Tradeoffs between Stand Volume and Understory Vegetation Diversity in Quercus wutaishanica Forests under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Plot Setting
2.3. Data Collection and Calculation
2.4. Construction of a Coupled Model of Stand Structure
2.5. Simulation of UVSN
2.6. Principle of Tradeoffs
2.7. Model Evaluation
2.8. Scenario Formulation
3. Results
3.1. Variation in Maximum Stand Density with Age
3.2. Response and Modeling of Stand Growth to Stand Structure
3.2.1. Response of Tree Height and DBH to Stand Structure and Site Factors
3.2.2. Construction of a Multifactor Coupled Model for Stand Growth Response
3.3. Relationship between Understory Plant Diversity and Crown Cover
3.3.1. Changes in Crown Cover with Breast Height Basal Area
3.3.2. Relationship between UVSN and Crown Cover
3.4. Tradeoff between Timber Production and UVSN
4. Discussion
4.1. Effects of Stand Structure and Climatic Conditions on Stand Growth
4.2. Effects of Stand Density and Stand Age on UVSN
4.3. Tradeoffs between Timber Production and UVSN
4.4. Application of the Model
4.5. Limitations of the Current Study and Directions for Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y.H.; Reich, P.B. Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. J. Ecol. 2012, 100, 742–749. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H. Positive biodiversity-productivity relationship predominant in global forests. Science 2016, 354, aaf8957. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Brancalion, P.H.S.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Vieira, I.C.G.; Wilson, S.J. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 2016, 45, 538–550. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, W.; Gampe, S.; Coles, N.A.; Yu, P.; Xu, L.; Zuo, H.; Wang, Y. A Water Yield-Oriented Practical Approach for Multifunctional Forest Management and its Application in Dryland Regions of China. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 689–703. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, P.; Wang, J.; Xu, L.; Feger, K.-H.; Xiong, W. Multifunctional forestry on the Loess Plateau. In Multifunctional Land-Use Systems for Managing the Nexus of Environmental Resources; Springer: Berlin/Heidelberg, Germany, 2017; pp. 79–107. [Google Scholar]
- Suchar, V.A.; Crookston, N.L. Understory cover and biomass indices predictions for forest ecosystems of the Northwestern United States. Ecol. Indic. 2010, 10, 602–609. [Google Scholar] [CrossRef]
- Zhang, J.; Young, D.H.; Oliver, W.W.; Fiddler, G.O. Effect of overstorey trees on understorey vegetation in California (USA) ponderosa pine plantations. For. Int. J. For. Res. 2015, 89, 91–99. [Google Scholar] [CrossRef]
- Bauhus, J.; Aubin, I.; Messier, C.; Connell, M. Composition, structure, light attenuation and nutrient content of the understorey vegetation in a Eucalyptus sieberi regrowth stand 6 years after thinning and fertilisation. For. Ecol. Manag. 2001, 144, 275–286. [Google Scholar] [CrossRef]
- Deng, L.; Han, Q.-S.; Zhang, C.; Tang, Z.-S.; Shangguan, Z.-P. Above-Ground and Below-Ground Ecosystem Biomass Accumulation and Carbon Sequestration with Caragana korshinskii Kom Plantation Development. Land Degrad. Dev. 2017, 28, 906–917. [Google Scholar] [CrossRef]
- Naeem, S.; Li, S. Biodiversity enhances ecosystem reliability. Nature 1997, 390, 507–509. [Google Scholar] [CrossRef]
- Légaré, S.; Bergeron, Y.; Paré, D. Influence of Forest Composition on Understory Cover in Boreal Mixedwood Forests of Western. Quebec. Silva Fenn. 2002, 36, 353–366. [Google Scholar] [CrossRef]
- Dauber, J.; Hirsch, M.; Simmering, D.; Waldhardt, R.; Otte, A.; Wolters, V. Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agric. Ecosyst. Environ. 2003, 98, 321–329. [Google Scholar] [CrossRef]
