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Abstract: The advance of spring phenology and the delay of autumn phenology caused by global
warming have been documented by many studies. However, most research has focused on natural
areas, with limited studies conducted on phenological observations in urban environments. Here, we
selected the first flowering date (FFD), first leaf date (FLD), and leaf coloring date (LCD) at three sites
(Beijing, Harbin, and Mudanjiang) from the China Phenological Observation Network. We analyzed
the phenological changes of 84 species between 1963–1991 and 1992–2020 to examine their response
to urban warming. We then quantified the correlations and regressions between phenological events
and preseason temperature. The results show the following: (1) Among the three sites, the mean FFD
and FLD were earliest in Beijing, while the mean LCD occurred earliest in Harbin and latest in Beijing.
(2) FFD and FLD exhibited a significant trend towards earlier occurrences at all three sites, while LCD
showed a significant delay trend except for the Mudanjiang site. Specifically, at the Beijing, Harbin,
and Mudanjiang sites, the mean FFD advanced by 8.32 days, 6.11 days, and 2.60 days in the latter
period (p < 0.05), whereas the mean FLD advanced by 11.30 days, 7.21 days, and 5.02 days (p < 0.05),
respectively. (3) In Beijing, Harbin, and Mudanjiang, both FFD and FLD were significantly negatively
correlated with preseason temperature. However, no consistent relationship was observed between
LCD and preseason temperature. These results enhance our understanding of the response of plant
phenology to urban warming.

Keywords: phenology; global warming; first flowering date; first leaf date; leaf coloring date

1. Introduction

Vegetation phenology is a sensitive indicator of climate change [1,2]. Phenological
changes can alter ecosystem structure and function by leading to phenological mismatches
of interacting species [3], helping the success of invasive plant species [4], and increasing the
effective duration of plant assimilation [5]. Meanwhile, phenological changes also provide
feedback to the climate system by influencing the water, energy, and carbon cycle [2,6].
Understanding of the phenological changes under historical climate variations could
provide insights into how ecosystems might respond to future climate change. Various
environmental factors have been identified as influencing vegetation phenology, including
temperature [7], photoperiod [8], moisture [9], and CO2 [10]. Among all these factors,
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temperature reveals a primary control. Before initiating spring phenological events, plants
first experience a period of endodormancy that needs to be broken by cold temperature
and then ecodormancy that is accelerated by warm temperature [11]. Elevated autumn
temperature was also found to slow down the senescence rate because plants receive more
time for photosynthesis and nutrient reallocation under a suitable environment [12,13].

Phenological events are critical timings in plant developmental stages and are sensitive
to climate change [6]. In the context of global warming, advanced spring phenological
events (such as the leaf-out and flowering date) and delayed autumn phenological events
(such as leaf coloring and leaf fall) have been generally reported by previous studies
using ground-based phenology observation data across continents [7,14–16]. For spring
phenological events, a comprehensive study based on more than 125,000 data series from
phenological networks in 21 European countries during 1971–2000 demonstrated that the
average advance of spring (summer) phenology was 2.5 d/decade [7]. In East Asia, the
start of the growing season for Ginkgo biloba L. was found to occur 4 days earlier during
1953–2000 according to the phenological observation data [14]. For autumn phenological
events, the leaf senescence dates were delayed by 2.6 d/decade in 1982–2011 on the basis
of a meta-analysis in China [15]. Similarly, in the USA, leaf coloring was also found to be
delayed by an average of 3.6 d/decade [17]. However, these observations and results were
mainly derived from natural ecosystems. Considering that urban warming tends to be
stronger than natural vegetation, phenological changes in cities may be more significant
than those in natural ecosystems. For example, the length of the growing season in urban
core areas was found to be increased by 9.9 ± 0.77 days compared to rural counterparts
according to a satellite-based study in 343 Chinese cities [18]. Although there have been
studies using remote sensing data to investigate the trends of phenological metrics in major
cities of China [19,20], in situ observational studies in cities are still lacking.

In our study, we selected three phenological observation sites located within the urban
area of Beijing, Harbin, and Mudanjiang as the study area to investigate the temporal
changes of plant phenology and its response to urban warming. These sites record a
long and continuous time series of first leaf dates (FLD), first flowering dates (FFD), and
leaf coloring dates (LCD) from 1963 to 2020. We first divided the 1963–2020 period into
two 29-year periods (1963–1991 and 1992–2020), and calculated the average FLD, FFD,
and LCD for each period, as well as the differences between the two 29-year periods.
Then, we conducted the correlation and regression analysis between phenophases (FLD,
FFD, and LCD) and preseason temperature. In summary, our aims were (1) to identify
the distinctions between the phenophases (FLD, FFD, and LCD) in different time periods
(1963–1991 and 1992–2020); (2) to quantify the response of phenophases (FLD, FFD, and
LCD) to preseason temperature.

