Evaluating Forest Site Quality Using the Biomass Potential Productivity Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Materials
2.3. Methods
2.3.1. Computing Sample Plot-Level Variables
2.3.2. Site Grouping Based on Stand Height Growth
- (1)
- Determination of age group for each plot:
- (2)
- Determination of the initial height group of each sample plot:
- (3)
- Determination of height-age model form:
2.3.3. Biomass Potential Productivity and Realistic Productivity
- (1)
- Given the site group () of the stand type (). Site group () was known from the Section 2.3.2.
- (2)
- Given the specific stand age to be computed ()
- (3)
- Given the density index S search interval , the feasible region of is assumed to vary from 30 to 3000 [24].
- (4)
- Form of basal area growth model corresponding to the specific site group () of the stand type () is
- (5)
- Form of biomass growth model corresponding to the specific site group () of the stand type () is
- (1)
- Given a feasible region of ,a stand age (), a stand type (), a site group (), the error term (), and iteration t = 1. Computing of initial values of stand density index () at 4 points () using the golden section method [24].
- (2)
- By computing at and at , we can get biomass annual growth ().
- (3)
- Finding the that made the maximized.Step 3, Computing biomass potential productivity (BPP).
2.3.4. Computing the Available Potential Improved Stand Biomass
2.3.5. Modeling and Parameter Estimation
2.3.6. Model Evaluation
2.3.7. Reference Age
3. Results
3.1. Parameter Estimates for Growth Models of Stand Height, Basal Area, and Biomass
3.2. Computation of BPP by Stand Type
3.3. BRP and BPI for Each Stand Type
3.4. Verification of BPP and Evaluation of Realistic Stands
3.5. Site Quality Evaluation at Reference Age
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Wu, B.; Liu, Y.; Ju, H.; Wang, C. Research Progress of Site Quality Evaluation. World For. Res. 2012, 25, 47–52. [Google Scholar]
- Carmean, W.H. Forest Site Quality Evaluation in The United States. Adv. Agron. 1975, 27, 209–269. [Google Scholar]
- Zas, R.; Alonso, M. Understory vegetation as indicators of soil characteristics in northwest Spain. For. Ecol. Manag. 2002, 171, 101–111. [Google Scholar] [CrossRef]
- Wilson, S.M.; Pyatt, D.G.; Malcolm, D.C.; Connolly, T. The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. For. Ecol. Manag. 2001, 140, 101–116. [Google Scholar] [CrossRef]
- Kimberley, M.; West, G.G.; Dean, M.G.; Knowles, L.R. The 300 index—A volume productivity index for radiata pine. N. Z. J. For. 2005, 50, 13–18. [Google Scholar]
- Elfving, B.; Kiviste, A. Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. For. Ecol. Manag. 1997, 98, 125–134. [Google Scholar] [CrossRef]
- Mailly, D.; Gaudreault, M. Growth intercept models for black spruce, jack pine and balsam fir in Quebec. For. Chron. 2005, 81, 104–113. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Berrill, J.P.; O’Hara, K. Estimating site productivity in irregular stand structures by indexing the basal area or volume increment of the dominant species. Can. J. For. Res. 2014, 44, 92–100. [Google Scholar] [CrossRef]
- Guo, J.P.; Wang, J.R. Comparison of height growth and growth intercept models of jack pine plantations and natural stands in northern Ontario. Can. J For. Res. 2006, 36, 2179–2188. [Google Scholar] [CrossRef]
