Estimation of Water Demand for Riparian Forest Vegetation Based on Sentinel-2 Data: A Case Study of the Kokyar River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Research on Segmentation and Merging of Images
2.4. Establelishing Classification Hierarchy and Rules
2.5. Research Methods
- (1)
- Evapotranspiration calculation
- (2)
- Soil moisture limitation analysis
- (3)
- Vegetation coefficient
2.6. Research Process
3. Results and Discussion
3.1. Land Use Information and Vegetation Coverage Area
3.2. Calculation of Vegetation Water Demand
3.3. Analysis of Classification Results
3.4. Analysis of Vegetation Water Demand Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, D.; Wang, H.; Li, X.; Liu, H.; Li, X. Estimation of the ecological water requirement for natural vegetation in the Ergune River basin in Northeastern China from 2001 to 2014. Ecol. Indic. 2018, 92, 141–150. [Google Scholar] [CrossRef]
- Su, X.; Liu, Y.; Jiang, T.; Hai, W.; Xuan, L.; Xiao, L. Prediction of future ecological water demand of terrestrial ecosystem in Northwest China. JWARP 2023, 39, 9–18+78. [Google Scholar]
- Ling, H.; Guo, B.; Xu, H.; Fu, J. Configuration of water resources for a typical river basin in an arid region of China based on the ecological water requirements (EWRs) of desert riparian vegetation. Glob. Planet. Change 2014, 122, 292–304. [Google Scholar] [CrossRef]
- Alifujiang, Y.; Lu, N.; Feng, P.; Jiang, Y. China’s Urban Water Utilization Based on the Water Footprint Methodology. Water 2024, 16, 462. [Google Scholar] [CrossRef]
- Shen, X.; Yang, X.; Wei, T. Research status and review of vegetation ecological water demand in arid regions. Plateau Agric. 2018, 2, 544–548+575. [Google Scholar]
- Gleick, P.H. Water in crisis: Paths to sustainable water use. Ecol. Appl. 1998, 8, 571–579. [Google Scholar] [CrossRef]
- Hao, B.; Su, X.; Ma, X.; Zhang, D. Research progress of vegetation ecological water requirements in arid area. J. Water Res. Water Eng. 2009, 20, 1–5. [Google Scholar]
- Liu, X.; Xu, H.; Ling, H.; Bai, Y.; Fu, J. Ecological water requirements in the lower reaches of the tarim river. Chin. J. Desert Res. 2013, 33, 1198–1205. [Google Scholar]
- Wang, R.; Song, Y.; Fan, Z.; Ma, Y. Estimation on Ecological Water Demand Amount in Four Sources and One Main Stream Area of Tarim Basin. J. Soil. Water Conserv. 2001, 15, 19–22. [Google Scholar]
- Liu, Z.; Zhang, M.; Pan, L. Discussion on calculation methods of ecological water demand. Anhui Agric. Sci. 2008, 36, 13921–13922. [Google Scholar]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration–a review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, Y.; Li, W. Ecological water demand of natural vegetation in the lower Tarim River. J. Geogr. Sci. 2010, 20, 261–272. [Google Scholar] [CrossRef]
- Gong, Z.; Lu, L.; Jin, D.; Qiu, H.; Zhang, Q.; Guan, H. Remote sensing estimation of evapotranspiration and ecological water demand in Zhalong wetland under land use/cover change. Acta Ecol. Sin. 2021, 41, 3572–3587. [Google Scholar]
- Monteith, J.L. Environmental Control of Plant Growth; Academic Press: New York, NY, USA, 1963; pp. 95–112. [Google Scholar]
- Bai, Y.; Lu, M.; Cheng, H.; Yan, D.; Sun, H. Research on the reference crop evapotranspiration forecast based on weather forecast information bai yi-wen. China Rural. Water Hydropower 2021, 10, 175–179+184. [Google Scholar]
- Lu, S.; Zhao, H.; Jiang, Y.; Hao, Z.; Zhang, X.; Chen, G. Analysis of irrigation water based on multi-source remote sensing data and water balance principle. J. Hydraulic. Eng. 2021, 52, 1126–1135. [Google Scholar]
- Aghababaei, M.; Ebrahimi, A.; Naghipour, A.A.; Asadi, E.; Verrelst, J. Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform. Remote Sens. 2021, 13, 4683. [Google Scholar] [CrossRef]