2. Data and Methods
2.1. Study Site

We selected Beijing (40◦2′ N, 116◦33′ E), Harbin (45◦70′ N, 126◦63′ E), and Mudanjiang
(44◦43′ N, 129◦67′ E) as the study area (Figure 1a) according to the principle of longer
observation and better data continuity. The three stations have a temperate monsoon
climate with a hot, rainy summer and a cold, dry winter. The coldest month is January,
and the hottest month is July. The average temperature from 1963 to 2020 is 12.5 ◦C, 4.5 ◦C,
and 4.4 ◦C for Beijing, Harbin, and Mudanjiang, respectively (Figure 1b). The average
annual precipitation is 546 mm, 517 mm, and 533 mm for Beijing, Harbin, and Mudanjiang,
respectively. The main vegetation type is deciduous broad-leaved forest.

2.2. Data Sources

All phenological data for this study are from the China Phenological Observation
Network (CPON), which was established in 1963. We investigated three phenophases,
including the first flowering date (FFD), first leaf date (FLD), and leaf coloring date (LCD).
Observations of each phenophase conform to uniform observation criteria and guide-
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lines [21]. FFD was defined as the date when a fixed individual has at least 3 flowers fully
opens. FLD was defined as the date when a fixed individual with at least 3 leaves fully
opens. LCD was defined as the date when an individual shows yellow leaves on 95%–100%
of its crowns. FFD and FLD are considered representative indicators of spring phenology,
while LCD represents autumn phenology [22,23]. Additionally, FLD and LCD can be
interpreted as the start and end dates of the photosynthesis period, respectively [23,24].
The phenological data span from 1963 to 2020, and the effective observation years ranged
between 36 and 52 years among sites because there are a few missing data in certain years
due to discontinuous observations (Tables A1–A3). A total of 84 species (belonging to 58
genera), including 67 species of trees, 27 species of shrubs, and 1 vine, were analyzed in
three cities.
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The climate data, including daily mean temperatures and precipitation, for the period
from 1963 to 2020 were sourced from the China Meteorological Data Sharing Service System
(https://data.cma.cn/, accessed on 27 September 2024).

2.3. Methods
2.3.1. Statistical Method of Phenological Changes

In order to analyze the impact of climate change on phenology at three sites over the
past 60 years, the study period was divided into two periods (1963–1991 and 1992–2020)
with the same duration. A comparison of temperature data from the Beijing, Harbin, and
Mudanjiang sites between the two periods revealed that the mean monthly average tem-
peratures at all three locations during 1992–2020 were higher than those during 1963–1991
by 1.53 ◦C, 1.43 ◦C, and 1.23 ◦C, respectively. The number of months with significant dif-
ferences (p < 0.05) was eleven in Beijing and ten for both Harbin and Mudanjiang. Harbin
and Mudanjiang experienced higher precipitation during 1992–2020 compared to that in
the earlier period by an increase of 2.64 mm and 11.85 mm, respectively. However, Beijing
station witnessed a decrease in precipitation by about 5.04 mm during the later period as
opposed to its earlier period. The number of months with significant differences (p < 0.05)
in monthly precipitation was three for Beijing station, five for Harbin station, and six
for Mudanjiang (Figure 2). The significant difference in the monthly mean temperatures
between the two periods provides a basis for analyzing the response of phenology to
global warming.

The phenophase is represented by the day of the year (DOY). We only analyzed the
species whose cumulative observation years are greater than or equal to 10 years. The
average FFD, FLD, and LCD of the two periods and the whole period (1963–2020) were
counted, the deviation between the two periods (later period minus earlier period) was
analyzed, and the frequency distribution diagram and box plot were drawn. An unequal
variance t-test was performed to test whether the deviations differed significantly from zero.

https://data.cma.cn/
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Figure 2. Monthly mean temperature and precipitation of the 3 stations in 1963–1991 (blue bar and
curves) and 1992–2020 (red bar and curves). (a) Beijing; (b) Harbin; (c) Mudanjiang. The curves
stand for monthly mean temperature, and the bars stand for monthly mean precipitation. * indicates
that mean temperature or precipitation was significantly different (p < 0.05) between 1963–1991 and
1992–2020.