- Skovsgaard, J.A.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry 2008, 81, 13–31. [Google Scholar] [CrossRef]
- Roxburgh, S.H.; Karunaratne, S.B.; Paul, K.I.; Lucas, R.M.; Armston, J.D.; Sun, J. A revised above-ground maximum biomass layer for the Australian continent. For. Ecol. Manag. 2019, 432, 264–275. [Google Scholar] [CrossRef]
- Czucz, B.; Molnar, Z.; Horvath, F.; Nagy, G.G.; Botta-Dukat, Z.; Toeroek, K. Using the natural capital index framework as a scalable aggregation methodology for regional biodiversity indicators. J. Nat. Conserv. 2012, 20, 144–152. [Google Scholar] [CrossRef]
- Xiao, Y.; Ouyang, Z.Y.; Wang, L.Y.; Rao, E.; Jiang, L.; Zhang, L. Spatial patterns of ecosystem quality in Inner Mongolia and its driving forces analysis. Acta Ecol. Sin. 2016, 36, 6019–6030. [Google Scholar]
- Liu, W.; Lu, F.; Luo, Y.; Bo, W.; Kong, L.; Zhang, L.; Liu, B.; Ouyang, Z.; Wang, X. Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China. Ecol. Evol. 2017, 7, 6220–6230. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Ji, B.Y.; Tao, J.X.; Wang, W.W. Forest site quality evaluation based on biomass data from Continuous Forest Inventories. J. Southwest For. Univ. 2012, 32, 45–50. [Google Scholar]
- Kukrety, S.; Wilson, D.C.; D’Amato, A.W.; Becker, D.R. Assessing sustainable forest biomass potential and bioenergy implications for the northern Lake States region, USA. Biomass Bioenergy 2015, 81, 167–176. [Google Scholar] [CrossRef]
- Becker, D.R.; Moseley, L. A supply chain analysis framework for assessing state-level forest biomass utilization policies in the United States. Biomass Bioenergy 2011, 35, 1429–1439. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Y.H.; Wang, M.J.; Jiang, W.G.; Hou, P.; Li, Y. Ecosystem quality comprehensive evaluation and change analysis of Dongting Lake in 2001–2010 based on remote sensing. Acta Ecol. Sin. 2015, 35, 4347–4356. [Google Scholar]
- Sprugel, D.G. Density, biomass, productivity, and nutrient-cycling changes during stand development in wave-regenerated balsam fir forests. Ecol. Monogr. 1984, 54, 165–186. [Google Scholar] [CrossRef]
- Ding, Z.; Li, R.; O’Connor, P.; Zheng, H.; Ouyang, Z. An improved quality assessment framework to better inform large-scale forest restoration management. Ecol. Indic. 2021, 123, 107370. [Google Scholar] [CrossRef]
- LY/T3315-2022; Technical Regulation for Forest Site Quality Evaluation. China Forestry Industry Standards. National Forestry and Grassland Administration: Beijing, China, 2022. (In Chinese)
- Fu, L.; Sharma, R.P.; Zhu, G.; Li, H.; Hong, L.; Guo, H.; Duan, G.; Shen, C.; Lei, Y.; Li, Y.; et al. A Basal Area Increment-Based Approach of Site Productivity Evaluation for Multi-Aged and Mixed Forests. Forests 2017, 8, 119. [Google Scholar] [CrossRef]
- Lei, X.; Fu, L.; Li, H.; Li, Y.; Tang, S. Methodology and applications of site quality assessment based on potential mean annual Increment. Sci. Silvae Sin. 2018, 54, 116–126. (In Chinese) [Google Scholar]
- Mensah, A.A.; Holmström, E.; Nyström, K.; Nilsson, U. Modelling potential yield capacity in conifers using Swedish long-term experiments. For. Ecol. Manag. 2022, 512, 120162. [Google Scholar] [CrossRef]
- Duan, G.X.; Zheng, Y.L.; Hong, L.; Song, X.; Fu, L. A Potential Productivity-Based Approach of Site Quality Evaluation for Larch Pure Forest and Birch-Aspen Mixed Forest. Sci. Silvae Sin. 2022, 58, 9. (In Chinese) [Google Scholar]
