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Abstract: Natural forests play a crucial role in providing various ecosystem services, including
timber production and biodiversity conservation. However, climate change and anthropogenic
factors pose a severe threat to competing forest ecosystem services functions. Therefore, to optimize
and sustainably utilize competing forest services, tradeoffs are often necessary. This study was
conducted in Northwest China to explore tradeoffs aimed at improving the quality of Quercus
wutaishanica Mayr natural forests under climate change conditions, focusing on stand volume, timber
production, and understory vegetation diversity conservation. Data from 77 field surveys were used
to construct a coupled model for stand growth, stand structure, and site conditions. Changes in
understory vegetation species number (UVSN) with crown cover were quantified. These models
and relationships can be used as tools to estimate tradeoffs. As stand density increased, single-tree
volume decreased, whereas timber volume increased. UVSN increased and then decreased with
increasing crown cover and was able to maintain a relative maximum at 0.5–0.65. Under the current
climatic conditions, the optimum stand densities corresponding to 30, 40, 50, and 60 years were 1390,
1153, 1042, and 871 trees/ha, respectively, to maintain a high UVSN and adequate stand volume.
When mean annual temperature rose, stand densities could be reduced to maintain high-quality
timber. Although only two major services were considered, the tradeoffs presented in this study can
inform future research to improve the quality of natural forests.

Keywords: natural forests; forest multiple service functions; optimize; coupled model; stand density

1. Introduction

Natural forests play a crucial role in ecology, climate, water resources, soil conservation,
resource supply, and human well-being [1–3]. However, over-conservation measures, such
as total logging bans and restrictions on human disturbance aimed at maximizing stand
volume, have led to reduced efficiency in the provision of various forest ecosystem services
(FESs) [4,5]; this has made it challenging to meet the increasing and diverse demands for
services from society [6]. Consequently, traditional forest management approaches have
been gradually revised to implement FES-oriented methods to enhance the quality and
efficiency of natural forests [7,8].

Understory vegetation is an integral component of FESs and a vital indicator of forest
health and stability [9,10]. It is strongly associated with numerous ecosystem service
functions, including erosion control, carbon sequestration, hydrological regulation [11–13],
natural tree regeneration [14], and biodiversity conservation [15].

However, natural forests still face numerous challenges, particularly under excessive
protection measures; this includes high forest density leading to low understory vegetation

Forests 2024, 15, 1750. https://doi.org/10.3390/f15101750 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15101750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-9991-144X
https://orcid.org/0000-0001-6568-1837
https://doi.org/10.3390/f15101750
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15101750?type=check_update&version=2


Forests 2024, 15, 1750 2 of 17

diversity and cover [16–18], difficulties in seed regeneration [19], low timber quality, and
poor resistance to snowstorms [20,21]. Therefore, it is crucial to establish multilayered
forests that can provide multiple FES [22,23]. This includes a tradeoff between stand
volume and understory vegetation species number (UVSN) with a certain level of timber
quality [24,25]. However, whether there is a tradeoff between them and how this can be
achieved remains controversial. Therefore, understanding and quantifying the responses of
UVSN to tree and canopy densities is essential for guiding natural forest management [26].

Forest management is challenging due to the complex topography of natural forests
located in mountainous areas [27]. Therefore, the development of models based on field
measurements is particularly important to balance the competing services of stand volume,
timber production, and understory vegetation diversity. In the context of a progressively
warming climate, the introduction of climatic factors, including temperature and precipi-
tation, into quantitative models can simulate the tradeoffs between changing FESs under
multiple scenarios [28–30]. Stand and canopy densities directly affect forest UVSN, stand
volume, and timber production functions [31–33]. Therefore, it is becoming increasingly im-
portant to balance these relationships by determining the optimal stand density in response
to climate change [26].

