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Abstract

:

Intensive agriculture in tropical regions is the main cause of soil impoverishment, reducing its productivity. Studies based on soil restoration methods are being implemented, including the use of plants such as Jatropha curcas L., which could have the capacity to improve the agronomic properties of degraded soils in the tropics. The aim of this study is, therefore, to demonstrate that J. curcas L. can improve the characteristics of degraded tropical soil. Between October 2019 and November 2022, we evaluated the effect of spacing, planting material type and age, as well as their interactions, on carbon (C) and nitrogen (N) concentrations and pH at two depths (i.e., 0–10 and 10–20 cm) in the soil. The results reveal that after three years of J. curcas L. growth, C concentration and soil pH increased significantly (p < 0.001) at both depths, while N concentration increased significantly between 0 and 10 cm only. Plants grown from cuttings improved soil pH at 10–20 cm depth more (p = 0.012) than those grown from seeds. Three years after planting, soil N concentration under J. curcas reached a value comparable to that of undisturbed adjacent soil. Overall, our results indicate that J. curcas is a plant that can contribute effectively to restoring degraded tropical soils, therefore contributing to limiting the deforestation of natural forests.
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1. Introduction


Tropical soil degradation is either linked to anthropogenic activities or to natural causes such as climate change and other related factors [1,2]. It can be defined as the process that leads to the reduction in the production potential of these soils [3,4] and the destruction of natural resources [5,6]. Soil degradation is manifested by several factors such as (i) soil erosion by wind and water [5,7]; (ii) soil pollution [8]; (iii) soil compaction [9,10]; (iv) loss of soil biodiversity [11]; (v) impoverishment in soil nitrogen (N), carbon (C) and phosphorus (P) [12], (vi) loss of soil macro- and micronutrients [13,14] and increased metal toxicity due to soil acidification [2,15]. Numerous studies maintain that the problem of soil degradation affects all areas of the globe where humans are present [16,17]. However, the degradation of tropical soils remains poorly studied despite their global ecological importance. In the humid tropics, and particularly in Gabon, anthropogenic activities such as the intensive cultivation of cocoa (Theobroma cacao L.) and rubber (Hevea brasiliensis L.) contribute to soil degradation. Acid forest zones are generally deficient in P, calcium (Ca) and magnesium (Mg), and aluminium (Al) and manganese (Mn) toxicity are major constraints on plant growth [18]. This soil degradation leads farmers to abandon their land in search of new land, putting pressure on the forests by clearing them and practicing slash-and-burn agriculture. It is, therefore, urgent to examine how to restore these degraded soils, particularly in the tropics, where forests play a huge role in regulating the global C cycle [19]. Some of the methods available include the use of so-called “soil improvers” such as Jatropha curcas [20,21]. The use of this plant species has shown promising results for restoring degraded soils in dry tropical climates [22,23]. However, little is known about its ability to restore degraded tropical soils in humid environments.



Jatropha (Jatropha curcas L.) is a species native to tropical America and widespread in many tropical and subtropical areas of Africa and Asia [24,25,26]. It is a shrub of the Euphorbiaceae family that reaches 8 m in height [27,28] and can adapt to a wide range of ecological conditions [25]. As such, J. curcas can grow on nutrient-poor soils [22,23,29,30]. Several studies have shown the positive effects of J. curcas on soil chemical properties, such as soil organic C (SOC) [31,32,33], soil total N [31,34] and soil pH [35,36]. However, studies showing the cumulative positive effects of J. curcas on organic carbon (SOC), total nitrogen and soil pH are rare, as are those showing that J. curcas has positive effects on the chemical properties of nutrient-poor soil.



The J. curcas can be propagated generatively (seeds) or vegetatively (cuttings) [37,38]. Plants growing from cuttings have a shallower lateral root system than those growing from seeds, which generally have a deeper taproot [25,39]. However, [29] showed that the height of J. curcas growing from seeds was increased at lower plant spacing, while the opposite was observed for J. curcas growing from cutting. These results show that the type of material used for propagation and the spacing between them can influence above- and below-ground growth and, thus, could affect the properties of the soil that supports their growth. Still, how propagation material, plant spacing, and their interaction influence the way J. curcas affects the properties of degraded soils and the mechanisms leading to their restoration remains unknown, especially in the humid tropics.