- National Forestry and Grassland Administration. China Forest Resources Report: The Ninth National Forest Resources Inventory; China Forestry Publishing House: Beijing, China, 2019. (In Chinese) [Google Scholar]
- LY/T2258-2014; Technical Regulation on Methodology for Tree Biomass Modeling. China Forestry Industry Standards. National Forestry and Grassland Administration: Beijing, China, 2014. (In Chinese)
- Tang, S.; Meng, C.H.; Meng, F.R.; Wang, Y.H. A growth and self-thinning model for pure even-age stands: Theory and applications. For. Ecol. Manag. 1994, 70, 67–73. [Google Scholar] [CrossRef]
- LY/T2415-2015; Technical Regulations for Drafting of Site Index Table. China Forestry Industry Standards. National Forestry and Grassland Administration: Beijing, China, 2015. (In Chinese)
- Heiderman, R.R.; Kimsey, M.J., Jr. A species-specific, site-sensitive maximum stand density index model for Pacific Northwest conifer forests. Can. J. For. Res. 2021, 51, 1166–1177. [Google Scholar] [CrossRef]
- Aertsen, W.; Kint, V.; Muys, B.; Van Orshoven, J. Effects of scale and scaling in predictive modelling of forest site productivity. Environ. Model. Softw. 2012, 31, 19–27. [Google Scholar] [CrossRef]
- Chen, Y.F. Research on standard age affecting analysis of site quality evaluation. For. Res. Beijing 2010, 23, 283–287. [Google Scholar]
- Adame, P.; Ca Ellas, I.; Roig, S.; Río, M.D. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Ann. For. Sci. 2006, 63, 929–940. [Google Scholar] [CrossRef]
- Tang, S.Z.; Li, Y.; Fu, L.Y. Statistical Foundation for Bio-Mathematical Models, 2nd ed.; Higher Education Press: Beijing, China, 2015; 435p. (In Chinese) [Google Scholar]
- Tang, S.; Meng, F.R.; Meng, C.H. The impact of initial stand density and site index on maximum stand density index and self-thinning index in a stand self-thinning model. For. Ecol. Manag. 1995, 75, 61–68. [Google Scholar] [CrossRef]
- Popkin, G. How much can forests fight climate change? Nature 2019, 565, 280–283. [Google Scholar] [CrossRef]
- Bontemps, J.-D.; Bouriaud, O. Predictive approaches to forest site productivity: Recent trends, challenges and future perspectives. Forestry 2014, 87, 109–128. [Google Scholar] [CrossRef]
Variable | Formula |
---|---|
Mean of the diameter at breast height (cm) | |
Number of trees per hectare | |
Stand basal area (m2 ha−2) | |
Stand density index | |
Stand biomass (t ha−2) |
Stand Type | Variable | Min. | Max. | Mean | SD |
---|---|---|---|---|---|
I | Stand height (m) | 4.10 | 23.00 | 12.19 | 3.99 |
Stand age (year) | 8.00 | 67.00 | 28.60 | 11.88 | |
Stand density index | 61.85 | 1057.62 | 456.77 | 221.52 | |
Stand basal area (m2 ha−2) | 10.43 | 259.46 | 58.89 | 35.79 | |
Stand biomass (t ha−2) | 5.12 | 126.08 | 29.21 | 17.64 | |
II | Stand height (m) | 4.00 | 23.00 | 12.72 | 4.216 |
Stand age (year) | 7.00 | 68.00 | 30.62 | 13.70 | |
Stand density index | 5.97 | 1006.8 | 509.83 | 237.48 | |
Stand basal area (m2 ha−2) | 0.11 | 150.03 | 27.31 | 27.21 | |
Stand biomass (t ha−2) | 0.04 | 219.31 | 49.04 | 45.36 | |
III | Stand height (m) | 1.50 | 22.00 | 13.05 | 3.74 |
Stand age (year) | 5.00 | 163.00 | 62.58 | 26.69 | |
Stand density index | 137.05 | 1670.96 | 694.60 | 265.11 | |
Stand basal area (m2 ha−2) | 3.43 | 55.05 | 20.09 | 8.43 | |
Stand biomass (t ha−2) | 20.37 | 485.65 | 136.05 | 67.17 | |