Quercus wutaishanica is a widely distributed tree species in temperate deciduous forests
in northern China. It is also a dominant species in the Liupan Mountain range. Large-scale
logging was conducted in the 1950s. However, logging stopped in the 1980s with the
establishment of nature reserves. Almost all the remaining forests are secondary forests
formed by sprouting after logging. The main problems faced by forests are high stand
density, low timber quality, low seed regeneration, and low understory plant species
diversity. Therefore, there is an urgent need to improve the functions of multiple ecosystem
services in secondary Quercus wutaishanica forests. To date, research on the ecosystem
services of natural Quercus wutaishanica forests has mainly focused on carbon sequestration
and hydrological regulation [34–36]. However, there has been relatively limited research on
the response of UVSN to stand and canopy densities and integrated management guided
by optimal stand and canopy densities to achieve multiple FESs [37,38].

This study aims to establish a coupled model of stand volume, single-tree volume,
and UVSN responses to factors such as stand age and density based on field survey data. It
also simulates the changes in these three functions to achieve their tradeoffs under climate
change. This research can provide a theoretical basis for the comprehensive management of
natural forests and how to efficiently utilize forest ecosystem services under climate change.

2. Materials and Methods
2.1. Study Area

The study area is located in the Liupanshan Nature Reserve (106◦11′–106◦32′ E,
35◦20′–35◦47′ N) in northwestern China (Figure 1). This region serves as a representa-
tive water conservation forest area in the northwest and plays a crucial role in soil and
water conservation, and in ecological development in the Loess Plateau. The region is in
a transitional zone from a warm temperate semi-humid zone to a semi-arid zone. The
altitude ranges from 1700 to 2927 m. The mean annual temperature (MAT) decreases
gradually from 6.5 ± 0.7 ◦C in the north to 5.8 ± 0.6 ◦C in the south (Figure 1). Mean
annual precipitation (MAP) increased from 480 mm in the north to 548 mm in the south
(Figure 1). The dominant soil type in the area is shallow and coarsely textured calcareous
chestnut soil.

The forest cover of the Liupan Mountains region gradually increases from north to
south, and the total cover of all forests is 65.4%. The main natural tree species are Quercus
wutaishanica, Betula platyphylla, Populus davidiana, and Pinus armandii. Quercus wutaishanica
forests account for 31% of the natural forest area. In the 1950s, the region experienced
large-scale deforestation. Almost all the remaining natural forests are secondary forests
formed by sprouting regeneration. The associated tree species primarily include Betula
platyphylla and Populus davidiana. The understory shrubs consists of Viburnum schensianum,
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Cotoneaster multiflora, Spiraea blumei, and Crataegus pinnatifida. Meanwhile, the understory
herbaceous plants include Epimedium brevicornu, Carex hancockiana, and Phlomis umbrosa.
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Figure 1. Map illustrating the relative location of the study area (a), distribution of surveyed plots
(b), high density of Quercus wutaishanica stands (c), low understory vegetation cover (d), a gradual
decrease in mean precipitation, (e) and a gradual increase in mean air temperature (f) across the plots
with increasing latitude.

2.2. Sample Plot Setting

Based on the main distribution range of Quercus wutaishanica in the study area and the
characteristic of gradually increasing precipitation from north to south, sampling points
were established for every 20 mm increase in precipitation. At each sampling point, four
slope aspects were considered (defining the north direction as 0◦, increasing clockwise,
with azimuth angles 330◦~30◦ as shady slopes, 30◦~90◦, 270◦~330◦ as semi-shady slopes,
90◦~150◦ and 210◦~270◦ as semi-sunny slopes, and 150◦~210◦ as sunny slopes) and three
slope positions (upper slope, middle slope, lower slope). From 2021 to 2022, a total of
77 plots with an area of 20 m × 20 m or 30 m × 30 m were established and surveyed
(Figure 1). In each tree layer survey plot, three shrub layer survey plots of 5 m × 5 m
were established at the beginning, middle, and end positions along one diagonal line.
Additionally, five herb layer survey plots of 1 m × 1 m were established at the four corners
and the middle of the diagonal line of each tree layer survey plot.

