing.

Keywords: wood anatomy; cell measurements; radial cell diameter; cell wall thickness;
tracheidograms; tree-ring response; poorly sensitive to climate; temperature reconstruction

1. Introduction

Siberian pine forests are the most complex ecosystems in the Siberian taiga, char-
acterized by regenerative-age dynamics, stability, spatial and temporal structure, and
biodiversity [1]. The distribution range of Siberian pine (Pinus sibirica Du Tour), a forest-
forming species of the “cedar” forest formation, extends from the northeast of Euro-
pean Russia to the south of East Siberia, reaching Mongolia in the southern part (http:
//agroatlas.ru/ru/content/related/Pinus_sibirica/map/, accessed on 27 June 2023).

The observed global warming of recent decades has contributed to a shift in the
timespan of the active growing season and its heat availability [2–4]. The consequences of
these changes are most acute at the edges of the growing range, where trees often grow
at the limits of physiological endurance [5,6]. Moreover, the responses of tree plants to
climate change are mixed, from range expansion to suppression or death [7–11]. Under
current climate changes, it is therefore critical not only to understand the response of tree
vegetation as an important part of the planetary carbon cycle [12–15] but also to obtain a
quantitative assessment through robust reconstructions of long-term climatic fluctuations.
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The use of long-term chronologies of the anatomical parameters of tree rings allows
one to obtain a more accurate and detailed understanding of past and recent variability
in principal climatic factors compared to simply analyzing tree-ring width (TRW) [16–19].
The seasonal development of xylem anatomical structure significantly determines tree
productivity and survival; hence, forests’ vulnerability to climate change and their ability
to fix carbon dioxide [20,21]. This approach also enhances opportunities to study the phys-
iological mechanisms of plant adaptation to changing environmental conditions, due to
changes in both hydraulic and mechanical functions of woody tissue [22–24]. Therefore, un-
derstanding how and at which intervals of the growing season the principal climatic factors
(temperature or precipitation) modify the tree-ring structure turns out to be important both
for reconstructing past climate-tree ring relationships and developing adequate prediction
models of climatic factors influencing the anatomical structure of tree rings [24–29]. The
application of the quantitative wood anatomy approach is particularly relevant for the
species (i.e., Pinus sibirica Du Tour) for which the study of climate response is extremely
difficult due to the limited climate sensitivity of their radial growth [30,31].

A unique 495-year chronology of wood anatomical characteristics for Siberian pine
has recently been obtained for the timberline in the Western Sayan, which has made it
possible to estimate the climatic response of tree-ring widths and integral anatomical
characteristics (namely, TRW indices, mean and maximum radial cell diameters, and cell
wall thickness) [19].

However, the dataset of detailed anatomical measurements used in this study, namely
the radial cell diameter and cell wall thickness of Pinus Sibirica tracheidograms, allows us
to estimate the century-old records of climate factors with much higher time resolution. In
this work, we exploit the full potential of the anatomical structure of tree rings in a detailed
analysis of their climatic response, with a focus on dendroclimatic reconstructions, using
previously developed [32] and new approaches.

In this study, we employ tracheid measurements with the objective of revealing
the potential of Pinus sibirica Du Tour for high-resolution temperature reconstructions.
Algorithms for tracheid and temperature preprocessing and accurate model evaluation
were developed. Additionally, two hypotheses were tested: (1) key periods of tree growth
can be determined by the quality of the smoothed daily temperature reconstruction models,
and (2) the use of TRW for modeling would not achieve the same reconstruction reliability
as using tracheid data.

2. Materials and Methods
2.1. Climate Data

Temperature and precipitation data were obtained from the Tashtyp meteorolog-
ical station (WMO 29956), 52.8 N, 89.9 E, 455 m a.s.l., and they included mean daily
temperature and cumulative daily precipitation records from 1929 to 2016. Mean daily
NOAA/CIRES/DOE 20th Century Reanalysis V3 temperatures were obtained from the
Climate Explorer web platform (http://climexp.knmi.nl/select.cgi?field=c3t2m_daily, ac-
cessed on 29 August 2023), using the grid box region: longitude from 89.5 to 90.5 E, latitude
from 52.5 to 53.5 N (Figure 1).

