Assessment of High-Severity Post-Fire Soil Quality and Its Recovery in Dry/Warm Valley Forestlands in Southwest China through Selecting the Minimum Data Set and Soil Quality Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Soil Sampling
2.2.2. Soil Analyses
2.3. Soil Quality Assessment Methods
2.3.1. Construction of the Minimum Data Set
2.3.2. Indicator Scoring
2.3.3. Calculation of Soil Quality Index
2.4. Statistical Analysis
3. Results
3.1. Post-Fire Temporal Trends in Soil Properties
3.2. Post-Fire Temporal Trends in Soil Quality Index
4. Discussion
4.1. Temporal Variation of Soil Properties in Post-Fire Areas with Natural Succession
4.2. Temporal Variation of Soil Quality in Post-Fire Areas with Natural Succession
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.L.; Bai, J.H.; Xi, M.; Zhao, Q.Q.; Lu, Q.Q.; Jia, J. Soil quality assessment of coastal wetlands in the Yellow River Delta of China based on the minimum data set. Ecol. Indic. 2016, 66, 458–466. [Google Scholar] [CrossRef]
- Doran, J.W.; Coleman, D.C.; Bezdicek, D.F.; Stewart, B.A. Defining Soil Quality for a Sustainable Environment; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1994; p. 7. [Google Scholar] [CrossRef]
- Karlen, D.; Andrews, S.; Doran, J. Soil quality: Current concepts and applications. Adv. Agron. 2001, 74, 1–40. [Google Scholar] [CrossRef]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Gong, L.; Ran, Q.Y.; He, G.X.; Tiyip, T. A soil quality assessment under different land use types in Keriya river basin, Southern Xinjiang, China. Soil Till Res. 2015, 146, 223–229. [Google Scholar] [CrossRef]
- Oscar, K.M.; Shisanya, C.; Cournac, L.; Raphael, M.J.; Gitari, H.; Muriuki, J. Integrating no-tillage with agroforestry augments soil quality indicators in Kenya’s dry-land agroecosystems. Soil Till Res. 2023, 227, 105586. [Google Scholar] [CrossRef]
- Raiesi, F.; Pejman, M. Assessment of post-wildfire soil quality and its recovery in semi-arid upland rangelands in Central Iran through selecting the minimum data set and quantitative soil quality index. Catena 2021, 201, 105202. [Google Scholar] [CrossRef]
- Li, W.X.; Zhang, X.X.; Wu, B.; Sun, S.L.; Chen, Y.S.; Zhao, D.Y.; Cheng, S.P. A comparative analysis of environmental quality assessment methods for heavy metal-contaminated soils. Pedosphere. 2008, 18, 344–352. [Google Scholar] [CrossRef]
- Ghaemi, M.; Astaraei, A.R.; Mahalati, M.N.; Emami, H.; Sanaeinejad, H.H. Spatio-temporal soil quality assessment under crop rotation irrigated with treated urban wastewater using fuzzy modelling. Int. Agrophys. 2014, 28, 291–302. [Google Scholar] [CrossRef]
- Rahmanipour, F.; Marzaioli, R.; Bahrami, A.H.; Fereidouni, Z.; Bandarabadi, R.S. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhou, W.; Li, S.T.; He, P.; Liang, G.Q.; Lv, J.L.; Jin, H. Assessing soil quality of gleyed paddy soils with different productivities in subtropical China. Catena 2015, 133, 293–302. [Google Scholar] [CrossRef]