- Samat, A.; Yokoya, N.; Du, P.; Liu, S.; Ma, L.; Ge, Y.; Issanova, G.; Saparov, A.; Abuduwaili, J.; Lin, C. Direct, ECOC, ND and END Frameworks—Which One Is the Best? An Empirical Study of Sentinel-2A MSIL1C Image Classification for Arid-Land Vegetation Mapping in the Ili River Delta, Kazakhstan. Remote Sens. 2019, 11, 1953. [Google Scholar] [CrossRef]
- Li, X.; Tian, X.; Duan, T.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing estimation of woody and herbaceous vegetation coverage in temperate sparse forest grassland using integrated drone and satellite imagery. J. Remote Sens. 2023, 27, 2139–2152. [Google Scholar]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Gill, E. The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform. Remote Sens. 2018, 11, 43. [Google Scholar] [CrossRef]
- Miletić, B.R.; Matović, B.; Orlović, S.; Gutalj, M.; Đorem, T.; Marinković, G.; Simović, S.; Dugalić, M.; Stojanović, D.B. Quantifying Forest Cover Loss as a Response to Drought and Dieback of Norway Spruce and Evaluating Sensitivity of Various Vegetation Indices Using Remote Sensing. Forests 2024, 15, 662. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Z.; Hui, F.; Cheng, X.; Ouyang, L. ESA Sentinel-2A/Bsatellite: Characteristics and applications. J. Beijing Norm. Univ. (Nat. Sci.) 2019, 55, 57–65. [Google Scholar]
- Zhu, X.; Ning, X.; Wang, H.; Zhang, H. Land use classification for optimization segmentation based on high-precision land cover data. Bull. Surv. Mapp. 2021, 46, 140–149. [Google Scholar]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef]
- Jia, K.; Yao, Y.; Wei, X.; Tian, Q.; Wang, Y.; Verrelste, J.; Mu, X.; Gu, X. Research progress on remote sensing estimation of vegetation coverage. Adv. Atmos. Sci. 2013, 28, 774–782. [Google Scholar]
- Wang, X.; Zhang, Y.; Zhang, K. Automatic 10 m Forest Cover Mapping in 2020 at China’s Han River Basin by Fusing ESA Sentinel-1/Sentinel-2 Land Cover and Sentinel-2 near Real-Time Forest Cover Possibility. Forests 2023, 14, 1133. [Google Scholar] [CrossRef]
- Covich, A. Water in Crisis: A Guide to the World’s Fresh Water Resources; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Jia, B.; Ci, L. The primary estimation of water demand by the eco-environment in Xinjiang. Acta Ecol. Sin. 2000, 20, 243–251. [Google Scholar]
- Hu, G.; Zhao, W. Review on calculation methods of ecological water demand for vegetation in arid and semi-arid regions. Acta Ecol. Sin. 2008, 28, 6282–6291. [Google Scholar]
- Liu, Y.; Pereira, L.S. Validation of the Crop Coefficient Calculation Method Recommended by FAO. J. Agric. Eng. 2000, 16, 26–30. [Google Scholar]
- Peng, S. 1 km Monthly Potential Evapotranspiration Dataset in China (1901–2022); National Tibetan Plateau/Third Pole Environment Data Center: Yangling, China, 2022. [Google Scholar]
- Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Ding, Y.X.; Peng, S.Z. Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Ding, Y.X.; Peng, S.Z. Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100. Theor. Appl. Clim. 2021, 145, 79–94. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Liao, Y. Research on Vegetation Ecological Water Demand in Xinjiang Region Based on GIS; Northwest A&F University: Yangling, China, 2012. [Google Scholar]
- Chen, Y. Ecological Protection and Sustainable Management of Tarim River Basin in Xinjiang; Science Press: Beijing, China, 2015. [Google Scholar]
- Chang, C.; Zhao, G.; Wang, L.; Zhu, X.; Gao, Z. Land use classification based on RS object-oriented method in coastal spectral confusion region. J. Agric. Eng. 2012, 28, 226–231. [Google Scholar]
- Tzotsos, A.; Argialas, D. Support vector machine classification for object-based image analysis. In Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 663–677. [Google Scholar]