The aim of this work is to assess the capacity of J. curcas to improve certain characteristics of a degraded tropical soil impoverished by the successive intensive cultivation of cocoa and rubber trees in northern Gabon. We aim to verify the three following hypotheses: (H1) after three years of J. curcas cultivation, SOC and total soil N concentrations and soil pH will be greater than before planting, and (H2) the positive impact of J. curcas will be visible primarily in the topsoil and (H3) the positive impact of J. curcas will depend on the density of these plants.




2. Materials and Methods


2.1. Description of the Study Site and Experimental Set-Up


The study was carried out in the village of Akam Effak, located 25 km from the town of Bitam in northern Gabon (Figure 1). According to the Köppen–Geiger climatic classification, the climate at this site is classified as a tropical rainforest (Af) [40,41]. It comprises four seasons, depending on the intensity of rainfall and drought: a short dry season (January and February); a long rainy season (March, April, May, June); a long dry season (July, August and September) and a short rainy season (October, November and December). According to Nguema Ndoutoumou et al. [42,43], relative humidity is around 92%, mean annual temperature is 23.3 °C and average rainfall varies between 1800 and 2300 yearly. According to the World Soil Resources Database (IUSS Working Group WRB 2022), the soil at the study site is a Ferralsol, as it contains a strong dominance of kaolinites and Fe and Al oxides [44].



To test our hypotheses, a three-year field experiment was conducted in which soils were sampled at 0–10 cm and 10–20 cm depth before and after planting J curcas seeds and cuttings at 2 m × 2 m, 2.5 m × 2.5 m and 3 m × 3 m distances. Soils were analysed for SOC, total soil N concentration and soil pH, and adjacent soil from an undisturbed natural forest was sampled as a reference for comparison.



Our experimental set-up was located on an abandoned plantation where intensive cocoa (Theobroma cacao L.) (1976–1999) and rubber (Hevea brasiliensis L.) (1999–2019) cultivation succeeded one another for over 43 years, leading to an impoverished and degraded soil [29]. Site preparation operations prior to planting J. curcas at the start of the experiment involved manually removing herbaceous vegetation, trees and stumps, and exporting plant residues outside the area where the treatments were installed (see [29] for details). No fertilizer was applied. The experimental set-up comprises three planting distances (i.e., 2 m × 2 m, 2.5 m × 2.5 m and 3 m × 3 m) and two types of material used for propagation (i.e., seeds and cuttings) of J. curcas. It includes four replicates, giving a total of 24 treatments, each attributed to an experimental unit. The latter consisted of a 144 m2 (12 m × 12 m) plot receiving between 16 and 25 plants depending on planting distance.




2.2. Soil Sampling and Analysis


Each experimental unit was sampled manually at two soil depths (0–10 and 10–20 cm) using a cylindrical tube measuring 5 cm × 5 cm × 10 cm. This yielded 48 soil samples, each one consisting of a composite of three sub-samples taken at the experimental unit level. The soils were sampled in October 2019 after site preparation operations but before J. curcas plantation. In each of the 12 m × 12 m plots, soil sampling was carried out in the same location as in 2019. The soil was sampled again in November 2022 after 40 months of growth at about 15 cm from plant collar. We also sampled soils with the same method in an undisturbed, natural forest located close (i.e., c. 500 m) to our experimental set-up to have a reference site where neither rubber nor cocoa had been grown before. At this reference site, seven sampling points spaced about 5 m apart were arbitrarily chosen where soil was sampled at two depths (i.e., 0–10 and 10–20 cm) for a total of 14 soil samples. Each sample consisted of a composite of three sub-samples taken at the sampling point level. Following sampling, soils were put in plastic bags, weighed, and air-dried for 7 d and sieved to 2 mm prior to analysis. The presence of coarse fragments >2 mm was negligible.



Six (6) grams of air-dried soil from each sample were crushed, and approximately 600 mg were taken for the analysis of total soil C and N concentrations by dry combustion using a vario MAX cube apparatus (Elementar Analysensysteme, Langenselbold, Germany). There was no inorganic C in the soil, and thus, total soil C was considered as soil organic C. The pH was obtained by suspending the air-dried soil samples in a 0.01 M CaCl2 solution at a soil-to-solution ratio of 1:2, as described by Hendershot et al. [45]. Soil texture was measured using the hydrometer method described by Kroetsch and Wang [46]. Soil nutrients (P, K, Ca, Mg, Na, Cu, Zn, Mn, Fe and Al) were extracted using the Mehlich III solution and measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) apparatus (model 5110, Agilent Technologies, Santa Clara, CA, USA). Soil texture and nutrient concentrations were analysed on samples taken in October 2019 for characterization purposes, while soil C and N concentrations and soil pH were analysed on samples taken in October 2019 and November 2022 to evaluate the impact of J. curcas growth.