2.3. Data Collection and Calculation

The elevation of the plot centers was measured using GPS. Slope, position, and aspect
were determined using a compass. Crown cover was estimated as the ratio of the projected
area of the canopy to the area of the sample plot. Tree cores were collected from all the trees
in the plot using an increment borer, and the age of each tree was determined using the
LINTAB 6 measurement system. The average age of the main canopy trees in the plot is
used as the stand age for the plot. The tree density (trees/ha) was determined by dividing
the total number of trees by the plot area. The height (H) and diameter at breast height
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(DBH) of all trees with a diameter ≥ 5 cm were measured. Mean H and DBH values for
each plot were calculated using Equations (1) and (2), respectively.

H =
1
n∑n

i−1 Hi (1)

DBH =

√
1
n∑n

i=1 DBH2
i (2)

where n is the number of trees, and Hi and DBHi are the H (m) and DBH (cm) of the ith
tree, respectively.

The single-tree volume (STVtrees, m3) of Quercus wutaishanica was calculated us-
ing the empirical equation developed by Meng et al. based on tree height and DBH
(Equation (3)) [39]. The mean individual tree volume and stand volume (SVstand, m3/ha)
of the forest were calculated by summing the individual tree volumes within each sample
plot (Equation (4)).

STVtrees = 0.000057468552 × D1.915590
i × H0.9265972

i (3)

SVstand =
∑n

i=1 Vtreei

S
(4)

where STVtrees is the single-tree volume, SVstand is the stand volume, Hi is the tree height
(m), Di is the tree diameter at breast height (cm), S is the plot area (m2), and n is the number
of Quercus wutaishanica in the plot.

Based on the latitude, longitude, and altitude information of each plot, combined
with the average precipitation and temperature data from six meteorological stations
located in Guyuan City, Haiyuan County, Xiji County, Jingyuan County, Lund County, and
Liupanshan Station uniformly distributed in the study area (data source: http://data.cma.
cn/ (accessed on 3 October 2021)) from 1991 to 2019, and interpolated through Kriging
interpolation using ArcGIS (Version 10.7, Redlands, CA, USA, Esri Inc.), the multi-year
average precipitation and temperature values for each plot were obtained. The 77 sample
plots investigated had a mean air temperature of 6.3 ◦C, a mean precipitation of 519 mm,
and a mean slope orientation of 64◦. In each of the 77 tree plots, we measured the plant
species and numbers in three shrub plots and five herbaceous plots. To obtain the UVSN for
the tree plots, we calculated the mean values for the three shrub plots and five herbaceous
plots and summed them. The specific calculation formula is as follows:

UVSN =

(
∑3

i=1 Si

3

)
+

(
∑5

i=1 Hi

5

)
(5)

where Si represents the values from the shrub plots and Hi represents the values from the
herbaceous plots.

2.4. Construction of a Coupled Model of Stand Structure

By plotting a scatter plot of the dependent variable against the independent variable
and selecting the highest points corresponding to the changes in the independent variable,
these points of the dependent variable can be considered as being maximally influenced
only by the independent variable. The line fitted to these selected points is the upper
boundary line. Therefore, the upper boundary line can clearly determine the response
function relationship of the dependent variable to the independent variable [40]. The
modeling process was as follows, taking DBH as an example: (1) The correlation between
DBH and each factor was determined. (2) The relative DBH was obtained by dividing the
maximum mean DBH of all plots by the mean DBH of all plots. (3) A scatter plot of DBH
versus the first factor, that is, the factor with the largest correlation, was constructed, and
the upper boundary line was used to determine the response function f (x1) with the first
factor. (4) To eliminate the effect of the first factor, all the data were divided by the value

http://data.cma.cn/
http://data.cma.cn/
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corresponding to the upper boundary line established by the DBH with the first factor.
(5) The influences of the previous factors were eliminated individually until the influence
function f (xn) of the last factor was determined. (6) The functions were multiplied and
the model parameters were calibrated based on the measured data (i.e., DBH, height,
corresponding stand density, annual precipitation, annual temperature, and aspect data)
using 1stOpt (Version 1.5, Beijing, China, developed by Seven Dimensions High-Tech Co.,
Ltd.) to derive a coupled model of forest growth (FS) influenced by multiple factors. The
functional form of the model is given in Equation (6).

FS = f (x1)× f (x2) . . . . . . × f (xn) (6)

where FS is the mean H, mean DBH, or crown cover, x1, x2,...., xn are factors affecting H
(m), DBH (cm), or crown cover, such as forest age and stand density, and n is the number
of influencing factors.