To create a dependent variable for the reconstruction from the raw temperature data,
a two-way sequential smoothing algorithm was applied (Figure 2).

To suppress high-frequency fluctuations in the mean daily temperature, intra-annual
smoothing with varying lengths w of the sliding window (from 1 up to 14 days) was
applied (Figures 2 and S1). The optimal length of the sliding window was determined by
optimization of the temperature reconstruction models as described below.

In addition to the intra-annual smoothing, an inter-annual smoothing procedure for
temperature was applied to develop reconstruction models of the smoothed temperature
based on anatomical characteristics. The second smoothing was done to reduce annual
variance in temperature. We used a moving average with a sliding window of W years
(from 1 to 11 years) (Figures 2 and S2), using the same criteria to choose the length of W.

http://climexp.knmi.nl/select.cgi?field=c3t2m_daily
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Figure 1. The locations of the study plot (brown pinecone for Pinus sibirica Du Tour) and the climate 
station Tashtyp (red triangle) (A,B), and the average monthly mean temperature (T, °C) and monthly 
total precipitation (P, mm) in Tashtyp from 1929 to 2016 (C). 

 
Figure 2. The two-way sequential smoothing algorithm for obtaining the dependent temperature varia-
ble Tinter (w, W, doy), where w is the length of the intra-annual sliding window; W is the length of the inter-
annual sliding window; doy is the day of the year for which the reconstruction model is developed. 

Figure 1. The locations of the study plot (brown pinecone for Pinus sibirica Du Tour) and the climate
station Tashtyp (red triangle) (A,B), and the average monthly mean temperature (T, ◦C) and monthly
total precipitation (P, mm) in Tashtyp from 1929 to 2016 (C).
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Figure 2. The two-way sequential smoothing algorithm for obtaining the dependent temperature variable
Tinter (w, W, doy), where w is the length of the intra-annual sliding window; W is the length of the
inter-annual sliding window; doy is the day of the year for which the reconstruction model is developed.
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For each pair (w, W) of intra- and inter-annual sliding windows, the set DOYsig(w, W) ⊆
{152, . . . , 243} was created as a subset of tree-ring growing days (DOYs, growing season).
DOYsig(w, W) is the set of DOYs for which the Pearson correlation between inter-annual and
intra-annual smoothed temperatures was highly significant (p < 0.001).

As a result of the two-way sequential smoothing algorithm, we obtained dependent
variables Tinter(w, W, doy) of inter-annual smoothed temperatures for the model.

2.2. Tree Data Collection and Processing

Wood samples were collected from seven trees of Pinus sibirica Du Tour located on
the border of the Republic of Khakassia and the Republic of Tyva (51◦42.8′ N 89◦51.9′ E,
1970–2020 m a.s.l.) (Figure 1). Tracheidogram measurements of tree rings over 1653–2018,
obtained earlier (see [19] for more details), were used in this work (Figure S3).

For each tree ring, lumens (Ls) and double cell wall thickness (DCWT) were mea-
sured for 5 rows of cells (Figure S3). Then, the radial cell diameter (Cell Diameter, D)
was calculated as the sum of lumen and double cell wall, and cell wall thickness (CWT)
was determined as half of DCWT [33]. The obtained measurement were verified by an
independent cell measuring tool [34].

The resulting tracheidograms of averaged D and CWT from the five rows of the
measured series (Figure S4A,C) were then standardized to 15 cells (mean seasonal cell
production over 1653–2018), resulting in standardized sD and sCWT series for each year
of each tree [35]. Absolute tree ring width (TRW) values were obtained by summarizing
DMeans of the corresponding rings.

The TRW values of all trees in a year were averaged to obtain the site tree-ring
chronology. A standardized chronology was developed by bi-weight robust averaging
individual tree indices, which were obtained by removing the age-related trends using
cubic smoothing splines with a 50% frequency response at 67% of the series length [36].