- Li, H.; Gu, H.; Han, Y.; Yang, J. Object-oriented classification of high-resolution remote sensing imagery based on an improved colour structure code and a support vector machine. Int. J. Remote Sens. 2010, 31, 1453–1470. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; He, J.; Wang, L.; Zhang, X.; Liu, T. Classification Method by Fusion of Decision Tree and SVM Based on Sentinel-2A Image. Trans. Chin. Soc. Agric. Mach. 2018, 49, 146–153. [Google Scholar]
- Keyimu, M.; Halik, Ü.; Rouzi, A. Relating water use to tree vitality of Populus euphratica Oliv. in the lower Tarim River, NW China. Water 2017, 9, 622. [Google Scholar] [CrossRef]
- Fu, F. Research on Urban Green Space Extraction Based on Sentinel-1A and Sentinel-2A Data. Zhejiang Normal University: Jinhua, China, 2020. [Google Scholar]
- Chen, Q.; Li, X.; Xiu, X.; Yang, G. Large scale shrub coverage mapping of sandy land at 30m resolution based on Google Earth Engine and machine learning. Acta Ecol. Sin. 2019, 39, 4056–4069. [Google Scholar]
- Yue, J.; Mu, G.; Tang, Z.; Yang, X.; Lin, Y.; Xu, L. Remote sensing estimation models for vegetation coverage in desert regions of Xinjiang based on NDVI. Arid Land Geogr. 2020, 43, 153–160. [Google Scholar]
- Goffin, B.D.; Thakur, R.; Carlos, S.D.C.; Srsic, D.; Williams, C.; Ross, K.; Neira-Román, F.; Cortés-Monroy, C.C.; Lakshmi, V. Leveraging remotely-sensed vegetation indices to evaluate crop coefficients and actual irrigation requirements in the water-stressed Maipo River Basin of Central Chile. Sustain. Horiz. 2022, 4, 100039. [Google Scholar] [CrossRef]
- Jiang, L.; Jiao, J.; Cheng, Y.; Wang, X.; Liu, J.; Li, Y. Study on ecological water requirement for the lake and natural vegetation in the Alice Lake basin. Arid Zone Res. Environ. 2016, 30, 108–114. [Google Scholar]
- El Hachimi, J.; El Harti, A.; Lhissou, R.; Ouzemou, J.-E.; Chakouri, M.; Jellouli, A. Combination of Sentinel-2 Satellite Images and Meteorological Data for Crop Water Requirements Estimation in Intensive. Agriculture 2022, 12, 1168. [Google Scholar] [CrossRef]
- Dong, X.; Hu, S.; Yuan, Q.; Kou, Y.; Li, S.; Deng, W.; Ren, P. Research on Vegetation Ecological Security in Arid Region Mountain Front River Valleys Based on Ecological Water Consumption and Water Demand. Land 2023, 12, 1642. [Google Scholar] [CrossRef]
- Chen, A.; Wu, M. Practice on ecological flow and adaptive management of hydropower engineering projects in China from 2001 to 2015. Water Policy 2018, 20, 336–354. [Google Scholar]
- Li, Q.; Wang, Q.; Chen, H.; Qin, Y.; Zhang, M.; Liu, S. Progress and perspectives on ecological flow assessment methods in China. Chin. J. Ecol. 2024, 44, 36–46. [Google Scholar]
- Yue, S.; Li, H.; Cheng, B.; Gao, Z. The value of environmental base flow in water-scarce basins: A case study of Wei River Basin, Northwest China. Water 2018, 10, 848. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, P.; Chen, L.; Zhu, Q.; Wang, T. Analysis of ecological water requirement of rivers for different purposes: The case of Liuli River. J. Ecol. 2018, 38, 4393–4403. [Google Scholar]
- Yao, J.; Wang, G.; Yu, R.; Su, J.; A, Y.; Zhang, X.; Wang, L.; Fang, Q. Investigating the regional ecological environment stability and its feedback effect on interference using a novel vegetation resilience assessment model. Sci. Total Environ. 2024, 930, 172728. [Google Scholar] [CrossRef]
Category | Interpretation of Ground Objects | Interpretation Signs |
---|---|---|
Grassland | Irregular plots dominated by growing herbs and frequently uneven in shape; marked in light red. | |
Shrubland | An area consisting of wild or cultivated shrubs, characterized by its large area; marked in bright red. | |
Woodland | A forest belt or forest composed of arbor species, characterized by its large area; marked in deep red. | |
Plantations | A forest belt formed by artificial construction, with a regular shape and large area; marked in light red. | |