Based on the mean H and DBH models and the expression of the binary volume
equation, the mean single-tree timber volume (STV, m3) and stand volume (SV, m3/ha)
models with the effect of the stand factor were constructed in the following model form:

STV = a × Db
p × Hc

p (7)

SV = Dp
b0 × Hp

c0 ×
(

d0 + N × e0 + N × f0
2
)

(8)

where Hp and Dp are the mean H (m) and DBH (cm). Their values were calculated using
an established coupled model (Equation (5)) of stand mean H and DBH were affected by
stand age, stand density (N, trees/ha), slope direction (SDP), MAT (◦C), and MAP (mm).
a, b, b0, c0, d0, e0, and f0 obtained by re-rating using data calculated using the established
coupled model (Equation (6)).

The cumulative breast height basal area (G, m3/ha) of the stand is an indicator reflect-
ing radial growth and N and is correlated with crown cover. We established a relationship
between G and the canopy by incorporating the developed DBH-coupled model to simulate
crown cover variations under different scenarios. Therefore, by using the constructed DBH
model in conjunction with N, we recalculated the G for each plot using Equation (9):

G =
πDp

2

4
× N (9)

2.5. Simulation of UVSN

Crown cover is a stand structure indicator that most directly affects understory vege-
tation species diversity. We constructed a response function relationship between crown
cover and G. We then constructed a response function relationship between UVSN and
crown cover. We embedded the constructed response function of UVSN to depression
into the response function of crown cover to G and modeled changes in UVSN based on
changes in G.

2.6. Principle of Tradeoffs

The tradeoff principle of this study is to achieve sufficient stand volume while ap-
propriately adjusting the N to increase the potential UVSN. Meanwhile, this can take into
account a certain amount of timber yield. The specific steps are as follows: (1) Based on the
constructed coupled model and relationship of stand volume, individual tree volume, and
UVSN, the changes in these three parameters with N under different forest age conditions
were simulated. (2) The N was obtained corresponded to 90% of the maximum value of
the changes in stand volume and UVSN. The N at each stand age served as the N interval
for the upcoming tradeoff for each function. (3) The N intervals for each function over-
lapped, and the overlapped N intervals were at suitable density intervals that accounted
for each function. (4) Given that the relationship between the individual tree volume
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and stand volume with N was negative, to take into account a certain timber yield, we
selected the minimum density of the overlapping part of the stand volume and UVSN as
the optimal density.

2.7. Model Evaluation

The model evaluation uses the coefficient of determination (R2) and the root mean
square error (RMSE), which were calculated using Origin (Version 2021, OriginLab Cor-
poration, Northampton, MA, USA). R2 evaluates the fitting effect of the model on the
modeling samples, while RMSE assesses the prediction effect of the model on the vali-
dation samples. Additionally, the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) were calculated using R to assess model quality, considering
both the goodness of fit and model complexity.

R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (10)

RMSE =

√
∑m

i=1(yi − ŷi)
2

n − 1
(11)

where yi and ŷi represent the observed and predicted values of the forest structure index
for the i-th sample, respectively, and yi is the mean of all observed values. m is the number
of samples used for parameter calibration or validation, and n is the number of samples
used for model calibration or validation.

2.8. Scenario Formulation

Two scenario simulations were conducted to strike a balance between timber produc-
tion and understory biodiversity conservation. In Scenario 1, we simulated the current
climatic conditions, aligning precipitation, temperature, and slope with the average values
observed in the study area. For Scenario 2, we introduced a specific change by elevat-
ing the temperature by 1.5 ◦C, in accordance with predictions outlined in the IPCC Fifth
Assessment Report.