The standardized tracheidograms of individual trees were year-to-year averaged
(Figure S5). As a result, a single 30-dimensional object was obtained for each year (growing
season), consisting of the values of cell diameters (D1–D15) and cell wall thicknesses
(CWT1–CWT15) of the corresponding standardized curves (Figure S6).

Finally, 15 radial-cell-diameter and 15 cell-wall-thickness chronologies were obtained
over 1653–2018 (Figure S7). Figure S8 shows examples of smoothed (“inter-seasonal
smoothing”) chronologies of radial cell size and cell wall thickness. All the smoothed time
series had significant Pearson correlations (p-value < 10−16) with D1–D15, CWT1–CWT15
series for all the sliding windows.

Principal component analysis (PCA) was applied to the radial-cell-size and cell-wall-
thickness chronologies to reduce the dimensionality of the resulting 30-dimensional objects.
It was shown that 4 principal components explained 95% of the variance of the series,
while 9 principal components explained 99% of the variance (Figure S10). In addition, the
application of PCA allows one to avoid multicollinearity in the obtained series, as noted
above [37].

The first P principal components, smoothed with the inter-annual window W (see the
example for P = 5, Figure S9):

PCi(W) =
{

pcW
i (y)

∣∣∣y ∈ {1653 . . . 2018}
}

, i ∈ [1, . . . , P] (1)

were used as predictors (independent variables) in the model development process (P ∈
[4, . . . , 9]). The principal component transformation matrix is presented in Table S1.

2.3. Reconstruction Models Development

For the best model fit, a triplet of hyperparameters (w, W, P ) was varied as follows:
w ∈ {1, . . . , 14}, W ∈ {1, . . . , 11}, P ∈ {4, . . . , 9}.
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For each triplet (w, W, P ), we obtained the set of independent variables
{PC1( W), . . . , PCP( W)} (Figure 3) and the set of dependent variables
Tinter(w, W, doy), doy ∈ DOYsig(w, W) (Figure 2).
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independent variables from the raw tracheid data (Diameters (Ds) and Cell Wall Thicknesses (CWTs)).

For each doy ∈ DOYsig(w, W), a separate multiple linear regression (MLR) model
MLRw, W, P,doy (year) was developed.

The final MLR models were considered as ensembles of individual MLR models
obtained in a new rolling leave-one-out cross-validation (RLOO CV) procedure:

MLRw, W, P,doy(year) = k0 + ∑P
l=1 kl · pcW

i (y), (2)

where kl = kl(w, W, P, doy) is the lth coefficient of the final MLR model (l = 0, P), estimated

as kl =
∑

N(W)
θ=1 kθ

l
N .

We note that kθ
l = kθ

l (w, W, P, doy) is the lth coefficient of the θth individual MLR
model, and N = 2016 − 1929 + 1 = 88 is the total number of individual MLR models
obtained in the RLOO CV procedure.
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Each θth individual MLR model can be described by this formula:

MLRθ
w, W, P,doy(year) = kθ

0 +
P

∑
l=1

kθ
l · pcW

i (y), θ = 1929, 2016 (3)

To obtain the θth individual MLR model, Tinter(w, W, doy) was split into calibra-
tion (Tcal

inter(w, W, doy)) and verification (Tver
inter(w, W, doy)) sets by the rules of the RLOO

CV procedure:

1. Each θth element (year) of Tinter(w, W, doy) is considered as a verification set.

2. The elements from
[
θ −

∣∣∣W
2

∣∣∣, θ
)
∪
(

θ, θ +
∣∣∣W

2

∣∣∣] are omitted (
∣∣∣W

2

∣∣∣ is the floored divi-
sion). This is done to prevent the data from the θth element from getting into the
calibration set due to smoothing with the W inter-annual sliding window and affect-
ing the elements from

[
θ −

∣∣∣W
2

∣∣∣, θ
)
∪
(

θ, θ +
∣∣∣W

2

∣∣∣]. All indices from θ −
∣∣∣W

2

∣∣∣ < 1929

or θ +
∣∣∣W

2

∣∣∣ > 2016 are ignored.