Forests 2024, 15, 1712 5 of 20

2.3.2. Analysis of the Relationship between Phenology and Preseason Temperature

Plant phenology is influenced by fluctuations in mean temperature during the period
preceding phenological events [25]. Numerous studies have demonstrated a significant
correlation between plant phenology and the mean temperature of the month in which
the plant’s multi-year mean phenological onset occurs, as well as the two preceding
months [23,26]. However, the optimum period (OP) for temperature influence cannot
be limited to a single day. It is generally accepted that plant phenology is affected by
temperatures from at least two weeks prior. Therefore, in this study, the OP was calculated
using temperatures from 15 to 120 days before the phenological event. The OP was utilized
in this study to examine the correlation between phenology and temperature, as defined
by [14,23]

OP = [BP,EP], (1)

where EP is the end date of OP (in DOY), defined as the average date of the phenophase
from 1963 to 2020. BP is the beginning date of the period (in DOY). Then, the Pearson’s
correlation coefficient (R) between the phenophase (FFD, FLD, or LCD) and average tem-
perature during [BP, EP] was calculated by moving each BP from EP-15 to EP-120 days by
a step length of 1 day. The period [BP, EP] with the highest absolute value of correlation
coefficient was designated as the OP. The BP of LCD was restricted to occur after the
summer solstice [13]. The regression slope for each phenophase (FFD, FLD, LCD) was
calculated in relation to the corresponding average temperature within the OP, allowing for
the quantification of the temperature sensitivity of each phenophase. The Adjusted R2 and
RMSE for each phenophase (FFD, FLD, LCD) was calculated in relation to the correspond-
ing average temperature within the OP using the Sigmoidal model (Equation (2), Figure A1)
and Linear model (Equation (3), Figure A2). The significance of the correlation coefficients,
regression slopes, Adjusted R2, and RMSE values were assessed using a two-sample t-test.

f (x) =
c

1 + e(a+bx)
+ d (2)

where c and d represent the horizontal asymptotes, while b is the growth rate parameter.
The inflection point of the curve is located at x = −a/b.

y = ix + j (3)

where i is the slope, and j is the y-intercept.

3. Results
3.1. Phenological Variation across Sites

There are significant differences in the mean FFD, FLD, and LCD of each site from
1963 to 2020 (Figure 3). The FFD range across three sites spanned 75 to 198 days, and more
than 50% of the species (52.75%) were distributed in DOY 105–150. The FFD of the Beijing
site was 24.77 days and 26.58 days earlier than Harbin and Mudanjiang. The FLD range
was 75–197 days, and over 80% of species (80.90%) were distributed in DOY 89–125. The
mean FLD was earliest in Beijing, followed by Mudanjiang, and the latest in Harbin. The
mean LCD of Harbin was slightly earlier than that of Mudanjiang, and the mean LCD of
Beijing was 31.14 days later than that of Harbin.

3.2. Phenological Change between 1963–1991 and 1992–2020

Based on the phenological differences observed across all species between the two pe-
riods (1963–1991 and 1992–2020), both FFD and FLD advanced at all three sites, while
LCD was delayed at all sites except for Mudanjiang (Figure 4). Specifically, the median
FFD at Beijing, Harbin, and Mudanjiang in 1992–2020 was earlier by 8.10 days, 2.99 days,
and 2.18 days compared to 1963–1991, respectively. The median FLD in 1992–2020 was
earlier by 11.15 days, 7.54 days, and 1.15 days, respectively, at these sites compared to
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the period 1963–1991. The median LCD at Beijing and Harbin in 1992–2020 was later by
5.10 and 7.05 days, respectively, compared to 1963–1991, while it was earlier by 0.17 days
at Mudanjiang.
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(b) Harbin; (c) Mudanjiang.

Changes in the frequency distribution of the three phenological phases from 1992–2020
and 1963–1991 reveal an overall advancement in FFD (Figure 5) and FLD (Figure 6), while
a delay was observed in LCD at Beijing, Harbin, and Mudanjiang (Figure 7). Specifically,
Beijing (85.11%) recorded the highest proportion of species with significantly advanced
FFD, followed by Mudanjiang (57.69%), and the lowest proportion was found in Harbin
(22.22%). The magnitude of advancement followed the order of Beijing (8.32 days), Harbin
(6.11 days), and Mudanjiang (2.60 days). Similarly, for FLD, Beijing (2.60 days) had the
highest proportion of significantly advanced species, followed by Harbin (75.00%), and
Mudanjiang (8.70%) had the lowest. The magnitude of advancement also followed the
same order of Beijing (11.30 days), Harbin (7.21 days), and Mudanjiang (5.02 days). In
contrast, Harbin (81.82%) had the highest proportion of species with significantly de-
layed LCD, followed by Beijing (46.34%), while Mudanjiang showed no clear pattern of
change. The magnitude of delay in LCD was greatest in Harbin (11.66 days), followed
by Beijing (8.43 days) and Mudanjiang (0.92 days). These findings further underscore the
notable advancing trend in spring and summer phenophases and the delaying trend in
autumn phenophases.