- Guo, S.; Han, X.; Li, H.; Wang, T.; Tong, X.G.; Ren, G.X.; Feng, Y.Z.; Yang, G.H. Evaluation of soil quality along two revegetation chronosequences on the Loess Hilly Region of China. Sci. Total Environ. 2018, 633, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Meitasari, R.; Hanudin, E.; Purwanto, B.H. Comparison of two soil quality assessment models under different land uses and topographical units on the southwest slope of Mount Merapi. Soil Water Res. 2024, 19, 77–89. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, H.B.; Xie, Y.Z.; Jia, X.Y.; Su, T.T.; Li, J.P.; Shen, Y. Assessment of soil quality indexes for different land use types in typical steppe in the loess hilly area, China. Ecol Indic. 2020, 118, 106743. [Google Scholar] [CrossRef]
- Pereira, G.M.; Gonçalves, N.; Amraoui, M. The influence of wildfire climate on wildfire incidence: The case of Portugal. Fire 2024, 7, 234. [Google Scholar] [CrossRef]
- Pereira, G.M.; Calado, J.T.; DaCamara, C.C.; Calheiros, T. Effects of regional climate change on rural fires in Portugal. Clim Res. 2013, 57, 187–200. [Google Scholar] [CrossRef]
- Chebykina, Y.E.; Abakumov, V.E.; Kimeklis, K.A.; Gladkov, V.G.; Andronov, E.E.; Dymov, A.A. Wildfires’effect on soil properties and bacterial biodiversity of postpyrogenic histic podzols (Middle Taiga, Komi Republic). Forests 2024, 15, 145. [Google Scholar] [CrossRef]
- Shaddy, B.; Ray, D.; Farguell, A.; Calaza, V.; Mandel, J.; Haley, J.; Hilburn, K.; Mallia, V.D.; Kochanski, A.; Oberai, A. Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models with Satellite Data for Initializing Wildfire Forecasts. Artif. Intell. Earth Syst. 2024, 3, 3. [Google Scholar] [CrossRef]
- Heydari, M.; Rostamy, A.; Najafi, F.; Dey, D.C. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. J. For. Res. 2016, 28, 95–104. [Google Scholar] [CrossRef]
- Paladines, C.V.; Fries, A.; Hinojosa, B.M.; Oña, A.; Álvarez, J.L.; Benítez, A.; Rodríguez, L.F.; Ruiz, G.R. Effects of low-severity fire on soil physico-chemical properties in an Andean Páramo in Southern Ecuador. Fire 2023, 6, 447. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, X.W.; Han, M.; He, K.; Liu, B.; Jin, T.; Cao, X.C.; Wang, Y.; Huang, J. Post-fire temporal trends in soil properties and revegetation: Insights from different wildfire severities in the Hengduan Mountains, Southwestern China. Catena 2022, 213, 106160. [Google Scholar] [CrossRef]
- Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and mapping wildfire severity: A comparison of methods. Photogramm. Eng. Remote Sens. 2005, 71, 1311–1320. [Google Scholar] [CrossRef]
- Li, X.Y.; Jin, H.J.; Wang, H.W.; Wu, X.D.; Huang, Y.D.; He, R.X.; Luo, D.L.; Jin, X.Y. Distributive features of soil carbon and nutrients in permafrost regions affected by forest fires in northern Da Xing’anling (Hinggan) Mountains, NE China. Catena 2020, 185, 104304. [Google Scholar] [CrossRef]
- DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire’s Effects on Ecosystems; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Bento-Gonçalves, A.; Vieira, A.; Úbeda, X.; Martin, D. Fire and soils: Key concepts and recent advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Ahlström, A.; Hobbie, E.S.; Reich, B.P.; Nieradzik, P.L.; Staver, C.A.; Scharenbroch, C.B.; Jumpponen, A.; Anderegg, L.R.W.; Randerson, T.J.; et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 2018, 553, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, Z.; Azadi, N.; Certini, G. Fire and tillage as degrading factors of soil structure in Northern Zagros oak forest, West Iran. Land Degrad Dev. 2016, 28, 1068–1077. [Google Scholar] [CrossRef]
- Gomes, F.D.V.Y.D.; Ana, O.D.P.P.; Tiago, S.D.P.; Carvalhoda, E.N.S. Prescribed fire application in a Brazilian mountain environment: Changes in soil organic matter quality in the short and medium term. Catena 2023, 232, 107418. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Farguell, J.; Úbeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgrí Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef]
- Verma, S.; Singh, D.; Singh, K.A.; Jayakumar, S. Post-fire soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats, India. For. Ecosyst. 2019, 6, 67–75. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Milanovsky, E.Y.; Valdes-Korovkin, I.A.; Farkhodov, Y.R.; Yudina, A.V.; Donnerhack, O.; Guggenberger, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Neary, G.D. Forest soil disturbance: Implications of factors contributing to the wildland fire nexus. Soil Sci. Soc. Am. J. 2019, 83, S228–S243. [Google Scholar] [CrossRef]
- Stavi, I. Wildfires in grasslands and shrublands: A review of impacts on vegetation, soil, hydrology, and geomorphology. Water 2019, 11, 1042. [Google Scholar] [CrossRef]
- Stiefel, C.L.; Cooley, C.S.; Johnson, G.B. Increased colluvial hollow discharge and subsequent recovery after a low intensity wildfire in the Blue Ridge Mountains, USA. Hydrol. Process. 2021, 35, e13971. [Google Scholar] [CrossRef]
- Alex, A.A.; Simon, A.; Thomas, D.A.; Richard, A. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Niels, N.; Pedro, J.N.; Joana, P. Assessing post-fire water quality changes in reservoirs: Insights from a large dataset in Portugal. Sci. Total Environ. 2023, 912, 1694. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Li, X.X.; Ye, M.; Wang, L.H.; Mu, C.L.; Deng, X.B.; Wang, Z.L.; DU, J.C. Leaf physiological characteristics, flowering and fruit rate of five Olea europaea species in three ecological regions. J. West China For. Sci. 2022, 51, 49–55. (In Chinese) [Google Scholar] [CrossRef]
- Abellán, A.M.; Córdoba, P.I.M.; Saucedo, G.F.; Baena, W.C.; Morote, G.A.F.; Caballero, R.E.; Morneo, L.J.; Bastida, F.; García, C.; Serrano, L.R.F. Application of a soil quality index to a mediterranean mountain with post-fire treatments. Forests 2023, 14, 1745. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar] [CrossRef]
- Jin, H.F.; Shi, D.M.; Chen, Z.F.; Liu, Y.J.; Lou, Y.B.; Yang, X. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis. Trans. Chin. Soc. Agric. Eng. 2018, 34, 155–164. (In Chinese) [Google Scholar] [CrossRef]