3. All other elements are considered as a calibration set.

In this study, the RLOO CV procedure was developed as an extension of the LOO CV
procedure [38] for smoothed data.

After obtaining the calibration and verification sets, the coefficients kθ
l of the θth

individual MLR model are obtained by training the model on the calibration set.
To evaluate the individual models on the calibration sets, the coefficient of deter-

mination (R2
cal,θ) and the Root Mean Squared Error (RMSEcal,θ) were calculated between

Tcal
inter(w, W, doy) and

{
MLRθ

w, W, P,doy(year)
∣∣∣year ∈ Tcal

inter(w, W, doy)
}

.
After training the N = 88 models, one for each year, the chronology of the verification

values was obtained as:

CRNver
w, W, P,doy =

{
MLR1929

w, W, P,doy(1929), . . . , MLR2016
w, W, P,doy(2016)

}
(4)

and the mean metrics R2
cal =

∑2016
θ=1929 R2

cal,θ
N , RMSEcal =

∑2016
θ=1929 RMSEcal,θ

N were calculated to
evaluate the total quality of the individual models on the calibration set.

To evaluate the individual models on the verification set, R2
ver and RMSEver were

calculated between CRNver
w, W, P,doy and Tinter(w, W, doy).

After individual evaluation, the final MLR model MLRw, W, P,doy(year) was developed
by averaging the coefficients of the individual models.

To evaluate the final model, R2
sim and RMSEsim (sim—simulated) were calculated

between Tinter(w, W, doy) and
{

MLRw,W,P,doy(year)
∣∣∣year ∈ Tinter(w, W, doy)

}
.

All data processing algorithms were implemented in Python and can be downloaded
from: https://github.com/mikewellmeansme/dendroclimatic-reconstructor/ (accessed
on 9 January 2024).

3. Results
3.1. Reconstruction of Temperature Dynamics

We chose R2 > 0.5 as a threshold for the selection of qualitatively reconstructed pe-
riods on the calibration and verification sets to be sure that the model explained most of
the variance. After varying the triplet of hyperparameters (w, W, P ), the next heatmap
was obtained (Figure 4). Obviously, reliable reconstructions appeared when the annual
smoothing windows W was not less than 8 years.

https://github.com/mikewellmeansme/dendroclimatic-reconstructor/
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Figure 4. Heatmap showing the number of models for which R2 on the calibration and verification
sets was greater than 0.5 for different pair of hyperparameters W (inter-annual sliding window)
and P (number of first principal components), and w = 7 (7-day intra-annual sliding window of
temperatures).

The approach of choosing the optimal triplet (w, W, P) of hyperparameters is debat-
able, and different combinations of the triplet values sometimes result in the reconstruction
of different days of the growth season. Mainly, temperatures at the beginning of June
(weeks with DOY 152–154 at the center) and the middle of July (weeks with DOY 195-198
at the center) are adequately simulated by the tracheidograms.

There are also a couple of models for late June (P = 4, DOY 175) and August (DOY
220 and 232), but these results are not sustainable because they do not appear with other
triplets of hyperparameters.

As an example, we chose the triplet w = 7, W = 9, P = 5 to demonstre the applicability
of our approach to dendroclimatic reconstruction of summer temperatures (Figure 5).
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Figure 5. The values of R2 metric per day of the year (DOY) on the calibration (black line) and
verification (red line) sets for the models of temperature reconstruction with w = 7, W = 9, P = 5.
The dotted gray line shows the threshold for selecting acceptable reconstructed periods (R2 > 0.5 on
both calibration and verification sets). The blue lines show DOYs with acceptable metrics. The gaps
in the curves show DOYs where the intra-annual temperatures did not correlate with their smoothed
curves (see Figure S1).
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We compared the new reconstructions with the observed and reanalyzed temperatures
for two main sustainable periods: A—DOY 154 (the mean daily temperature from 30 May
to 5 June) and B—DOY 197 (the mean temperature of the week from 12 July to 18 July)
(Figure 6).
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3.2. Reconstruction Model Evaluation

For each model, we obtained R2 and RMSE metrics for the calibration set—performance
of the models on the data on which they were trained; and for the verification set—
performance of the models on the data that were not used in the training process. We also
calculated simulated metrics—final performance of the models on the whole dataset. The
obtained metrics are shown in Table 1.