Forests 2024, 15, 1712 8 of 20

Forests 2024, 15, 1712 8 of 20 
 

 

Changes in the frequency distribution of the three phenological phases from 1992–
2020 and 1963–1991 reveal an overall advancement in FFD (Figure 5) and FLD (Figure 6), 
while a delay was observed in LCD at Beijing, Harbin, and Mudanjiang (Figure 7). Specif-
ically, Beijing (85.11%) recorded the highest proportion of species with significantly ad-
vanced FFD, followed by Mudanjiang (57.69%), and the lowest proportion was found in 
Harbin (22.22%). The magnitude of advancement followed the order of Beijing (8.32 days), 
Harbin (6.11 days), and Mudanjiang (2.60 days). Similarly, for FLD, Beijing (2.60 days) 
had the highest proportion of significantly advanced species, followed by Harbin 
(75.00%), and Mudanjiang (8.70%) had the lowest. The magnitude of advancement also 
followed the same order of Beijing (11.30 days), Harbin (7.21 days), and Mudanjiang (5.02 
days). In contrast, Harbin (81.82%) had the highest proportion of species with significantly 
delayed LCD, followed by Beijing (46.34%), while Mudanjiang showed no clear pattern of 
change. The magnitude of delay in LCD was greatest in Harbin (11.66 days), followed by 
Beijing (8.43 days) and Mudanjiang (0.92 days). These findings further underscore the no-
table advancing trend in spring and summer phenophases and the delaying trend in au-
tumn phenophases. 

 
Figure 5. (a–f) Frequency distributions of the mean FFD of the 3 stations in 1963–1991 (a–c) and 
1992–2020 (d–f). (g–i) Frequency distributions of the deviations in FFD in the period 1992–2020 from 
the mean over the period 1963–1991. Categories are 3-day periods. The texture-filled bar represents 
species for which the deviation was significantly (p < 0.05) different from zero. (a,d,g) Beijing; (b,e,h) 
Harbin; (c,f,i) Mudanjiang. 
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1992–2020 (d–f). (g–i) Frequency distributions of the deviations in FFD in the period 1992–2020 from
the mean over the period 1963–1991. Categories are 3-day periods. The texture-filled bar represents
species for which the deviation was significantly (p < 0.05) different from zero. (a,d,g) Beijing;
(b,e,h) Harbin; (c,f,i) Mudanjiang.

3.3. Relationship between Phenophases and Temperature

Figure 8 shows the OP corresponding to vegetation phenology at different sites,
revealing that FLD and FFD are generally significantly correlated with OP temperature
(p < 0.05). In contrast, the correlation between LCD and OP temperature is not significant
for most species (Figure 6). The OP duration of FFD ranged from 17 days to 120 days across
the three sites, with the mean OP duration at Harbin (50.81 days), Beijing (51.55 days), and
Mudanjiang (59.10 days) in ascending order. For FLD, the OP duration varied from 16 days
to 120 days across all sites, with a mean OP of 42.43 days, 42.98 days, and 51.20 days at
Mudanjiang, Beijing, and Harbin, respectively. For LCD, the OP duration ranged from
16 days to 111 days, with a mean OP duration of 38.33 days, 46.00 days, and 46.80 days at
Harbin, Mudanjiang, and Beijing, respectively.

A comparison of the Adjusted R2 values between the Sigmoidal and Linear model
revealed that, with the exception of the significant difference (p < 0.05) in Adjusted R2 for
FFD and OP temperatures at the Mudanjiang site, the differences in Adjusted R2 between
the two models were not statistically significant in other cases (Figure A3). Additionally,
no significant differences were observed between the RMSEs derived from the Linear and
Sigmoidal models. Notably, the RMSEs for all phenological periods (FFD, FLD, and LCD)
in relation to OP temperatures were consistently smaller for the Linear model across all
three sites (Figure A4). Consequently, the results of the Linear model were employed in
subsequent analyses.
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An analysis of the correlation between vegetation phenology and OP temperature
revealed that at Beijing, Harbin, and Mudanjiang, FFD and FLD exhibited negative corre-
lations with OP temperature, whereas the correlation between LCD and OP temperature
varied significantly among sites (Figure 7). Specifically, the mean correlation coefficients
between FFD and OP temperature were −0.76 ± 0.23 (mean ± SD), −0.69 ± 0.22, and
−0.53 ± 0.27, respectively, with 89.36%, 88.89%, and 38.46% of species showing significance
at the 5% level. For FLD, the mean correlation coefficients were −0.79 ± 0.13, −0.71 ± 0.12,
and −0.81 ± 0.10, with 97.83%, 100.00%, and 100.00% of species significant at a 0.05 level.
In contrast, the mean correlation coefficients between LCD and OP temperature were
0.21 ± 0.18, 0.49 ± 0.22, and −0.43 ± 0.19, respectively, with only 12.20%, 54.55%, and
15.38% of species displaying a significant correlation coefficient (p < 0.05).