- Hoffmann, S. Challenges and opportunities of area-based conservation in reaching biodiversity and sustainability goals. Biodivers. Conserv. 2022, 31, 325–352. [Google Scholar] [CrossRef]
- Liu, K.-L.; Chen, B.-Y.; Zhang, B.; Wang, R.-H.; Wang, C.-S. Understory vegetation diversity, soil properties and microbial community response to different thinning intensities in Cryptomeria japonica var. sinensis plantations. Front. Microbiol. 2023, 14, 1117384. [Google Scholar] [CrossRef]
- Dormann, C.F.; Bagnara, M.; Boch, S.; Hinderling, J.; Janeiro-Otero, A.; Schäfer, D.; Schall, P.; Hartig, F. Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecol. 2020, 20, 43. [Google Scholar] [CrossRef]
- Li, R.; Yan, Q.; Xie, J.; Wang, J.; Zhang, T.; Zhu, J. Effects of logging on the trade-off between seed and sprout regeneration of dominant woody species in secondary forests of the Natural Forest Protection Project of China. Ecol. Process. 2022, 11, 16. [Google Scholar] [CrossRef]
- Cameron, A.D. Importance of early selective thinning in the development of long-term stand stability and improved log quality: A review. For. Int. J. For. Res. 2002, 75, 25–35. [Google Scholar] [CrossRef]
- Bragg, D.C.; Shelton, M.G.; Zeide, B. Impacts and management implications of ice storms on forests in the southern United States. For. Ecol. Manag. 2003, 186, 99–123. [Google Scholar] [CrossRef]
- Huo, H.; Feng, Q.; Su, Y.-H. The Influences of Canopy Species and Topographic Variables on Understory Species Diversity and Composition in Coniferous Forests. Sci. World J. 2014, 2014, 252489. [Google Scholar] [CrossRef]
- Chazdon, R.L. Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science 2008, 320, 1458–1460. [Google Scholar] [CrossRef]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Keenan, R.; Lamb, D.; Woldring, O.; Irvine, T.; Jensen, R. Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. For. Ecol. Manag. 1997, 99, 117–131. [Google Scholar] [CrossRef]
- Duguid, M.C.; Frey, B.R.; Ellum, D.S.; Kelty, M.; Ashton, M.S. The influence of ground disturbance and gap position on understory plant diversity in upland forests of southern New England. For. Ecol. Manag. 2013, 303, 148–159. [Google Scholar] [CrossRef]
- Sun, L.; Wang, M.; Fan, X. Spatial pattern and driving factors of biomass carbon density for natural and planted coniferous forests in mountainous terrain, eastern Loess Plateau of China. For. Ecosyst. 2020, 7, 9. [Google Scholar] [CrossRef]
- Sabatini, F.M.; de Andrade, R.B.; Paillet, Y.; Ódor, P.; Bouget, C.; Campagnaro, T.; Gosselin, F.; Janssen, P.; Mattioli, W.; Nascimbene, J.; et al. Trade-offs between carbon stocks and biodiversity in European temperate forests. Glob. Change Biol. 2019, 25, 536–548. [Google Scholar] [CrossRef]
- Fung, F.; Lopez, A.; New, M. Modelling the Impact of Climate Change on Water Resources; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Battles, J.J.; Robards, T.; Das, A.; Waring, K.; Gilless, J.K.; Biging, G.; Schurr, F. Climate change impacts on forest growth and tree mortality: A data-driven modeling study in the mixed-conifer forest of the Sierra Nevada, California. Clim. Change 2007, 87, 193–213. [Google Scholar] [CrossRef]
- Tappeiner, J.; Huffman, D.; Marshall, D.; Spies, T.; Bailey, J. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon. Can. J. For. Res. 2011, 27, 638–648. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Peltola, H.; Gerendiain, A.Z.; KellomäKi, S. Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate. For. Ecol. Manag. 2007, 241, 243–257. [Google Scholar] [CrossRef]
- Roberts, M.R.; Zhu, L. Early response of the herbaceous layer to harvesting in a mixed coniferous–deciduous forest in New Brunswick, Canada. For. Ecol. Manag. 2002, 155, 17–31. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.-P.; Xiao, X.; Song, X.-P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef]