Table 1. Mean R2 and RMSE obtained for the models during their calibration and verification.

Period DOY R2

Calibration
R2

Verification
R2

Simulated
RMSE

Calibration
RMSE

Verification
RMSE

Simulated

A 154 0.74 ± 0.03 0.60 0.74 0.48 ± 0.15 0.60 0.48
B 197 0.79 ± 0.03 0.60 0.78 0.46 ± 0.15 0.63 0.46

Since different R2 and RMSE were obtained for each iteration of the rolling cross-
validation for the calibration set, Table 1 summarizes the mean values of the statistics on
the calibration sample (±s.d.).

The obtained metrics show a reasonably high quality of the models, with more than
74% of the explained variance with RMSE less than 0.49 ◦C on the calibration set, and 60%
of the explained variance with RMSE less than 0.63 ◦C on the verification set.

Figure 6 shows that, over the period of instrumental observations (1929–2016), the
modeled (black line) and observed (red line) temperatures for both periods (A and B) have
an extremely high degree of synchrony (R > 0.8, p < 10−26, Table 2), as do the observed and
reanalyzed temperatures (blue line) (R > 0.96, p < 10−45, Table 2), but the reanalyzed data
are significantly underestimated relative to the observed temperature (>1 ◦C) (see Figure 7
for more detail).
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Table 2. The Pearson correlations (Rs) and their significance (p) between the observed, reanalyzed,
and simulated temperatures.

Years Period
Observed\Reanalyzed Observed\Simulated Simulated\Reanalyzed

Pearson R p-Value Pearson R p-Value Pearson R p-Value

1836–1928
A - - - - 0.67 <10−12

B - - - - 0.57 <10−8

1929–2016
A 0.97 <10−51 0.86 <10−26 0.79 <10−18

B 0.96 <10−45 0.89 <10−29 0.81 <10−20
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Due to their strong correlation with the observed temperature, despite the underesti-
mation, the reanalyzed data can be taken as a reliable source of information on temperature
trends. In this regard, the significant correlation (R > 0.56, p < 10−8, Table 2) between
simulated and reanalyzed temperatures for the years with no direct climate observations
(1836–1928) indicates that the models are sufficiently correct in indicating temperature
trends for the modeled periods (A and B). In this paper, reanalyzed data are used for
additional assessment of model quality beyond the metrics from Table 1.

The reanalyzed data are consistently underestimated (from 1.35 to 1.78 ◦C) relative to
the observed data. This can be explained by the altitude difference between Tashtyp and
the stations on the basis of which the reanalyzed data were constructed. As the altitude
increases by 100 m, the temperature may proportionally decrease by a value close to
0.5 ◦C [39], so it can be assumed that the reanalyzed data are constructed on the basis of
the data from the stations located 300–400 m above Tashtyp.

We noted that the obtained tree-ring width chronology did not correlate (p > 0.05)
with the smoothed observed temperature of the Tashtyp weather station for intra-annual
intervals up to 14-day smoothing.
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Moreover, the enumeration of inter-annual sliding windows (Ws) for the standard
TRW chronology from the range of 1 to 11 years did not allow one to obtain any models
with R2 > 0.5.

4. Discussion

It is known that both the width of tree rings and their anatomical structure are con-
trolled by internal and external factors [35,40–43]. However, when comparing the variance
and sensitivity coefficient of tree-ring width chronologies for different species under the
same growing conditions, Siberian pine is shown to have rather low values of growth
variability indices, even under climatically limited growing conditions [44,45]. There is no
doubt that the low variability in Siberian pine growth is the result of a greater contribution
of internal factors to its seasonal and perennial growth. These factors include adaptations of
its physiology to the slow accumulation and utilization of nutrients [46,47], adaptations to
wetter growing conditions (average variability of growth in other similar species of Siberian
taiga, Siberian spruce, and Siberian fir [48,49]), and other ecophysiological features [50]. It
is possible that the minor response of Siberian pine growth to low temperatures at high
elevations is related to its genome size, which is larger than that in most tree species [51,52].