The temperature sensitivity (regression slope) of vegetation phenology was signifi-
cantly different among sites and species (Figure 9). Significant advancements predomi-
nantly characterized the responses of FFD and FLD to OP temperatures. At the Beijing,
Harbin, and Mudanjiang sites, the temperature sensitivity of FFD ranged from −0.52 to
−6.99 days ◦C−1, −1.94 to −7.17 days ◦C−1, and −2.33 to −18.02 days ◦C−1, respectively.
For FLD, the temperature sensitivity ranged from −1.44 to −6.99 days ◦C−1, −2.42 to
−4.47 days ◦C−1, and −2.44 to −3.95 days ◦C−1, respectively. In contrast, the response
of LCD to OP temperatures did not exhibit a consistent pattern among sites. At Beijing,
Harbin, and Mudanjiang, the proportions of species with positive slopes (indicating ad-
vancement with increasing OP temperatures) were 71.43%, 91.67%, and 28.57%, respectively.
The magnitudes of these responses ranged from 0.0037 to 4.16, 0.73 to 6.36, and 0.57 to
1.35 days ◦C−1, respectively. For the remaining species, LCD advanced by 0.35–2.31 days,
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2.79–2.79 days, and 0.85–7.50 days, respectively, with a 1 ◦C increase in OP temperatures.
Overall, the mean temperature sensitivity across all species at the three sites was −5.90,
−3.28, and 0.35 days ◦C−1 for FFD, FLD, and LCD, respectively.
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4. Discussion

In terms of spatial pattern, our results support the bioclimatic law proposed by Hop-
kins, which states that spring phenology would be delayed but autumn phenology would
be advanced by latitude north [27]. Concretely, the median FLD and FFD in Beijing were
earlier than in Mudanjiang, followed by Harbin in both observation periods. This lat-
itudinal gradient of spring phenology might be attributed to the response of plants to
varying environmental conditions. However, the gradient of FLD and FFD across latitudes
between Beijing and Harbin (4.36 days for FFD and 4.53 days for FLD per 1◦ N) was
higher than Hopkins’ hypothesis (4 days per 1◦ N). Compared to the other cities of China
(2.46 to 3.48 days per 1◦ N), North America (2.62 days per 1◦ N), or the whole Northern
Hemisphere (0.7 to greater than 1.0 days per 1◦ N), the spring phenology has been more
dramatically affected by latitude gradient in this study [28–30]. In addition, the LCD in
Beijing was significantly earlier than in the other two cities, but the disparity between the
other two cities was not conspicuous. These inconsistent quantifications in geographic
gradient might first be caused by the difference across observed species themselves [31].
Another reason is that spring phenology could be dramatically advanced and autumn
phenology could be delayed by high urbanization intensity [19].

Consistent with previous studies, widespread advancements in the FLD and FFD
and inapparent delay in LCD were found in this study [15,32–34]. However, the mag-
nitude of the shifts in spring and autumn phenology varied among stations. For ex-
ample, our results showed that the advancing trends of spring phenology in Beijing
across the two periods (deviation in phenophases/29 years) were the most significant
(0.28 days year−1 for FFD and 0.38 days year−1 for FLD), which were close to a previous
study in China (0.22 to 0.57 days year−1) but slightly higher than those observed in Europe
(0.24 days year−1) [15,34]. Nevertheless, the greatest changes in LCD were observed in
Harbin (0.40 days year−1 delay), which was much higher than both the previous study
of China (0.19–0.25 delay per year) and Europe (0.036 delay per year) [15,34]. This is
because the phenological changes in urban areas would be more dramatic than in natural
environments, with 0.50 days year−1 much earlier in spring and 0.78 days year−1 much
later in autumn [35]. It is worth noting that the phenological shifts in Mudanjiang were
more slight than in other cities (0.08 days year−1 for FLD, 0.04 days year−1 for FFD, and
0.01 days year−1 for LCD). This may be attributed to the weaker urban heat island effect in
Mudanjiang compared to the other two cities.

Based on the linear regression between the preseason temperature and phenophases,
we calculated the temperature sensitivity of spring and autumn phenology. Both tempera-
ture sensitivities of FLD and FFD in all three sites were negative overall, which is consistent
with the results in Europe and North America [15,36]. In a previous study, spring tempera-
ture sensitivity in most of the regions of the mid- and high-latitude Northern Hemisphere
showed positive clines across latitudes [37]. However, in this study, there is no evidence
to suggest the temperature sensitivity of spring phenology changes along the latitudinal
gradient. It indicates that spring temperature sensitivity for a single phenology site might
be affected by multiple factors such as biodiversity, radiation, precipitation, soil nitrogen,
etc. [38]. In our study area, the Beijing site is the Summer Palace, and the Harbin site
is the Heilongjiang Forest Botanical Garden. Precipitation and drought events were not
considered, as both sites are artificially irrigated. Furthermore, Figure 2 indicates that there
are few significant differences in mean precipitation between 1963–1991 and 1992–2020.
Consequently, it is not feasible to analyze the effect of precipitation on phenology in our
study. Additionally, some studies suggest that the spring phenology of most vegetation is
not sensitive to photoperiod [39,40], and the start of growing season for vegetation in the
Northern Hemisphere is not significantly affected by radiation intensity [41]. Therefore,
this study did not incorporate the effects of photoperiod or radiation into the analysis of
phenological patterns.