- Farooqi, T.J.A.; Li, X.; Yu, Z.; Liu, S.; Sun, O.J. Reconciliation of research on forest carbon sequestration and water conservation. J. For. Res. 2021, 32, 7–14. [Google Scholar] [CrossRef]
- Sun, G.; Hallema, D.; Asbjornsen, H. Ecohydrological processes and ecosystem services in the Anthropocene: A review. Ecol. Process. 2017, 6, 35. [Google Scholar] [CrossRef]
- Alkemade, R.; Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K. Quantifying ecosystem services and indicators for science, policy and practice. Ecol. Indic. 2014, 37 Pt A, 161–162. [Google Scholar] [CrossRef]
- Mason, W.L.; Zhu, J.J. Silviculture of Planted Forests Managed for Multi-functional Objectives: Lessons from Chinese and British Experiences. In Challenges and Opportunities for the World’s Forests in the 21st Century; Springer: Berlin/Heidelberg, Germany, 2014; pp. 37–54. [Google Scholar] [CrossRef]
- Qingjun, M.; Xinjuan, L.; Guobing, L. Effects of artifi cial tending on growth of Quercus liaotungensis at different altitudinal gradient. J. Cent. South Univ. For. Technol. 2014, 34, 29–31. [Google Scholar] [CrossRef]
- Matsushita, M.; Takata, K.; Hitsuma, G.; Yagihashi, T.; Noguchi, M.; Shibata, M.; Masaki, T. A novel growth model evaluating age–size effect on long-term trends in tree growth. Funct. Ecol. 2015, 29, 1250–1259. [Google Scholar] [CrossRef]
- Ahmad, B.; Wang, Y.; Hao, J.; Liu, Y.; Bohnett, E.; Zhang, K. Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management. For. Ecol. Manag. 2021, 496, 119399. [Google Scholar] [CrossRef]
- Shi, L.; Liu, H.; Xu, C.; Liang, B.; Cao, J.; Cressey, E.L.; Quine, T.A.; Zhou, M.; Zhao, P. Decoupled heatwave-tree growth in large forest patches of Larix sibirica in northern Mongolian Plateau. Agric. For. Meteorol. 2021, 311, 108667. [Google Scholar] [CrossRef]
- Xu, C.; Liu, H.; Williams, A.P.; Yin, Y.; Wu, X. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol. 2016, 22, 2852–2860. [Google Scholar] [CrossRef]
- Ling, L.; Chaoying, L. Research on the Fitting Models of the Growth Characteristics of Introduced Pinus sylvestris var under Different Site Conditions in Yulin Desert Area. For. Resour. Manag. 2008, 1, 011. [Google Scholar]
- Wenzhi, Z. Growth Status of Pinus sylvestris var. mongolia in Relation to Ecological Factors of Naiman Sandy Land. J. Northwest For. Univ. 1991, 6, 4. [Google Scholar]
- Lan, J.; Lei, X.; He, X.; Gao, W.Q.; Guo, H. Stand density, climate and biodiversity jointly regulate the multifunctionality of natural forest ecosystems in northeast China. Eur. J. For. Res. 2023, 142, 493–507. [Google Scholar] [CrossRef]
- Long, J.N.; Vacchiano, G. A comprehensive framework of forest stand property–density relationships: Perspectives for plant population ecology and forest management. Ann. For. Sci. 2014, 71, 325–335. [Google Scholar] [CrossRef]
- Allen, M., II; Brunner, A.; Antón-Fernández, C.; Astrup, R. The relationship between volume increment and stand density in Norway spruce plantations. For. Int. J. For. Res. 2020, 94, 151–165. [Google Scholar] [CrossRef]
- Uhl, E.; Biber, P.; Ulbricht, M.; Heym, M.; Horváth, T.; Lakatos, F.; Gál, J.; Steinacker, L.; Tonon, G.; Ventura, M.; et al. Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: Experimental design, evaluation methods, and results. For. Ecosyst. 2015, 2, 17. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Jiao, L.; Chen, W.; Wu, X.; Fan, Z.; Zeng, F.; Fu, B. Radial growth response of Quercus liaotungensis to climate change–a case study on the central Loess Plateau, China. Trees 2022, 36, 1811–1822. [Google Scholar] [CrossRef]