However, the long lifespan (up to 800–900 years [50,53]), wide distribution, and high
economic and ecological value of Siberian pine have determined the ongoing attempts
of dendrochronologists to obtain centuries-long annals of its tree rings and decode the
contribution of the dynamics of environmental conditions, including climate forcing, on the
formed rings. One of the approaches, due to a greater number of low-frequency fluctuations
compared to annual fluctuations in tree-ring growth, is the use of smoothed time series with
a window width of several years. The effectiveness of this approach was demonstrated in
this work, and corresponds well with previously published results [30,54].

Another approach is to search more sensitive indicators of climate variability among
the parameters of annual rings, including the use of quantitative wood anatomy. The
use of long-term chronologies of tree-ring anatomical characteristics to reconstruct long-
term changing climates over centuries is a relatively new and rapidly developing research
direction [27,28,55,56].

We hypothesized that the ability to reconstruct seasonal, weekly-based temperature
changes could be enhanced by using cell chronologies of Siberian pine anatomical char-
acteristics, which was confirmed by both previously published results [19] and the new
temperature reconstructions developed in the current research. Since the effects of inter-
nal factors are fairly uniform from year to year, by special treatment and combining the
available cell measurements, we can accumulate the effects of external climate forcing and
potentially reveal “hidden” correlations with climatic variables that cannot be observed
based on traditional dendroclimatology techniques. To realize this approach, we developed
several procedures to treat initial climate and anatomical data (Figures 2 and 3). We also
developed a new reconstruction procedure of seasonal temperatures (Figure 4) based on
the principal component decomposition of cell measurements, specifically radial cell sizes
and cell wall thickness.

The search for optimal windows for temperature generalization within a season and
on a long-term scale allowed us not only to obtain reconstruction models that had high
convergence with instrumental and reanalysis data but also established physiologically
based regularities. The high first-order autocorrelation within a decade, accounting for
the increased contribution of low-frequency oscillations and the possibility of preferential
reconstruction of smoothed climatic series, can, at least partly, be attributed to the perennial
needles of the species. It is known that needles of different species can persist for up to
14 years (e.g., spruce at the limit of distribution in the mountains; [57]). Siberian pine
has a needle life span of 4–6 years at lower elevations and up to 9–10 years at higher
elevations [58,59]. The age of needles of a related species, European cedar Pinus cembra, can
reach 9–12 years [60,61].
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The temperature intervals during the season, for which the reconstruction models
showed the highest and most reliable statistical estimates, are important indicators of
xylogenesis phenology. Thus, the first period in the first week of early June indicates the
time interval of the most active growth of Siberian pine under certain local conditions, with
sufficient humidity and increasing daylight but low heat availability. The second period
(the week in the middle of July) corresponds to the interval of the end of primary growth
and the budding for the development of shoots and needles for the next season [62–64].

The resulting models had quite high metrics. The metrics of the models based on
tracheid data (R > 0.86) are much higher than those of models based on tree ring widths
(R ∈ [0.2, 0.6]), both in the current work and compared to standard metric values of models
based on climate-insensitive trees [19,65]. The obtained metric values are comparable to
those from recent works on temperature reconstruction based on quantitative wooden
anatomy of climate-insensitive species (R2 > 0.74 on the calibration set) [65], which
suggests that the cellular indices of these species are robust in explaining 60%–75% of the
variance in temperature reconstruction.

In the current work, to test the quality of the models, in addition to the verification
sample, whose data did not participate in the model training process and therefore can
be considered independent, we also used V3 reanalysis grid data, with the modeled
temperature also significantly correlating with these data, both during the years with
instrumental measurements (R > 0.79) and outside them (R > 0.57).