IV | Stand height (m) | 4.00 | 24.00 | 14.27 | 3.58 |
Stand age (year) | 8.00 | 169.00 | 63.12 | 27.20 | |
Stand density index | 149.98 | 1614.57 | 682.70 | 261.69 | |
Stand basal area (m2 ha−2) | 3.65 | 53.48 | 20.02 | 8.79 | |
Stand biomass (t ha−2) | 20.38 | 421.27 | 135.87 | 70.54 |
Stand Type | Site Group | Model (12) | Model (13) | Model (14) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | 1 | 23.19 | 0.036 | 0.93 | 43.18 | 0.03 | 4.71 | 0.21 | 528.03 | 0.00001 | 10.09 | 0.11 |
2 | 19.81 | — | — | 42.11 | — | — | — | 505.12 | — | — | — | |
3 | 16.79 | — | — | 40.86 | — | — | — | 493.13 | — | — | — | |
4 | 13.53 | — | — | 38.89 | — | — | — | 454.20 | — | — | — | |
5 | 9.78 | — | — | 37.69 | — | — | — | 430.16 | — | — | — | |
II | 1 | 22.58 | 0.05 | 1.34 | 105.14 | 0.00001 | 5.18 | 0.11 | 685.03 | 0.00002 | 10.02 | 0.13 |
2 | 19.04 | — | — | 104.09 | — | — | — | 673.58 | — | — | — | |
3 | 16.48 | — | — | 100.27 | — | — | — | 645.42 | — | — | — | |
4 | 14.09 | — | — | 98.47 | — | — | — | 576.05 | — | — | — | |
5 | 9.88 | — | — | 97.28 | — | — | — | 549.29 | — | — | — | |
III | 1 | 20.22 | 0.03 | 1.08 | 96.76 | 0.00002 | 9.33 | 0.11 | 539.57 | 0.00007 | 13.99 | 0.08 |
2 | 17.41 | — | — | 94.01 | — | — | — | 516.80 | — | — | — | |
3 | 15.11 | — | — | 92.26 | — | — | — | 498.15 | — | — | — | |
4 | 12.56 | — | — | 87.47 | — | — | — | 442.82 | — | — | — | |
5 | 9.33 | — | — | 84.89 | — | — | — | 419.56 | — | — | — | |
IV | 1 | 22.74 | 0.019 | 0.68 | 64.70 | 0.002 | 5.81 | 0.17 | 506.84 | 0.0058 | 2.54 | 0.42 |
2 | 19.53 | — | — | 63.09 | — | — | — | 485.45 | — | — | — | |
3 | 17.21 | — | — | 61.88 | — | — | — | 460.61 | — | — | — | |
4 | 14.63 | — | — | 61.27 | — | — | — | 458.08 | — | — | — | |
5 | 10.97 | — | — | 59.71 | — | — | — | 447.23 | — | — | — |
Stand Type | Model (12) | Model (13) | Model (14) | |||
---|---|---|---|---|---|---|
I | 0.9726 | 0.70 | 0.9794 | 1.03 | 0.8324 | 14.63 |
II | 0.9725 | 0.70 | 0.9794 | 1.04 | 0.7482 | 34.24 |
III | 0.9636 | 0.70 | 0.9723 | 1.40 | 0.8571 | 25.37 |
IV | 0.9625 | 0.67 | 0.9787 | 1.27 | 0.9264 | 19.12 |
Stand Type | Potential Productivity | Site Group | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
I | Biomass (t ha−2 year−1) | 3.642 | 3.483 | 3.400 | 3.132 | 2.966 |
II | Biomass (t ha−2 year−1) | 5.552 | 5.459 | 5.230 | 4.668 | 4.452 |
III | Biomass (t ha−2 year−1) | 7.763 | 7.436 | 7.167 | 6.371 | 6.037 |
IV | Biomass (t ha−2 year−1) | 7.656 | 7.333 | 6.958 | 6.920 | 6.756 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Feng, L.; Sharma, R.P.; Duan, G.; Pang, L.; Fu, L.; Guo, J. Evaluating Forest Site Quality Using the Biomass Potential Productivity Approach. Forests 2024, 15, 23. https://doi.org/10.3390/f15010023
Yan X, Feng L, Sharma RP, Duan G, Pang L, Fu L, Guo J. Evaluating Forest Site Quality Using the Biomass Potential Productivity Approach. Forests. 2024; 15(1):23. https://doi.org/10.3390/f15010023
Chicago/Turabian StyleYan, Xingrong, Linyan Feng, Ram P. Sharma, Guangshuang Duan, Lifeng Pang, Liyong Fu, and Jinping Guo. 2024. "Evaluating Forest Site Quality Using the Biomass Potential Productivity Approach" Forests 15, no. 1: 23. https://doi.org/10.3390/f15010023
APA StyleYan, X., Feng, L., Sharma, R. P., Duan, G., Pang, L., Fu, L., & Guo, J. (2024). Evaluating Forest Site Quality Using the Biomass Potential Productivity Approach. Forests, 15(1), 23. https://doi.org/10.3390/f15010023