2.3. Statistical Analysis


We evaluated the influence of planting distances (i.e., 2 m × 2 m, 2.5 m × 2.5 m and 3 m × 3 m), propagation material (i.e., seeds and cuttings), time (i.e., October 2019 and November 2022) and their interactions on soil organic C and total soil N concentrations and soil pH. Two soil depths (i.e., 0–10 cm and 10–20 cm) were investigated and analysed independently from each other. The postulates of homogeneity of variance and normal distribution of residuals were evaluated with Shapiro–Wilk and Levene tests. Since the results from these tests showed that the postulates were not respected, we used a permutational analysis of variance (PERMANOVA) to evaluate if the treatments or their interactions influenced the dependent variables. This non-parametric analysis allowed us to analyse non-transformed data. The PERMANOVA and averaging were performed with the perm.anova package of the R software. We considered effects to be significant at p < 0.10. To illustrate significance, graphs were produced using the ggplot2 package of the R software. All analyses were performed with the R 4.0.3 software [47].





3. Results


Soil particle size distribution was 504, 470 and 26 g kg−1 of clay (i.e., <2 µm), silt (i.e., 2–50 µm) and sand (i.e., 50 µm–2 mm) particles and was similar at both soil depths (i.e., 0–10 and 10–20 cm). According to Ferret’s triangle for particle-size distribution, soil texture would be classified as silty clay. Analysis of soil nutrients of samples taken in October 2019 revealed high concentrations of Al and Fe (i.e., 896 and 121 mg kg−1 soil, respectively) and low concentrations of P, K, Ca, Mg, Na, Cu, Zn and Mn (i.e., 3, 17, 18, 5, 3, <1 and <1 mg kg−1 soil, respectively). As for soil texture, nutrient concentrations were similar at both soil depths. The effect of planting distance, propagation material, period and their interactions on total soil N and soil organic C concentrations and soil pH at both depths are shown in Table 1.



Our results indicate that the growth of J. curcas significantly increased soil organic C concentration. In November 2022, after 40 months of growth, soil organic C concentration was 15.6 and 14.0 g C kg−1 soil at 0–10 and 10–20 cm depths, respectively (Figure 2a,b). These values are greater than those of the soil sampled in October 2019 (i.e., 10.8 and 10.0 g C kg−1 soil at 0–10 and 10–20 cm depths, respectively) when there was no J. curcas crop yet (p < 0.001, Table 1 and Figure 2a,b). Growing J. curcas thus led to increases of 1.60 and 1.33 g C kg−1 soil yr−1 at 0–10 and 10–20 cm depths, respectively. Still, the values obtained under J. curcas cultivation in November 2022 remain below those of the undisturbed natural forest soil used as a reference (Figure 2a,b).



Results for total soil N concentration were similar to those obtained for soil organic C, except that the effect of the period (i.e., October 2019 vs. November 2022) was only significant at the 0–10 cm depth (p = 0.087, Table 1). In November 2022, total soil N concentration at 0–10 cm depth was about 1.6 g N kg−1 soil, which is 1.8 times greater than that measured in October 2019 (i.e., 0.9 g N kg−1 soil, Figure 3). After 40 months of growth of J. curcas, total soil N concentration in November 2022 in the 0–10 cm depth soil layer reached a value comparable to that of undisturbed natural forest soil used as a reference (Figure 3).



As noted for soil organic C and total soil N concentration, we also found that the growth of J. curcas increased soil pH over time. At 0–10 cm depth, soil pH significantly increased from a value of 3.61 before the establishment of our plots in October 2019 to a value of 4.15 in November 2022 (p < 0.001, Table 1 and Figure 4a). At 10–20 cm depth, the increase in soil pH was also significant and rose from a value of 3.61 before the establishment of our plots in October 2019 to a value of 4.05 in November 2022 (p < 0.001, Table 1 and Figure 4b). However, soil pH values at both depths under J. curcas in November 2022 remained below those of undisturbed natural forest soil (Figure 4a,b).



We also noted a significant effect of propagation material type on soil pH at 10–20 cm depth. At this depth, plots sown with J. curcas cuttings had higher soil pH than those sown with seeds but remained lower than that of the undisturbed natural forest soil (Figure 5).