Nevertheless, the potential of the proposed approach to modeling short-term cli-
matic fluctuations requires further research. Various transformations or standardization
of anatomical measurements may, for example, suppress a part of the non-climatic signal
(including size-age) or the climatic signal inherited from previous stages of xylogenesis [66].
Different approaches to selecting relevant predictors among PCs and identifying promising
intervals for intra- and inter-annual averaging, such as wavelet analysis, are worth explor-
ing. The proposed approach can also be widely tested on new data from different forest
stands with the same or other tree species that have low sensitivity to climate, as well as in
different climatic zones.

5. Conclusions

The use of tracheid measurements has made it possible to realize the potential of Pinus
sibirica Du Tour for high-resolution temperature reconstruction.

Using the developed algorithms, reliable models for temperature reconstruction were
obtained. The seasonal, weekly-based intervals for which the models were obtained
correlated with the key growth periods of Pinus sibirica Du Tour—the period of the highest
cellular activity (early June) and the period of budding for the next season (mid-July),
which confirmed our first hypothesis. Also, the smoothing windows, for which the first
adequate reconstructions appeared, correlated with the lifespan of Pinus sibirica needles.

The use of tree ring widths as predictors did not allow one to obtain reliable reconstruc-
tion models for any seasonal time interval or with a single smoothing window due to their
poor correlation with the temperature data. At the same time, the results of reconstructions
derived from tracheid data did not only show good metric values for the verification set
(R2 > 0.6) but also had a significant correlation with the independent V3 reanalysis data
for the 19th century (p < 10−8), which also confirmed the second hypothesis of this work.

Further modifying the developed algorithms can improve the quality of temperature
reconstruction, but it is already evident at this stage that, despite the greater complexity of
obtaining tracheidogram measurements compared to annual rings, quantitative wooden
anatomy allows one to reconstruct temperature with much higher accuracy and resolution
than classical approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15010167/s1, Figure S1. Example of daily (or intra-annual)
smoothing. The raw (red dashed) and smoothed (w = 7, 1 day step) daily Tashtyp temperature; Figure
S2. Example of unsmoothed and 9-year (or inter-annual) smoothing of temperature characteristics:

https://www.mdpi.com/article/10.3390/f15010167/s1
https://www.mdpi.com/article/10.3390/f15010167/s1
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mean values of the 1st week of May (red dotted curve), June (green dotted curve), and July (blue
dotted curve) and their smoothed analogs (solid thick lines), respectively; Figure S3. Example of cell
measurements for the year 1653 of Tree №2; Figure S4. Dmean (A) and CWTmean (C) tracheidograms
for the year 1653 of Tree №1, and their standardization to 15 cells (B,D); Figure S5. Example of the
mean standardized tracheidograms (thick black curves) for the 1653 year: radial cell diameter (A)
and cell wall thickness (B); Figure S6. Obtained tracheidogram objects; Figure S7. The obtained 30 cell
chronologies: 15 mean standardized cell diameters (A) and corresponding 15 cell wall thicknesses
(B); Figure S8. Example of 9-year smoothed cell chronologies: mean standardized cell diameters
(A) and corresponding cell wall thicknesses; Figure S9. First five principal components (PCs) of
the smoothed (9-year sliding window) tracheid chronologies; Figure S10. Cumulative explained
variance of the tracheidogram objects; Figure S11. Visualization of the Rolling Leave-One-Out Cross
Validation procedure for the data with the sliding windows w = 7, W = 9, for the doy = 152. The red
cells are considered as a verification set for the corresponding model, the gray cells are omitted, and
the white cells are considered as a calibration set for the corresponding model. Table S1. Examples of
the temperature time series Tinter (w, W, doy) for w = 7, W = 9, |DOYsig (7,9)| = 63; Table S2. Examples
of thirty (2n = 30) mean tracheidogram chronologies; Table S3. Example of inter-annual smoothed
tracheid chronologies for W = 9; Table S4. Example of PC chronologies for W = 9; Table S5. PCA
transformation matrix for first five principal components; Table S6. Example of the calibration and
verification sets for w = 7, W = 9, doy = 152, θ = 2000; Table S7. Model coefficients.
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