In addition, different from the previous study, i.e., plants that have earlier phenophases
are more sensitive to temperature than later plants, our results did not show any significant
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relationship between temperature sensitivities of spring phenology and the timing of
phenophases [42]. Unlike spring phenology, the direction of LCD response to preseason
temperature was not consistent across sites, where the sensitivity of LCD in Beijing and
Harbin was positive, but in Mudanjiang, it was negative. Due to the different urbanization
processes, autumn phenology in North China cities exhibited a greater delay (3.1 days to
less than 1 day) than in Northeast China [18]. The other reason could be the inconsistent
standard in LCD recording caused by subjective observations, which introduced potential
errors in the linear regression model [43]. Further, autumn phenological changes are
affected by complex factors, and the leaf coloring response may not be linear [44].

5. Conclusions

By utilizing FFD, FLD, and LCD data from the China Phenological Observation Net-
work and daily temperature data, we analyzed the phenological changes in three cities
(Beijing, Harbin, and Mudanjiang) between 1963–1991 and 1992–2020 to examine their
response to urban warming. The results show the following: (1) FFD and FLD occurred
earliest in Beijing, while LCD occurred earliest at Mudanjiang and latest in Beijing. (2) In Bei-
jing, Harbin, and Mudanjiang, the median FFD (FLD) advanced by 8.10 (11.15), 2.99 (7.54),
and 2.18 (1.15) days, respectively, during the period 1992–2020 compared to 1963–1991.
Meanwhile, the median LCD was delayed by 5.10 days in Beijing and 7.05 days in Harbin
but advanced by 0.17 days in Mudanjiang. (3) In Beijing, Harbin, and Mudanjiang, both
FFD and FLD were significantly negatively correlated with preseason temperature. How-
ever, no consistent relationship was observed between LCD and preseason temperature.
Our study suggests that vegetation phenology in cities will experience more pronounced
changes than in natural environments due to the urban heat island effect.
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Appendix A

Table A1. Summary of phenological data from Beijing stations investigated in this study. NFFD1,
NFLD1, NLCD1, number of observation years during the period 1963–1991; NFFD2, NFLD2, NLCD2,
number of observation years during the period 1992–2020; MFLD, mean timing of first leaf dates;
MLCD, mean timing of leaf coloring date; MFFD, mean timing of first flowering date (all from 1963
to 2020); LF, life form; T, tree species; S, shrub species; V, vine species. The slash denotes that the data
are less than 10 years old and have been excluded.

Species Family LF NFFD1 NFFD2 MFFD NFLD1 NFLD2 MFLD NLCD1 NLCD2 MLCD

1 Fraxinus chinensis Fraxinus T 18 24 4/19 24 26 4/14 22 25 10/19
2 Castanea mollissima Castanea T 26 25 5/30 26 26 4/19 25 25 11/2

3 Syringa reticulata
subsp. amurensis Syringa T 22 19 5/18 24 19 4/2 21 18 11/5

4 Prunus persica
‘Duplex’ Prunus T 18 21 4/8 17 20 4/11 12 16 11/3

5 Platycladus
orientalis Platycladus T 22 23 3/28 - - - - - -

6 Ailanthus altissima Ailanthus T 24 20 5/24 25 22 4/18 17 21 10/22
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Table A1. Cont.

Species Family LF NFFD1 NFFD2 MFFD NFLD1 NFLD2 MFLD NLCD1 NLCD2 MLCD

7 Robinia pseudoacacia Robinia T 25 26 5/2 25 26 4/14 23 23 10/30
8 Pyrus betulifolia Pyrus T 17 21 4/14 17 19 4/8 16 20 10/28
9 Juniperus chinensis Juniperus T 23 21 4/1 - - - - - -

10 Salix matsudana Salix T 26 19 4/2 24 19 3/29 20 18 11/12
11 Albizia julibrissin Albizia T 26 18 6/9 26 18 5/1 22 14 11/1

12 Styphnolobium
japonicum Styphnolobium T 23 20 7/14 23 20 4/25 18 13 11/14

13 Rosa xanthina Rosa S 14 20 4/23 14 21 4/2 10 18 11/10

14 Cotinus coggygria
var. cinereus Cotinus T 17 19 4/21 16 18 4/12 17 19 10/25

15 Rhodotypos scandens Rhodotypos T 17 18 4/16 17 17 4/7 16 11 11/13

16 Populus ×
canadensis Populus T 23 26 3/26 25 24 4/7 23 21 10/31

17 Diospyros lotus Diospyros T 22 25 5/17 23 25 4/17 16 20 10/28
18 Forsythia suspensa Forsythia S 18 21 3/28 18 19 4/8 15 19 11/4