3. Results
3.1. Variation in Maximum Stand Density with Age

As trees age, stand density gradually decreases (Figure 2). The upper boundary line
was used to estimate the maximum N at a given age. The maximum stand densities at the
ages of 30, 40, 50, and 60 years were 2385, 2116, 1777, and 1368 trees/ha, respectively.
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Figure 2. Upper boundary (UB) line showing variation in maximum stand density of Quercus
wutaishanica natural forest with age.
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3.2. Response and Modeling of Stand Growth to Stand Structure
3.2.1. Response of Tree Height and DBH to Stand Structure and Site Factors

Forest stand growth is influenced by various factors (Figure 3). With the increase in
tree age, mean H and DBH exhibited S-shaped growth patterns. During the 0–30 year
period, their increase was gradual. In the 30–50 year period, the growth rate accelerated,
and after 50 years, growth stabilized. They gradually decreased with an increase in N,
experiencing a decline when N exceeded 1750 trees/ha.
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Figure 3. Using the upper boundary lines (UBLs) to represent the relationship between the response
of Quercus wutaishanica natural forests to stand age, stand density (N, trees/ha), mean annual
precipitation (MAP, mm), and mean annual temperature (MAT, ◦C). Note: (a,f) show the changes of H
and DBH with stand age, respectively. (b,g) show the changes with stand density after removing the
effect of age. (c) shows H with MAP after removing density, (d) shows H with MAT after removing
MAP, and (e) shows H with slope aspect after removing MAT. (h–j) show DBH with MAT, MAP, and
slope aspect, respectively, after removing the previous variable effects.

Forest stand growth is influenced by age, density, and site conditions and climate
(Figure 3). The mean H and DBH gradually decreased with an increase in slope direction,
with an acceleration in decline when the slope exceeded 100◦. They exhibited a parabolic
relationship with mean temperature, rising when temperatures were below 6.4 ◦C and
rapidly declining when temperatures exceeded 6.4 ◦C. They exhibited an increasing trend
with increasing precipitation.

3.2.2. Construction of a Multifactor Coupled Model for Stand Growth Response

The upper boundary line functions of H and DBH in response to various factors were
used to construct a multivariable coupled model to analyze the responses of average H
and average DBH to various factors (Table 1). The complete dataset was divided into two
parts. A total of 58 datasets were used for parameter calibration, and 19 datasets were used
for model validation. The results demonstrated that the model performed well in terms of
accuracy and precision (Figure 4).

The parameters of the formulas for individual tree and timber volumes were recali-
brated using the constructed multifaceted coupled model for H and DBH (Table 1). The
model demonstrated satisfactory performance (Figure 5).

The DBH calculated from the multifactor coupled modeling of DBH was introduced
into Equation (8), and G was recalculated. The simulated values responded well to the
measured values (R2 = 0.73; Figure 6, Table 1).
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Table 1. Multifactor coupled modeling of stand growth.

Stand Structure Multifactor Coupled Modeling of Stand Structure
in Response to Various Environmental Factors R2 RMSE AIC BIC Number

H
(m)

H = 33 ×
[(

−1.47 + 3.88
1+( Age

2.25 )
0.58

)
×

((3.04 ∗ 10−4)/(1 + EXP((3.22 × 10−4)× (SD −
914.93))))× (779.66 + 3.25 × MAP4.24)× (−10.73 +

13.27 × MAT − 1.15 × MAT2)× ((−1.92 ∗
10−10)/(1 + EXP(0.0035 × (SDP + 80.49))))

]
0.72 1.36 373.8 410.7 (12)

DBH
(cm)

DBH = 66 ×
[
(0.006 + (−0.003)/(1 +

(
Age

41.64 )
8.69))× (−35.31 − 890.14 ∗ SD0.46)× (2.37 ×

105 + 0.29 × MAP2.36)× (−0.0007 − 0.002 × MAT +
0.0002 ∗ MAT2)× (0.08/(1 + EXP(0.002 × (SDP +

4174.47))))
]

0.80 3.77 358.0 394.9 (13)

Single-tree
volume

(m3)
STV = 2.24 × 10−7 × DBH5.06 × H0.51 0.90 0.03 326.2 333.1 (14)

Stand volume
(m3/ha)

SV = DBH1.53 × H1.15 ×(
−2.98 × 10−3 + SD × 1.48 × 10−4 + SD ×−2 × 10−8

) 0.85 25.45 338.5 347.2 (15)
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Figure 4. Parameter calibration and model validation of coupled H (m) and DBH (cm) models. Among
them, (a,c) represent the calibrations for the parameters of the H and DBH models, respectively, while
(b,d) represent the calibrations for the H and DBH models, respectively.
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Figure 5. Parameter calibration and model validation of stand volume and single-tree volume
models. Among them, (a,c) represent the calibrations for the parameters of the STV and SV models,
respectively, while (b,d) represent the calibrations for the STV and SV models, respectively.
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Figure 6. Comparison of simulated and measured values of cumulative breast height basal area (G,
m2/ha) of the forest.

