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Abstract: The 3D reconstruction of point cloud trees and the acquisition of stand factors are key
to supporting forestry regulation and urban planning. However, the two are usually independent
modules in existing studies. In this work, we extended the AdTree method for 3D modeling of
trees by adding a quantitative analysis capability to acquire stand factors. We used unmanned
aircraft LiDAR (ALS) data as the raw data for this study. After denoising the data and segmenting
the single trees, we obtained the single-tree samples needed for this study and produced our own
single-tree sample dataset. The scanned tree point cloud was reconstructed in three dimensions in
terms of geometry and topology, and important stand parameters in forestry were extracted. This
improvement in the quantification of model parameters significantly improves the utility of the
original point cloud tree reconstruction algorithm and increases its ability for quantitative analysis.
The tree parameters obtained by this improved model were validated on 82 camphor pine trees
sampled from the Northeast Forestry University forest. In a controlled experiment with the same
field-measured parameters, the root mean square errors (RMSEs) and coefficients of determination
(R2s) for diameters at breast height (DBHs) and crown widths (CWs) were 4.1 cm and 0.63, and 0.61 m
and 0.74, and the RMSEs and coefficients of determination (R2s) for heights at tree height (THs) and
crown base heights (CBHs) were 0.55 m and 0.85, and 1.02 m and 0.88, respectively. The overall effect
of the canopy volume extracted based on the alpha shape is closest to the original point cloud and
best estimated when alpha = 0.3.

Keywords: AdTree; tree modeling; tree parameter extraction

1. Introduction

Tree stand factor measurement and tree modeling are two popular research directions
in digital forestry research today. Stumpage factor extraction is the basis for assessing the
growth status of forest trees in sample plots as well as evaluating important attributes
such as forest stumpage, biomass, and carbon stock, which are of great significance for
forestry resource management [1]. The accurate acquisition of stumpage parameters plays
a decisive role in understanding the structure and function of forests, predicting forest
growth and productivity, assessing forest health, and developing effective forest manage-
ment and conservation strategies [2]. Methods for obtaining stumpage factors include
traditional field-based surveys and modern remote surveys [3]. Traditional field-based
surveys usually require manual measurement with traditional measuring tools, which
involves destructive sampling, has a low degree of automation, and requires specialized
personnel to operate [4]. The non-contact method utilizes modern technological equipment,
such as laser scanners [5,6], cameras [3], drones [7], and remote sensing technology [8,9], to
obtain tree stand parameters from a remote location. This method not only avoids damage
to the sampling site but also improves the accuracy and efficiency of measurement, while
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the non-contact measurement method can also be used to continuously monitor the forest,
providing a more scientific, dynamic, data-oriented basis for forest protection.

The three-dimensional modeling of trees has numerous applications across a variety
of fields, such as urban landscape design, ecological simulation, forestry management,
and ecological research, as outlined by Kurdi F.T. et al. [10]. Accurate tree modeling not
only improves the realism of the landscape but also represents a promising approach for
the scientific management of vegetation and implementation of precision forestry [11].
Conventional tree modeling includes the rule-based modeling approach for trees using
recursive branching, first proposed by Honda [12], and subsequent sketch-based [13],
image-based [14], and LiDAR-based [15] modeling, proposed by Okabe et al. LiDAR-based
modeling schemes have the advantage of higher data accuracy over other models [16].

To address the challenge of integrating high-precision, automated tree modeling with
non-destructive parameter acquisition, recent advancements in LiDAR technology have
significantly transformed the methods used in forestry. LiDAR has the ability to detect
the spatial structural characteristics of forest vegetation, especially the forest’s vertical
structural parameters due to its high sampling intensity and strong vegetation penetration,
and has greater advantages than previous optical remote sensing equipment [17]. González-
Jorge et al. [18] and Petrie et al. [19] confirmed that the point cloud data acquired with laser
scanners have very high density and quality, with speeds typically reaching 100 kHz to
1 MHz or even higher, and up to sub-centimeter accuracy. Several types of laser scanning
systems exist, and the three main categories distinguished by application area are terrestrial
LiDAR [20], satellite-borne LiDAR [21], and airborne LiDAR [22]. According to Holopainen
et al. [23], it is difficult to obtain high-precision canopy information with ground-based
LiDAR during the data scanning process. In addition, satellite-borne LiDAR has a long data
acquisition cycle and low data accuracy due to the relatively long measurement distance,
making it only applicable to large-scale and long-cycle forestry surveys, as detailed by
Sun et al. [24]. In view of the reasons mentioned above, we used unmanned aircraft LiDAR
(ALS)-scanned point cloud data as this study’s initial data.