19 Styphnolobium
japonicum ‘Pendula’ Styphnolobium T 16 19 7/11 18 21 4/13 - - -

20 Koelreuteria
paniculata Koelreuteria T 16 19 5/31 19 21 4/11 17 20 10/27

21 Populus tomentosa Populus T 22 26 3/17 21 26 4/9 14 18 11/6

22 Paeonia ×
suffruticosa Paeonia S 26 25 4/20 25 26 3/31 19 23 10/29

23 Paulownia fortunei Paulownia T 16 16 4/20 15 12 4/23 - - -
24 Catalpa bungei Catalpa T 18 18 4/27 19 19 4/12 - - -
25 Prunus × yedoensis Prunus T 26 20 4/14 26 19 4/11 25 19 10/31
26 Morus alba Morus S 24 23 4/22 24 23 4/20 21 21 10/30
27 Prunus davidiana Prunus T 27 26 3/22 27 26 4/1 18 19 11/6
28 Punica granatum Punica T 16 20 5/27 17 21 4/23 13 19 10/30
29 Diospyros kaki Diospyros T 23 23 5/14 23 23 4/15 21 22 10/29

30 Metasequoia
glyptostroboides Metasequoia T - - - 21 20 4/11 19 20 11/3

31 Viburnum farreri Viburnum T 16 11 3/30 14 10 3/29 - - -

32 Salix matsudana
‘Pendula’ Salix T 24 20 4/6 26 21 3/30 24 20 11/13

33 Firmiana simplex Firmiana T 23 23 6/20 24 25 4/27 21 24 10/29
34 Malus × micromalus Malus T 26 21 4/13 26 21 3/31 20 17 11/11
35 Populus simonii Populus T 13 15 4/3 14 15 4/6 11 14 11/4
36 Prunus armeniaca Prunus T 26 26 4/2 24 25 4/13 22 23 11/6
37 Ginkgo biloba Ginkgo T - - - 16 20 4/10 16 20 10/30

38 Jasminum
nudiflorum Jasminum T 10 19 3/17 - - - - - -

39 Pinus tabuliformis Pinus T 25 21 4/26 25 22 4/26 - - -
40 Ulmus pumila Ulmus T 25 18 3/16 26 18 4/8 19 18 11/11
41 Prunus triloba Prunus T 21 26 4/6 20 25 4/8 20 24 10/30
42 Yulania denudata Yulania T 26 21 3/30 26 21 4/12 25 19 11/1
43 Sorbaria sorbifolia Sorbaria S 15 18 6/8 16 20 3/30 14 14 11/8
44 Syringa oblata Syringa S 24 26 4/10 24 26 3/31 20 21 11/3
45 Cercis chinensis Cercis S 24 26 4/14 23 26 4/14 22 25 10/28
46 Wisteria sinensis Wisteria V 24 26 4/21 24 26 4/21 22 23 11/8
47 Lagerstroemia indica Lagerstroemia S 22 25 7/5 24 25 4/26 21 24 10/28
48 Yulania liliiflora Yulania S 26 20 4/4 25 20 4/11 24 18 10/29
49 Prunus × subhirtella Prunus T 16 16 4/10 15 15 4/11 15 15 10/30



Forests 2024, 15, 1712 15 of 20

Table A2. Summary of phenological data from Harbin stations investigated in this study. NFFD1,
NFLD1, NLCD1, number of observation years during the period 1963–1991; NFFD2, NFLD2, NLCD2,
number of observation years during the period 1992–2020; MFLD, mean timing of first leaf dates;
MLCD, mean timing of leaf coloring date; MFFD, mean timing of first flowering date (all from 1963
to 2020); LF, life form; T, tree species; S, shrub species; V, vine species. The slash denotes that the data
are less than 10 years old and have been excluded.