- Tian, K.; Zhang, B.; Zhang, H.D.; Huang, B.; Darilek, L.J.; Zhao, Y.C.; Yang, J.S. Evaluation of soil quality in major grain-producing region of the North China Plain: Integrating minimum data set and established critical limits. Ecol Indic. 2020, 117, 106–163. [Google Scholar] [CrossRef]
- Wu, C.S.; Liu, G.H.; Huang, C.; Liu, Q.S. Soil quality assessment in Yellow River Delta: Establishing a minimum data set and fuzzy logic model. Geoderma 2019, 34, 82–89. [Google Scholar] [CrossRef]
- Yu, P.J.; Han, D.L.; Liu, S.W.; Wen, X.; Huang, Y.X.; Jia, H.T. Soil quality assessment under different land uses in an alpine grassland. Catena 2018, 171, 280–287. [Google Scholar] [CrossRef]
- Askari, S.M.; Holden, M.N. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, D.Y.; Ren, Y.X.; Wang, Z.M.; Zhou, Y.H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 2019, 107, 105251. [Google Scholar] [CrossRef]
- Chief, K.; Young, H.M.; Shafer, S.D. Changes in soil structure and hydraulic properties in a wooded-shrubland ecosystem following a prescribed fire. Soil Sci. Soc. Am. J. 2012, 76, 1965–1977. [Google Scholar] [CrossRef]
- Hofstede, R.G. The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant Soil. 1995, 173, 111–132. [Google Scholar] [CrossRef]
- Perkins, J.P.; Diaz, C.; Corbett, S.C.; Cerovski-Darriau, C.; Stock, J.D.; Prancevic, J.P.; Micheli, E.; Jasperse, J. Multi-stage soil-hydraulic recovery and limited ravel accumulations following the 2017 Nuns and Tubbs Wildfires in Northern California. J. Geophys. Res. Earth Surf. 2022, 127, e2022JF006591. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613–614, 944–957. [Google Scholar] [CrossRef]
- Francos, M.; Stefanuto, E.B.; Úbeda, X.; Pereira, P. Long-term impact of prescribed fire on soil chemical properties in a wildland-urban interface. Northeastern Iberian Peninsula. Sci. Total Environ. 2019, 689, 305–311. [Google Scholar] [CrossRef]
- Muqaddas, B.; Zhou, X.Q.; Lewis, T.; Wild, C.; Chen, C.G. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in a wet sclerophyll forest of Southeast Queensland, Australia. Sci. Total Environ. 2015, 536, 39–47. [Google Scholar] [CrossRef]
- Hosseini, M.; Geissen, V.; González-Pelayo, O.; Serpa, D.; Machado, I.A.; Ritsema, C.; Keizer, J.J. Effects of fire occurrence and recurrence on nitrogen and phosphorus losses by overland flow in maritime pine plantations in north-central Portugal. Geoderma 2017, 289, 97–106. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.M.; Yang, M.J. Effects of forest fire disturbance on species diversity and soil physicochemical properties in Pinus tabuliformis coniferous forests. Acta Ecol. Sin. 2023, 43, 7412–7421. (In Chinese) [Google Scholar] [CrossRef]
- Badía, D.; Martí, C. Fire and Rainfall Energy Effects on Soil Erosion and Runoff Generation in Semi-Arid Forested Lands. Arid Land Res. Manag. 2008, 22, 93–108. [Google Scholar] [CrossRef]
- Downing, A.T.; Imo, M.; Kimanzi, J.; Otinga, N.A. Effects of wildland fire on the tropical alpine moorlands of Mount Kenya. Catena 2017, 149, 300–308. [Google Scholar] [CrossRef]