- Hansson, A.; Yang, W.-H.; Dargusch, P.; Shulmeister, J. Investigation of the Relationship Between Treeline Migration and Changes in Temperature and Precipitation for the Northern Hemisphere and Sub-regions. Curr. For. Rep. 2023, 9, 72–100. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Zwiers, F.W.; Kharin, V.V.; Zhang, X.; Hegerl, G.C. Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef]
- Ryan, M.G. Temperature and tree growth. Tree Physiol. 2010, 30, 667–668. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Fu, X.; Zhao, B.; Dai, X.; Li, Q.; Yang, F.; Kou, L.; Wang, H. Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China. Trees 2021, 35, 1817–1830. [Google Scholar] [CrossRef]
- Berger, A.; Puettmann, K. Overstory composition and stand structure influence herbaceous plant diversity in the mixed Aspen forest of northern Minnesota. Aspen Bibliogr. 2000, 143, 111–125. [Google Scholar] [CrossRef]
- Tanioka, Y.; Ida, H.; Hirota, M. Relationship between Canopy Structure and Community Structure of the Understory Trees in a Beech Forest in Japan. Forests 2022, 13, 494. [Google Scholar] [CrossRef]
- MacLean, D.A.; Wein, R.W. Changes in understory vegetation with increasing stand age in New Brunswick forests: Species composition, cover, biomass, and nutrients. Can. J. Bot. 1977, 55, 2818–2831. [Google Scholar] [CrossRef]
- McKenzie, D.; Halpern, C.; Nelson, C. Overstory influences on herb and shrub communities in mature forests of western Washington, U.S.A. Can. J. For. Res. 2000, 30, 1655–1666. [Google Scholar] [CrossRef]
- Asbjornsen, H.; Wang, Y.; Ellison, D.; Ashcraft, C.M.; Atallah, S.S.; Jones, K.; Mayer, A.; Altamirano, M.; Yu, P. Multi-Targeted payments for the balanced management of hydrological and other forest ecosystem services. For. Ecol. Manag. 2022, 522, 120482. [Google Scholar] [CrossRef]
- Koukoura, Z.; Kyriazopoulos, A. Adaptation of herbaceous plant species in the understorey of Pinus brutia. Agrofor. Syst. 2007, 70, 11–16. [Google Scholar] [CrossRef]
- Ahmad, B.; Wang, Y.; Hao, J.; Liu, Y.; Bohnett, E.; Zhang, K. Optimizing stand structure for trade-offs between overstory timber production and understory plant diversity: A case-study of a larch plantation in northwest China. Land Degrad. Dev. 2018, 29, 2998–3008. [Google Scholar] [CrossRef]
Stand Structure | Multifactor Coupled Modeling of Stand Structure in Response to Various Environmental Factors | R2 | RMSE | AIC | BIC | Number |
---|---|---|---|---|---|---|
H (m) | 0.72 | 1.36 | 373.8 | 410.7 | (12) | |
DBH (cm) | 0.80 | 3.77 | 358.0 | 394.9 | (13) | |
Single-tree volume (m3) | 0.90 | 0.03 | 326.2 | 333.1 | (14) | |
Stand volume (m3/ha) | 0.85 | 25.45 | 338.5 | 347.2 | (15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Yu, P.; Wang, X.; Zhang, X.; Yu, Y.; Wan, Y.; Wang, Y.; Liu, Z.; Xu, L. Tradeoffs between Stand Volume and Understory Vegetation Diversity in Quercus wutaishanica Forests under Climate Change. Forests 2024, 15, 1750. https://doi.org/10.3390/f15101750
Liu B, Yu P, Wang X, Zhang X, Yu Y, Wan Y, Wang Y, Liu Z, Xu L. Tradeoffs between Stand Volume and Understory Vegetation Diversity in Quercus wutaishanica Forests under Climate Change. Forests. 2024; 15(10):1750. https://doi.org/10.3390/f15101750
Chicago/Turabian StyleLiu, Bingbing, Pengtao Yu, Xiao Wang, Xue Zhang, Yipeng Yu, Yanfang Wan, Yanhui Wang, Zebin Liu, and Lihong Xu. 2024. "Tradeoffs between Stand Volume and Understory Vegetation Diversity in Quercus wutaishanica Forests under Climate Change" Forests 15, no. 10: 1750. https://doi.org/10.3390/f15101750
APA StyleLiu, B., Yu, P., Wang, X., Zhang, X., Yu, Y., Wan, Y., Wang, Y., Liu, Z., & Xu, L. (2024). Tradeoffs between Stand Volume and Understory Vegetation Diversity in Quercus wutaishanica Forests under Climate Change. Forests, 15(10), 1750. https://doi.org/10.3390/f15101750