Species Family LF NFFD1 NFFD2 MFFD NFLD1 NFLD2 MFLD NLCD1 NLCD2 MLCD

1 Syringa reticulata
subsp. amurensis Syringa T 12 18 6/7 12 18 4/23 12 10 9/10

2 Forsythia
mandschurica Forsythia S 11 18 4/19 11 18 5/2 11 12 9/28

3 Philadelphus
schrenkii Philadelphus S 14 18 5/28 14 18 4/29 12 10 10/5

4 Pinus koraiensis Pinus T - - - 10 17 6/1 - - -
5 Juglans mandshurica Juglans T 17 17 5/18 17 17 5/10 - - -

6 Viburnum opulus
subsp. calvescens Viburnum S 13 18 5/25 13 18 4/28 13 17 10/8

7 Lonicera maackii Lonicera S 16 18 5/24 16 18 4/30 - - -

8 Viburnum
burejaeticum Viburnum S 13 18 5/17 13 18 4/26 13 13 10/9

9 Morus alba Morus S 11 18 5/20 12 18 5/18 12 15 9/27
10 Prunus sibirica Prunus T 15 18 5/1 15 18 5/10 - - -

11 Caragana
arborescens Caragana S 12 18 5/19 12 18 5/8 - - -

12 Fraxinus
mandshurica Fraxinus T 11 18 5/3 14 18 5/13 14 15 9/29

13 Xanthoceras
sorbifolium Xanthoceras T 11 18 5/19 11 18 5/17 - - -

14 Flueggea suffruticosa Flueggea S 10 17 6/19 10 18 5/18 10 16 10/2
15 Ulmus pumila Ulmus T 17 18 4/16 17 18 5/3 16 12 10/8
16 Prunus triloba Prunus T 16 18 5/2 16 18 5/7 14 14 10/2

17 Pinus sylvestris var.
mongolica Pinus T - - - 10 16 5/28 - - -

18 Sorbaria sorbifolia Sorbaria S 15 16 7/9 17 18 4/18 - - -
19 Catalpa ovata Catalpa T 12 16 6/24 13 18 5/21 - - -
20 Syringa oblata Syringa S 18 18 5/8 18 18 5/2 14 11 10/13

Table A3. Summary of phenological data from Mudanjiang stations investigated in this study. NFFD1,
NFLD1, NLCD1, number of observation years during the period 1963–1991; NFFD2, NFLD2, NLCD2,
number of observation years during the period 1992–2020; MFLD, mean timing of first leaf dates;
MLCD, mean timing of leaf coloring date; MFFD, mean timing of first flowering date (all from 1963
to 2020); LF, life form; T, tree species; S, shrub species; V, vine species. The slash denotes that the data
are less than 10 years old and have been excluded.

Species Family LF NFFD1 NFFD2 MFFD NFLD1 NFLD2 MFLD NLCD1 NLCD2 MLCD

1 Acer tataricum
subsp. ginnala Acer T 15 28 5/24 14 27 5/2 14 29 9/24

2 Prunus padus Prunus T 15 28 5/7 14 28 4/22 11 28 9/28
3 Salix babylonica Salix T 13 29 4/30 13 27 4/23 11 26 10/21
4 Picea koraiensis Picea T - - - 11 28 5/8 - - -
5 Lespedeza bicolor Lespedeza T 14 28 7/6 - - - 10 23 9/20

6 Styphnolobium
japonicum Styphnolobium T 10 10 7/7 11 17 5/17 10 11 9/24

7 Phellodendron
amurense Phellodendron T 11 29 6/7 - - - - - -

8 Prunus salicina Prunus T 16 27 5/6 12 25 5/4 11 18 10/3
9 Spiraea salicifolia Spiraea S 13 22 6/18 12 18 4/21 - - -

10 Rubus komarovii Rubus S 11 26 6/4 11 27 4/30 - - -
11 Malus baccata Malus T 15 28 5/12 14 26 4/24 11 22 10/3

12
Crataegus

pinnatifida var.
major

Crataegus T 16 28 5/27 15 28 4/29 11 26 9/28

13 Rhamnus davurica Rhamnus S 11 27 5/26 10 25 5/1 - - -
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Table A3. Cont.

Species Family LF NFFD1 NFFD2 MFFD NFLD1 NFLD2 MFLD NLCD1 NLCD2 MLCD

14 Caragana
arborescens Caragana S 11 28 5/16 - - - - - -

15 Acer saccharum Acer T 12 29 4/26 11 28 4/27 - - -
16 Euonymus alatus Euonymus S 14 29 5/19 13 28 4/29 11 19 9/29

17 Populus
pseudosimonii Populus T 10 24 4/27 10 25 5/2 - - -

18 Populus simonii Populus T 14 20 4/30 14 26 5/5 - - -

19 Rhododendron
dauricum Rhododendron S 10 29 4/29 - - - - - -

20 Larix gmelinii Larix T 11 29 5/11 11 29 4/26 10 29 10/10

21 Prunus
pseudocerasus Prunus T 15 20 5/4 13 18 5/1 11 16 10/12

22 Ulmus pumila Ulmus T 12 25 4/22 11 21 5/8 - - -
23 Prunus triloba Prunus T 13 12 5/3 12 11 4/30 11 12 10/5
24 Quercus dentata Quercus T 14 23 5/13 14 23 5/3 12 19 9/30
25 Sorbaria sorbifolia Sorbaria S 12 18 7/16 12 19 4/13 - - -
26 Corylus heterophylla Corylus S - - - 10 28 5/1 - - -
27 Catalpa ovata Catalpa T 11 27 6/30 11 27 5/16 - - -
28 Tilia amurensis Tilia T 11 28 6/28 - - - - - -
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