- Shakesby, A.R.; Bento, P.C.; Ferreira, S.C.; Ferreira, J.D.A.; Stoof, R.C.; Urbanek, E.; Walsh, P.D.R. Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 2013, 128, 278–293. [Google Scholar] [CrossRef]
- Granged, P.J.A.; Jordán, A.; Zavala, M.L.; Muñoz-Rojaset, M.; Mataix-Soleraal, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167–168, 125–134. [Google Scholar] [CrossRef]
- Wüthrich, C.; Schaub, D.; Weber, M.; Marxer, P.; Conedera, M. Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland. Catena 2002, 48, 201–215. [Google Scholar] [CrossRef]
- Wang, L.; Fu, Q. Soil quality assessment of vegetation restoration after a large forest fire in Daxing’anling, northeast China. Can. J. Soil Sci. 2020, 100, 162–174. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, Q.Z. Changes in soil organic carbon and nitrogen capacities of Salix cheilophila Schneid. along a revegetation chronosequence in semi-arid degraded sandy land of the Gonghe Basin, Tibet Plateau. Solid Earth 2014, 5, 1045–1054. [Google Scholar] [CrossRef]
- Nehrani, H.S.; Askari, S.M.; Saadat, S.; Delavar, A.M.; Taheri, M.; Holden, M.N. Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecol Indic. 2020, 108, 105770. [Google Scholar] [CrossRef]
Indicators | UB | T0 | T1 | T2 | T3 | CV/% |
---|---|---|---|---|---|---|
Clay/% | 7.92 ± 0.84 a | 7.44 ± 0.72 ab | 7.20 ± 0.47 ab | 5.99 ± 1.15 b | 6.38 ± 0.09 ab | 13.78 |
Silt/% | 16.82 ± 1.96 a | 17.27 ± 1.99 a | 16.52 ± 1.00 a | 13.33 ± 3.37 a | 14.50 ± 0.30 a | 14.73 |
Sand/% | 75.26 ± 2.80 a | 75.28 ± 2.70 a | 76.29 ± 1.39 a | 80.68 ± 4.49 a | 79.12 ± 0.38 a | 4.19 |
BD (g/cm3) | 1.31 ± 0.10 a | 0.91 ± 0.03 b | 0.95 ± 0.04 b | 1.02 ± 0.02 b | 0.99 ± 0.13 b | 15.50 |
POR/% | 29.07 ± 5.47 b | 50.73 ± 1.74 a | 48.54 ± 2.40 a | 44.62 ± 1.33 a | 46.36 ± 6.87 a | 19.83 |
MWD (mm) | 3.30 ± 0.51 a | 2.35 ± 0.01 a | 2.26 ± 0.58 a | 2.73 ± 0.14 a | 2.92 ± 0.90 a | 20.28 |
GMD (mm) | 1.65 ± 0.38 a | 1.15 ± 0.02 ab | 1.24 ± 0.36 ab | 1.25 ± 0.02 ab | 1.12 ± 0.07 b | 22.15 |
TN (g/kg) | 1.07 ± 0.20 a | 0.12 ± 0.01 c | 0.24 ± 0.03 c | 0.82 ± 0.05 b | 0.78 ± 0.02 b | 63.63 |
TP (g/kg) | 0.65 ± 0.05 a | 0.10 ± 0.01 d | 0.22 ± 0.04 c | 0.52 ± 0.03 b | 0.53 ± 0.07 b | 53.75 |
TK (g/kg) | 21.92 ± 2.10 a | 5.55 ± 1.01 d | 9.57 ± 1.10 c | 17.41 ± 1.09 b | 19.08 ± 1.51 b | 44.01 |
SOM (g/kg) | 27.03 ± 3.38 c | 70.64 ± 4.62 a | 52.41 ± 0.70 b | 40.29 ± 16.02 bc | 37.32 ± 3.63 bc | 36.90 |
Soil Indicators | PC1 | PC2 | PC3 | Norm Value | Group |
---|---|---|---|---|---|
Clay | −0.047 | 0.990 | −0.002 | 1.796 | 2 |
Silt | −0.285 | 0.933 | −0.078 | 1.823 | 2 |
Sand | 0.217 | −0.960 | 0.057 | 1.815 | 2 |
BD | 0.814 | 0.377 | −0.251 | 2.074 | 1 |
POR | −0.814 | −0.377 | 0.251 | 2.074 | 1 |
MWD | 0.631 | 0.070 | 0.690 | 1.664 | 1 |
GMD | 0.567 | 0.397 | 0.588 | 1.643 | 3 |
TN | 0.949 | −0.106 | −0.208 | 2.282 | 1 |
TP | 0.949 | −0.170 | −0.053 | 2.285 | 1 |
TK | 0.952 | −0.138 | −0.065 | 2.286 | 1 |
SOM | −0.900 | −0.033 | 0.094 | 2.150 | 1 |