3.3. Relationship between Understory Plant Diversity and Crown Cover
3.3.1. Changes in Crown Cover with Breast Height Basal Area

As G increased, crown cover (CD) exhibited an initial rapid increase (Figure 7). This
was followed by a gradual slowdown when G reached 15–25 m³/ha. Beyond 25 m³/ha,
crown cover ceased to increase. The relationship between G and crown cover was effectively
captured by the function CD = 0.76(1 − exp(−0.13G)), with a robust fit indicated by an
R2 value of 0.73.
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Figure 7. Relationship between crown cover (CD) and cumulative breast height basal area (G, m2/ha).

3.3.2. Relationship between UVSN and Crown Cover

In the understory plant survey, we identified 188 plant species, including 72 shrubs
and 106 herbs, belonging to 47 families and 98 genera. The most common shrubs were
Cotoneaster multiflora Bunge., Spiraea blumei G.Don, Ostryopsis davidiana Decne., Smilax stans
Maxim., and Viburnum betulifolium Batal. The common herbs were Carex hancockiana Maxim.,
Thalictrum aquilegiifolium var. sibiricum Linnaeus, Viola verecumda A. Gray, Sanguisorba
officinalis L., and Discorea nipponica Makino.

Crown cover emerged as the dominant factor influencing UVSN compared with other
structural indicators. As illustrated in Figure 8, UVSN exhibited a rapid increase with a
progressive increase in crown cover, attaining elevated levels within the 0.5–0.65 range.
Nevertheless, there was a rapid decrease in UVSN when the crown cover exceeded 0.65.
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Forests 2024, 15, 1750 11 of 17

3.4. Tradeoff between Timber Production and UVSN

Compared to the maximum stand density achievable at each stand age under current
climate conditions, achieving a tradeoff between stand volume and UVSN would require
adjusting the maximum stand density at each stand age (2385, 2116, 1778, and 1369 trees/ha
at 30, 40, 50, and 60 years, respectively) to 1390, 1153, 1042, and 871 trees/ha, respectively.
Consequently, each growth indicator changes under the tradeoff scenario. Specifically,
stand volume decreased by 7%, 10%, and 11% at 40, 50, and 60 years, respectively, while
it increased by 2% at 30 years; UVSN increased by 4.79%, 10.16%, and 7.47%, except for a
decrease of 10.81% at 30 years. Single-tree volume increased by 36.75%, 45.38%, 44.09%,
and 37.43% at 30, 40, 50, and 60 years, respectively; this tradeoff demonstrates significant
improvements in timber quality and UVSN (Figure 9).
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Figure 9. Timber production and changes in understory vegetation species (UVSN) numbers based
on model simulations. Note: (a–d) show the simulated changes in each function with stand density
at 30, 40, 50, and 60 years under current climate conditions. (e–h) show the same changes under a
1 ◦C temperature increase. The orange solid line, light green solid line, and dark green solid line
represent the simulated changes in UVSN, SV (m3/ha), and STV (m3) with stand density, respectively.
Green shading is the range of densities corresponding to reaching 90% of the maximum value of SV;
red shading is the range of densities corresponding to reaching 90% of the maximum value of the
number of plant species in the understory; the solid black line is the minimum density for the part
where the two shades coincide; and the dashed black line is the density of the stand required to reach
the corresponding STV at the first tradeoff, if the temperature is increased by 1 ◦C.