4. Discussion


4.1. Soil Organic Carbon Concentration


The results obtained for soil organic C are consistent with our first hypothesis (H1) that its concentration would be higher after three years of J. curcas growth than before planting. They are also consistent with our second hypothesis (H2), according to which we expected this effect to be more pronounced at 0–10 cm than at 10–20 cm depth. However, results for soil organic C concentration did not support the third hypothesis (H3) as we found no effect on planting distance.



Our results show that soil organic C increased at rates equivalent to 1.60 and 1.33 g C kg−1 soil yr−1 at 0–10 and 10–20 cm depth, respectively, and an average of 1.47 g C kg−1 yr−1 across both depths. This is greater than the rate calculated from results presented by Wani et al. [33] in tropical India. These authors observed an increase in soil organic C of 3.10 g C kg−1 soil under J. curcas after four years, corresponding to a gain of 19% compared with adjacent grassland soil and an accumulation rate equivalent to 0.78 g C kg−1 yr−1. Our results are, however, comparable to those of Ogunwole et al. [31], who investigated J. curcas growth in degraded soils in India. The latter reported an increase in soil organic C of 4.49 g C kg−1 soil at 0–10 cm depth after 31 months when compared to adjacent soil under native vegetation, corresponding to a rate of 1.74 g C kg−1 yr−1.



Increases in soil organic C could be associated with important litter addition and root biological activities [48,49,50,51]. The increase in soil C over time can be explained by the addition of litter from leaf and stem fall, which can be rich in organic carbon [36,52,53,54]. Massoukou Pamba et al. [29] observed after one year of J. curcas growth a progressive drop in leaf production, which could be explained by the low fertility of the soil on which it was planted. This species is a xerophytic plant with deciduous leaves that fall when faced with certain nutrient deficiencies [29,30,55]. Leaves that accumulate on the soil add organic matter, which stimulates the growth and activity of soil microbial biomass [25,56,57]. An increase in soil microbial biomass resulting from the abundant fall of J. curcas leaves and stems can, thus, contribute to an increase in soil organic C concentration [33,58].



The increase in soil C concentration observed in our study can also be explained by the fact that we sampled the soil close to the stem, in the rhizosphere, where soil biological activity is intense [23,33,54,59]. The rhizosphere is enriched in C [59], and this enrichment may result from (i) the intense microbial activity that takes place there [22,23,54], (ii) root exudation [60] and (iii) superficial root development [34,38]. Our results corroborate those of Bazongo et al. [23,34] in Burkina Faso, who observed, over a relatively short period of time (i.e., 10 months), a greater increase in soil C concentration under J. curcas plant crowns and then further away from the plant [23]. The fact that we sampled at 15 cm from J. curcas collar likely shows that the root system of this plant has the capacity to increase soil organic C concentration in the short term.



The increase in average soil C levels can also be linked to the development of soil structure and aggregation mechanisms that protect C from decomposition. Indeed, Ogunwole et al. [31] report that the cultivation of J. curcas increased soil aggregate mean weight and microaggregate-associated organic C concentration compared to adjacent soil under native vegetation. These results concur with those of [36], who found a reduction in soil bulk density and an increase in water-holding capacity by 10% after three years of J. curcas growth. The authors attributed this effect to the positive impact of the J. curcas roots on soil structure and macroporosity [36]. Thus, it is probable that the positive impact of J. curcas on soil organic C concentration noted in our work could be caused by the influence of its roots. However, this would need to be demonstrated experimentally.




4.2. Total Soil Nitrogen Concentration


The results obtained regarding total soil N concentration partly confirm our first hypothesis (H1) since, after three years of J. curcas cultivation, the average N concentration increased significantly only at a 0–10 cm soil depth. This, however, confirms our second hypothesis (H2), according to which this effect should be more pronounced at this depth than at a 10–20 cm depth. However, as for soil organic C concentration, results for total soil N concentration did not support the third hypothesis (H3) since no effect of planting distance was found.



Our results concord with Ogunwole et al. [31], who reported an increase in soil N concentration after two years of J. curcas cultivation in degraded soils in India, particularly in the microaggregate fraction. The increase we noted (i.e., 1.8 times) was, however, greater than that of Ogunwole et al. [31] (i.e., 1.3 times for whole soil N concentration). The enrichment in soil N that we noted could be associated with leaves of J. curcas that fell from the plant and accumulated on the soil surface, as mentioned earlier. Leaves from this species are particularly enriched in N as compared with other parts of the plant [58], which facilitates their decomposition by soil micro-organisms and the consequent accumulation of N in the upper part of the soil profile.