Eigenvalue | 5.693 | 3.280 | 1.018 | ||
Variance explained (%) | 51.752 | 29.820 | 9.251 | ||
Cumulative variance (%) | 51.752 | 81.572 | 90.824 |
Soil Indicators | TDS | MDS | ||
---|---|---|---|---|
Common Factor Variance | Weight | Common Factor Variance | Weight | |
Clay | 0.982 | 0.098 | ||
Silt | 0.958 | 0.096 | 0.906 | 0.347 |
Sand | 0.972 | 0.097 | ||
BD | 0.868 | 0.087 | ||
POR | 0.868 | 0.087 | ||
MWD | 0.880 | 0.088 | ||
GMD | 0.826 | 0.083 | 0.878 | 0.337 |
TN | 0.955 | 0.096 | ||
TP | 0.933 | 0.093 | ||
TK | 0.929 | 0.093 | 0.824 | 0.316 |
SOM | 0.820 | 0.082 |
Soil Quality Index | Change Range | Mean Value | Standard Deviation | F | p-Value | CV/% |
---|---|---|---|---|---|---|
SQI-LT-W | 0.426~0.692 | 0.524 | 0.079 | 1.761 | 0.213 | 15.05 |
SQI-NLT-W | 0.398~0.568 | 0.481 | 0.059 | 16.443 | 0.000 | 12.32 |
SQI-LM-W | 0.296~0.879 | 0.476 | 0.169 | 6.986 | 0.006 | 35.51 |
SQI-NLM-W | 0.354~0.682 | 0.482 | 0.100 | 16.691 | 0.000 | 20.73 |
SQI-LT-A | 0.424~0.685 | 0.522 | 0.075 | 1.375 | 0.310 | 14.43 |
SQI-NLT-A | 0.399~0.573 | 0.482 | 0.060 | 18.974 | 0.000 | 12.37 |
SQI-LM-A | 0.301~0.884 | 0.476 | 0.171 | 7.628 | 0.004 | 36.01 |
SQI-NLM-A | 0.347~0.686 | 0.482 | 0.104 | 18.586 | 0.000 | 21.49 |
SQI-LT-W | SQI-NLT-W | SQI-LM-W | SQI-NLM-W | SQI-LT-A | SQI-NLT-A | SQI-LM-A | SQI-NLM-A | |
---|---|---|---|---|---|---|---|---|
SQI-LT-W | 1 | |||||||
SQI-NLT-W | 0.697 ** | 1 | ||||||
SQI-LM-W | 0.842 ** | 0.680 ** | 1 | |||||
SQI-NLM-W | 0.744 ** | 0.857 ** | 0.933 ** | 1 | ||||
SQI-LT-A | 0.996 ** | 0.677 ** | 0.811 ** | 0.706 ** | 1 | |||
SQI-NLT-A | 0.705 ** | 0.997 ** | 0.715 ** | 0.884 ** | 0.683 ** | 1 | ||
SQI-LM-A | 0.836 ** | 0.704 ** | 0.999 ** | 0.946 ** | 0.804 ** | 0.739 ** | 1 | |
SQI-NLM-A | 0.731 ** | 0.869 ** | 0.920 ** | 0.999 ** | 0.693 ** | 0.894 ** | 0.935 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Wang, Y.; Hou, D.; Li, Y. Assessment of High-Severity Post-Fire Soil Quality and Its Recovery in Dry/Warm Valley Forestlands in Southwest China through Selecting the Minimum Data Set and Soil Quality Index. Forests 2024, 15, 1727. https://doi.org/10.3390/f15101727
Qin X, Wang Y, Hou D, Li Y. Assessment of High-Severity Post-Fire Soil Quality and Its Recovery in Dry/Warm Valley Forestlands in Southwest China through Selecting the Minimum Data Set and Soil Quality Index. Forests. 2024; 15(10):1727. https://doi.org/10.3390/f15101727
Chicago/Turabian StyleQin, Xiaosong, Yi Wang, Dongdong Hou, and Yongkang Li. 2024. "Assessment of High-Severity Post-Fire Soil Quality and Its Recovery in Dry/Warm Valley Forestlands in Southwest China through Selecting the Minimum Data Set and Soil Quality Index" Forests 15, no. 10: 1727. https://doi.org/10.3390/f15101727
APA StyleQin, X., Wang, Y., Hou, D., & Li, Y. (2024). Assessment of High-Severity Post-Fire Soil Quality and Its Recovery in Dry/Warm Valley Forestlands in Southwest China through Selecting the Minimum Data Set and Soil Quality Index. Forests, 15(10), 1727. https://doi.org/10.3390/f15101727