After a 1 ◦C increase in temperature, compared to the tradeoff results under current
climate conditions, stand volume and single-tree volume decreased by 33.33% and 44.05%,
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respectively, for all tree ages except UVSN. Additionally, compared to the maximum stand
density achievable at each stand age after a 1 ◦C increase in temperature, achieving a
tradeoff between stand volume and UVSN would require adjusting the maximum stand
density at each stand age to 1666, 1158, 1000, and 866 trees/ha at 30, 40, 50, and 60 years,
respectively. Similarly, under this tradeoff scenario, each growth indicator also changed.
Specifically, stand volume decreased by 6%, 10%, and 15% at 40, 50, and 60 years, respec-
tively, while it increased by 4% at 30 years; single-tree volume increased by 24.2%, 45.38%,
44.1%, and 45.45% at 30, 40, 50, and 60 years, respectively. UVSN increased by 8.58%
and 8.06% at 50 and 60 years, while it decreased by −9% and −3% at 30 and 40 years,
respectively (Figure 9).

Additionally, to restore the single-tree volume after warming to the level under the
current climate condition tradeoff, the stand density needs to be reduced to 820, 700, 622,
and 555 trees/ha at the ages of 30, 40, 50, and 60 years, respectively, under the tradeoff
scenario after the temperature increase (Figure 9).

4. Discussion
4.1. Effects of Stand Structure and Climatic Conditions on Stand Growth

Stand growth is influenced by stand age and tree density [41–43]. Stand growth was
described well using the logistic growth model in line with previous studies [44,45]. This
finding aligns with the results of our study, showing that natural Quercus wutaishanica
forests exhibit slow growth during the first 0–30 years, accelerated growth for 30–50 years,
and slow growth beyond 50 years (Figure 3).

Increasing N exacerbates the competition for light, water, and nutrients, leading to
reduced N [11,46,47]. In this study, stand growth began to decline rapidly when stand
density exceeded 1750 trees/ha (Figure 3). This is consistent with the findings of Ahmad
et al., where a power function effectively explains this result [40]. Although increasing
stand density can enhance stand volume, it also adversely affects wood quality [48,49]. As
N increased, single-tree volume decreased at an accelerated rate (Figure 3).

Stand growth is influenced by stand and climatic conditions [42,43,50,51]. Incorporat-
ing changes in temperature and precipitation into the model helped understand alterations
in the structure–function relationship under climate change, enabling precise manage-
ment [52,53]. Stand growth exhibited an initial increase, followed by a decline, as the
mean annual temperature increased (Figure 3). Excessively low or high mean annual
temperatures are detrimental to stand growth [54]. The optimal temperature for Quercus
wutaishanica growth is approximately 6.4 ◦C. Considering the variations in the distribution
of Quercus wutaishanica forests, precipitation conditions should also be incorporated into
the model. As the mean annual precipitation increased, the growth of Quercus wutaishanica
forests gradually increased (Figure 3). This relationship has been confirmed by numerous
studies [42,43,55].

4.2. Effects of Stand Density and Stand Age on UVSN

UVSN decreases with increasing crown cover [24,56]. However, our study showed a
different trend. UVSN initially accelerated with increasing crown cover, reaching a rela-
tively high level when the crown cover was between 0.5 and 0.65 (Figure 8). Subsequently,
UVSN gradually declined, corresponding to an N of 800–900 trees/ha. The reason for this
phenomenon is that high stand density and crown cover favor the development of shade-
tolerant plants while inhibiting the growth of shade-intolerant plants. As stand density
increases, shade-tolerant plants gradually develop, resulting in an increase in the UVSN.
However, when stand density and crown cover reach a certain threshold, shade-intolerant
plants begin to die off. Therefore, with a further increase in stand density, the UVSN starts
to decrease [57]. Therefore, UVSN reached its maximum value only when a balance was
achieved between shade-intolerant and shade-tolerant species, in line with the findings
reported by Zhang et al. [10]. Therefore, maintaining a crown cover within the range of
0.5–0.65 and an N of 800–900 trees/ha is the optimal approach to sustain a higher UVSN.
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However, when considering other dominant functions, such as timber production, which
may vary with stand age and temperature, a fixed management approach may not be
feasible [41].