Another possible explanation for the increase in soil N concentration could be related to the association between J. curcas roots and soil micro-organisms. This species can form a symbiotic association with arbuscular mycorrhizal fungi [61]. In addition, although J. curcas is not a legume nor an actinorhizal plant, its roots can be colonized by N-fixing endophyte bacteria of the Enterobacter species that are native to this plant [62]. The presence of arbuscular mycorrhizal fungi and/or endophytic bacteria can increase plant N availability [54,63], which can translate into N enrichment plant leaves [54,62]. The increased microbial activity under J. curcas [33] could have promoted the decomposition of N-rich leaves fallen to the ground and consequently enriched the soil with this element.



We sampled the soil close to the stem in the rhizosphere where biological activity is intense, and this could explain why we solely found an increase in soil N concentration at a 0–10 cm depth. The presence of arbuscular mycorrhizal fungi and/or endophytic bacteria can also increase soil nitrogen concentration in the rhizosphere [64,65]. In addition, [33] showed that the growth of J. curcas increased microbial biomass N concentration by 24% in the rhizospheric soil under this species compared to the control site. These observations concord with [58], wherein the authors concluded that J. curcas increased soil biological activity and led to more accumulated N relative to C (i.e., lower C-to-N ratio). Altogether, these results suggest that J. curcas has the capacity to improve soil fertility in the upper part of the soil profile.




4.3. Soil Acidity


The growth of J. curcas significantly reduced soil acidity and increased soil pH at both 0–10 cm and 10–20 cm depth, which confirms our first hypothesis (H1). Our second hypothesis (H2) is not verified since the effect observed was not more pronounced at a 0–10 cm than at a 10–20 cm depth. Our results did not support the third hypothesis (H3) since no effect of planting distance was found. Surprisingly, however, we noted a significant effect of propagation material.



Our results concur with others who showed increases of 0.2 to 0.4 pH units (i.e., the soil is 1.6 to 2.5 times less acidic) after growing J. curcas alone in tropical acid soils without amendments [58,66,67,68,69]. These studies, however, did not propose any mechanisms to explain how J. curcas could increase soil pH and reduce its acidity. Perhaps leaf fall is related to this process since the addition of plant material to the soil has the capacity to increase soil pH [70,71]. Possible mechanisms include the addition of litter-derived base cations, the association of organic anions from plant material with H+ or Al3+ in the soil and ammonification of organic N [70,71,72,73]. More work is needed to clearly identify which mechanism could be responsible for the observed increase in soil pH after three years of J. curcas growth in our study.



We also found that soil pH under J. curcas at a 10–20 cm depth was greater when the species was propagated with cuttings than with seeds. This could be associated with root development of the plant. The latter is superficial with multiple ramifications and has no taproot with cuttings compared with seeds [36,38,39,74]. Root systems with multiple branches absorb nutrients more easily and promote microbial and enzymatic activities [22,23]. Perhaps this translated into increased transformation of organic N in the rhizosphere through ammonification, a process that consumes H+ and reduces soil acidity [70,71]. The superficial and ramified root systems with cutting could have released more compounds through rhizodeposition that can form organo-mineral complexes with Al in soils [75,76], thereby reducing the negative impact that Al species have on soil acidification [76,77]. Again, more work is needed to clearly elucidate the mechanisms by which planting J. curcas with cuttings as opposed to seeds contributes to increased soil pH.





5. Conclusions


This study demonstrated that the cultivation of J. curcas can improve the chemical properties of soil impoverished by the successive intensive cultivation of cocoa and rubber trees in northern Gabon. Soil organic carbon concentration increased with time at both sampling depths (0–10 and 10–20 cm) but remained below the value obtained at the reference site. Total soil nitrogen concentration increased with time only at a 0–10 cm depth and reached a similar value as that obtained at the reference site. Soil pH also increased significantly with time at 0–10 cm and 10–20 cm depths but remained below the value at the reference site. We also observed that J. curcas plants sown with cuttings improve soil acidity better than those sown with seeds.