Water bodies | The land occupied by water bodies with a specified use; marked in blue. | |
Residential area | A place where people gather and settle characterized by regular shapes and clusters of plots | |
Roads | A strip of land for the passage of trackless vehicles and pedestrians |
Vegetation Type | Early Growth (April) | Growth and Development Period (May–June) | Mid-Growth (July–September) | Late Growth (October) |
---|---|---|---|---|
High grassland | 0.23 | 0.44 | 0.55 | 0.45 |
Medium-cover grass | 0.15 | 0.20 | 0.30 | 0.25 |
Low-cover grass | 0.11 | 0.18 | 0.25 | 0.15 |
Shrub land | 0.19 | 0.33 | 0.58 | 0.60 |
Arbor forest land | 0.20 | 0.52 | 0.91 | 0.78 |
Artificial forest land | 0.53 | 1.04 | 1.13 | 0.97 |
Land Cover Type | Mapping Accuracy (Pixels) | User Accuracy (Pixels) | Mapping Accuracy (%) | User Accuracy (%) | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|---|---|---|---|
Grassland | 18/28 | 18/23 | 64.29 | 78.26 | 86.74 | 0.84 |
Shrub land | 94/112 | 94/129 | 83.93 | 72.87 | ||
Arbor forest land | 47/100 | 47/48 | 47.00 | 97.92 | ||
Artificial forest land | 119/139 | 119/167 | 85.61 | 71.26 | ||
Waters area | 62/68 | 62/68 | 91.18 | 91.18 | ||
Residential area | 375/380 | 375/415 | 98.68 | 90.36 | ||
Cultivated land | 74/82 | 74/80 | 90.24 | 92.50 | ||
Roads | 212/245 | 212/224 | 86.53 | 94.64 |
Land Cover | 0–1 km | 1–2 km | 0–2 km | Proportion (%) |
---|---|---|---|---|
Grassland | 0.18 | 0.00 | 0.18 | 0.25 |
Shrub land | 0.61 | 0.05 | 0.66 | 0.88 |
Arbor forest land | 0.09 | 0.00 | 0.09 | 0.13 |
Artificial forest land | 1.53 | 0.01 | 1.54 | 2.03 |
Waters area | 1.22 | 0.03 | 1.26 | 1.67 |
Residential area | 32.70 | 38.80 | 71.51 | 93.76 |
Cultivated land | 0.21 | 0.59 | 0.80 | 1.05 |
Roads | 0.03 | 0.13 | 0.16 | 0.23 |
Cultivated land | 0.00 | 0.00 | 0.00 | 0.00 |
Serial Number | Category | Coverage > 75% | Coverage 60%~75% | Coverage 45%~60% | Coverage < 45% | Area (km2) |
---|---|---|---|---|---|---|
1 | Grassland | 0.093421 | 0.017388 | 0.016716 | 0.052785 | 0.114133 |
2 | Shrub land | 0.216241 | 0.052283 | 0.055555 | 0.333661 | 0.328742 |
3 | Arbor forest land | 0.05159 | 0.007798 | 0.007286 | 0.022994 | 0.059404 |
4 | Artificial forest land | 1.166609 | 0.087448 | 0.073344 | 0.212008 | 1.166018 |
Type | Protective Forest | Timber Forest | Fuelwood | Garden Forest |
---|---|---|---|---|
Tree species | Arrowhead poplar | Arrowhead poplar | Arrowhead poplar | Apple trees, etc. |
Irrigation quota (m3) | 3945 | 5730 | 5730 | 5250 |
Number | Type | Area (hm2) | Water Demand (m3) |
---|---|---|---|
1 | Grassland | 11.4133 | 1.6778 × 104 m3 |
2 | Shrub land | 32.8742 | 1.1958 × 105 m3 |
3 | Arbor forest land | 5.9404 | 1.1883 × 104 m3 |
4 | Artificial forest land | 116.6018 | 4.5999 × 105 m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Alifujiang, Y.; Abliz, A.; Asaiduli, H.; Ye, P.; Nurahmat, B. Estimation of Water Demand for Riparian Forest Vegetation Based on Sentinel-2 Data: A Case Study of the Kokyar River Basin. Forests 2024, 15, 1749. https://doi.org/10.3390/f15101749
Liu X, Alifujiang Y, Abliz A, Asaiduli H, Ye P, Nurahmat B. Estimation of Water Demand for Riparian Forest Vegetation Based on Sentinel-2 Data: A Case Study of the Kokyar River Basin. Forests. 2024; 15(10):1749. https://doi.org/10.3390/f15101749
Chicago/Turabian StyleLiu, Xianhe, Yilinuer Alifujiang, Abdugheni Abliz, Halidan Asaiduli, Panqing Ye, and Buasi Nurahmat. 2024. "Estimation of Water Demand for Riparian Forest Vegetation Based on Sentinel-2 Data: A Case Study of the Kokyar River Basin" Forests 15, no. 10: 1749. https://doi.org/10.3390/f15101749
APA StyleLiu, X., Alifujiang, Y., Abliz, A., Asaiduli, H., Ye, P., & Nurahmat, B. (2024). Estimation of Water Demand for Riparian Forest Vegetation Based on Sentinel-2 Data: A Case Study of the Kokyar River Basin. Forests, 15(10), 1749. https://doi.org/10.3390/f15101749