4.3. Tradeoffs between Timber Production and UVSN

Among the various indicators of stand structure, N, stand age, and crown cover
directly or indirectly influence timber production and the UVSN [58,59]. Stand density
is the most decisive factor in forest management practices [41,60]. An excessively dense
forest can result in increased stand volume but decreased single-tree volume. Meanwhile,
excessive crown cover can lead to a decline in the UVSN [61]. In this study, we developed a
generic tradeoff approach to maintain an optimal N corresponding to specific stand ages.
Under current climatic conditions, the recommended stand densities are 1390, 1153, and
871 trees/ha for trees aged 30, 40, 50, and 60 years, respectively.

The model developed in this study incorporates climatic conditions—that is, temper-
ature and precipitation—and slope direction as indicators, providing a technical means
of balancing management based on different site types under climate change conditions.
Compared with the model developed by Ahmad et al., which only considered stand density
and stand age, our model included temperature, precipitation, and slope direction factors
to make it more generalizable [62]. Therefore, as a more precise decision-making tool,
the developed model can be used to determine the appropriate N at any stand age under
climate change conditions, balancing the competing services of timber production and
understory vegetation diversity conservation.

4.4. Application of the Model

MAP, MAT, and slope aspect are indicators that can be easily obtained from field
surveys, facilitating the management of forests under climate change according to different
site types. For a given site type, MAP and MAT can be interpolated from nearby meteo-
rological stations or derived using remote sensing techniques, while stand age and slope
aspect can be obtained through field surveys. Subsequently, using Equations (12) and (13)
from this study, the simulated values of H and DBH can be calculated as they change with
stand density. These results can then be incorporated into Equations (14) and (15) to derive
changes in stand volume and single-tree volume with respect to stand density. Additionally,
the relationship between crown cover and UVSN can be used to calculate changes in UVSN
for that site type with varying stand densities. Finally, based on the tradeoff principles
established in this study, the optimal stand density range that simultaneously satisfies
timber production functions and the conservation of understory plant diversity for that
site type can be determined.

4.5. Limitations of the Current Study and Directions for Further Research

The findings of this study have provided a reference for further research on the
multifunctional management of forests with different tree species in different regions.
However, the direct application of the model is limited because its age range is relatively
low (15–66 years), which does not fully cover the rapid growth phase and the mature phase
of stand development. Therefore, it is necessary to recalibrate the model parameters when
applying it to older stands.

Soil drought is a significant factor limiting the growth of arid-land plants. Site factors
such as elevation, slope, soil thickness, and soil texture have a significant regulatory effect
on soil moisture. Therefore, these site factors and their impacts should be considered in
future research.

Forests provide a variety of sustainable ecosystem services, including hydrological
regulation, erosion control, seedling regeneration, and functions related to ecological quality.
However, this study only considered timber and species diversity functions, and future
research should incorporate more functions.
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5. Conclusions

Stand growth is influenced by tree age, density, site conditions, and climate. H and
DBH exhibit an S-shaped growth pattern with age, accelerating between 30 and 50 years
and stabilizing after 50. When density exceeds 1750 trees per hectare, both H and DBH
decline; they also decrease with increasing slope and temperatures above 6.4 ◦C, while
increased precipitation promotes growth.

Based on the functional relationships of H and DBH in response to multiple single
factors, a coupled model was developed to simultaneously assess the responses of DBH
and H to stand density, tree age, mean annual temperature, mean annual precipitation, and
slope. This model facilitates the tradeoff between timber production and the conservation
of understory plant diversity under climate change.

Under current climate conditions, the tradeoff stand densities at stand ages of 30,
40, 50, and 60 years are 1390, 1153, 1042, and 871 trees/ha, respectively, allowing for a
balance between timber production and understory plant diversity conservation. After
a 1 ◦C increase in temperature, the tradeoff stand densities at these ages are 1666, 1158,
1000, and 866 trees/ha, respectively, necessary to achieve the same balance. Using the
established model and functional relationships, more appropriate tradeoff decisions can be
made to optimize both functions under varying tree ages and climate changes. However,
when applying this model to other regions or tree species, recalibration of the parameters
should be considered, and additional site conditions and forest service functions should be
incorporated into the model.
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