The J. curcas is a plant that responds effectively to current agricultural needs, both economically and environmentally, as it is a palliative to the use of chemical fertilizers thanks to its soil-enriching action. Growing J. curcas on degraded tropical soil thus seems a promising avenue to improve their fertility. This could reduce the pressure exerted on the natural forest by deforestation activities by farmers in search of new, more fertile soils to cultivate. However, further research is needed to ascertain whether growing this plant also improves soil properties over the medium- to long-term on the same soil.
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Figure 1. Location of Akam Effak village (a) within the province of Woleu-Ntem (b) in northern Gabon, West Africa (c). 






Figure 1. Location of Akam Effak village (a) within the province of Woleu-Ntem (b) in northern Gabon, West Africa (c).



[image: Forests 15 01709 g001]







[image: Forests 15 01709 g002] 





Figure 2. Comparison of soil organic carbon concentrations between October 2019 and November 2022 after 40 months of growth of J. curcas at 0–10 cm (a) and 10–20 cm (b) depths on a tropical soil that has been previously cultivated intensively during 43 years for rubber and cacao production. Means associated with different letters differ significantly from each other at p < 0.10. Vertical bars represent mean standard error. The horizontal red line presents the values of undisturbed natural forest soil used as a reference. 
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Figure 3. Comparison of total soil nitrogen concentrations between October 2019 and November 2022 after 40 months of growth of J. curcas at 0–10 cm on tropical soil that has been previously cultivated intensively for 43 years for rubber and cacao production. Means associated with different letters differ significantly from each other at p < 0.10. Vertical bars represent mean standard error. The horizontal red line presents the value of undisturbed natural forest soil used as a reference. 
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Figure 4. Comparison of soil pH between October 2019 and November 2022 after 40 months of growth of J. curcas at 0–10 cm (a) and 10–20 cm (b) depths on a tropical soil that has been previously cultivated intensively during 43 years for rubber and cacao production. Means associated with different letters differ significantly from each other at p < 0.10. Vertical bars represent mean standard error. The horizontal red line presents the values of undisturbed natural forest soil used as a reference. 
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Figure 5. Comparison of soil pH at 10–20 cm depth between the two types of propagation material used to grow J. curcas on tropical soil that has been previously cultivated intensively for 43 years for rubber and cacao production. Means associated with different letters differ significantly from each other at p < 0.10. Vertical bars represent mean standard error. The horizontal red line presents the values of undisturbed natural forest soil used as a reference. 
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Table 1. Effects of different sources of variation on soil organic carbon (C) and total soil nitrogen (N) concentrations and soil pH at 0–10 cm and 10–20 cm depth.
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C

	

	
N

	

	
pH

	




	
Source of Variation

	
F Value

	
Pr (>F)

	
F Value

	
Pr (>F)

	
F Value

	
Pr (>F)






	
0–10 cm depth

	

	

	

	

	

	




	
D

	
0.33

	
0.7201

	
0.80

	
0.4565

	
1.458

	
0.2458




	
M

	
2.11

	
0.1554

	
1.14

	
0.2920

	
0.003

	
0.9555




	
P

	
21.37

	
0.0001

	
3.08

	
0.0872

	
19.426

	
0.0001




	
D × M

	
0.30

	
0.7412

	
0.97

	
0.3886

	
0.106

	
0.9002




	
D × P

	
0.36

	
0.6976

	
0.64

	
0.5347

	
1.614

	
0.2134




	
M × P

	
0.09

	
0.7647

	
0.74

	
0.3943

	
0.177

	
0.6758




	
D × M × P

	
0.05

	
0.9549

	
0.86

	
0.4333

	
0.147

	
0.8642




	
10–20 cm depth

	

	

	

	

	

	




	
D

	
0.517

	
0.6010

	
0.890

	
0.4185

	
0.934

	
0.4024




	
M

	
1.720

	
0.1975

	
0.930

	
0.3413

	
6.928

	
0.0123




	
P

	
47.446

	
0.0001

	
2.628

	
0.1142

	
54.206

	
0.0001




	
D × M

	
0.032

	
0.9688

	
1.074

	
0.3523

	
2.263

	
0.1184




	
D × P

	
0.122

	
0.8845

	
0.921

	
0.4068

	
1.754

	
0.1875




	
M × P

	
0.096

	
0.7588

	
0.772

	
0.3863

	
0.688

	
0.4121




	
D × M × P

	
0.032

	
0.9687

	
1.012

	
0.3732

	
0.854

	
0.4343








D = planting distance; M = propagation material; P = period.
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