Despite the advancements made by existing quantitative tree structure models such
as TreeQSM [25] and AdQSM [26], these models still exhibit notable limitations. TreeQSM,
developed by Pasi Raumonen et al. [25], has been widely adopted for tree modeling and
validated through destructive experiments, demonstrating high accuracy in parameter
extraction. However, it has limitations in reconstructing tree models with reasonable
geometric topology, particularly in branching structures. Although AdQSM [26] offers
improvements over TreeQSM in certain modeling aspects, it performs poorly in branch
parameter analysis. Given the scarcity and limitations of existing tree quantification models,
there is a need to develop more precise models, particularly those based on ALS (Airborne
LiDAR Scanning) point clouds, for estimating tree attributes. This study addresses these
gaps by proposing an ALS-based automatic, single-tree 3D reconstruction and parameter
extraction model. The proposed method integrates high-precision, automated, and non-
destructive tree parameter acquisition, improving both the accuracy and efficiency of
tree modeling. We will further elaborate on these limitations and provide a comparative
analysis with existing studies in the Results Section.

The main methods in the early studies of LiDAR-based trunk parameter acquisition
were least squares circle fitting (Calders K. et al. [27]), Hough transform circle detection
(Trochta J. et al. [28]), RANSAC circle detection (Zhou S. et al. [29] and Olofsson et al. [30]),
cylindrical fitting (Yang B. et al. [31]), and so on. Projecting the point cloud’s horizontal
layer onto the plane for two-dimensional curve fitting is a common technique for extracting
breast diameter [27]. However, this method has two main issues: it involves all point clouds
during circle fitting, making it unsuitable for noisy data, and it suffers from accuracy loss
due to the axial and radial directions of the horizontal layers not being calculated together.
Robust methods like two-dimensional Hough transform, RANSAC, and minimum median
can mitigate noise effects but may mistakenly identify non-trunk point clouds as tree
trunks. To address the issue of precision loss in the conversion from three-dimensional to
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two-dimensional data, the use of cylindrical fitting methods proves to be more effective [32].
In terms of canopy parameter extraction, canopy volume is one of the most difficult tree
parameters to obtain, according to Dai M. et al. [33]. Early approaches approximated
tree shapes with simple geometries and used empirical formulas [34]. However, selecting
an appropriate shape is somewhat subjective and usually applies to common urban tree
species [35]. However, in reality, tree crown shapes are generally irregular [36], so this is
a rough metric. Subsequently, the convex packet algorithm, voxel simulation, and alpha-
shape triangular mesh construction were proposed. As early as 1995, Cluzeau et al. [37]
explored the application of the 3D convex packet algorithm to the computational derivation
of crown volume. Since the convex packet method is considered simple and general,
numerous research studies have employed it to generate crown parameters by simulating
crown volume [38]. But this method produces a larger error for trees with large cavity
volumes [39]. In 2005, Phattaralerphong and Sinoquet [40] proposed voxelization for crown
volume computation, but this method’s results are highly dependent on voxel size and can
generate numerous empty voxels for complex shapes [41]. In 2008, Zhu et al. [42] proposed
the application of the alpha-shape algorithm to reconstruct the shape of scanned crowns
and achieved better reconstruction results. The method was subsequently applied to crown
volume estimation [43]. The alpha-shape algorithm determines the boundary based on
the alpha value, and as alpha increases towards infinity, the alpha shape approaches a
convex hull at a given point (the convex hull section). As alpha decreases, the shape shrinks
and gradually forms a cavity. Although the boundary shape is directly affected by the
parameters, as in the voxel method, the alpha parameter in the alpha-shape algorithm
provides the ability to adjust the fineness of the shape, allowing the user to employ trade-
offs between capturing details and removing noise, as needed.

In 2019, Shenglan Du et al. [11] proposed an automatic, detailed, and accurate tree
modeling method based on laser scanning. The AdTree method showed strong robustness
in modeling trees of different types and sizes, and the overall fitting error was less than
10 cm. Although the AdTree method significantly advanced the field of tree modeling, there
are still some limitations in its modeling approach, especially when it cannot be quantified.
This study aims to address these limitations by extending the functionality of the AdTree
method as outlined by Shenglan Du et al. [11]. Specifically, we have introduced additional
algorithms, including branch-trunk cylindrical fitting, Welzl’s minimum outer circle, and
crown alpha-shape triangular mesh construction. These algorithms enable us to extract key
parameters such as tree height (TH), crown base height (CBH), diameter at breast height
(DBH), crown width (CW), and crown volume (CV) with greater precision. Our method
aims to assess the accuracy and feasibility of models with parameter quantification and
the three-dimensional reconstruction capabilities in specific forestry research scenarios.
To validate the effectiveness of our approach, we constructed a dedicated dataset and
conducted field measurements on 82 trees within the sample area. By comparing and
analyzing these field measurements, we confirmed the feasibility and validity of our
method, achieving the specific objectives of this study.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, the study area is an urban forestry demonstration base of
Northeast Forestry University, which is located at the junction of the Nangang and Xiang-
fang districts in Harbin City, Heilongjiang Province, China, adjacent to Majiagou, which
is an important forestry research and practice base in Northeast China. The geographic
coordinates of this experimental base are 45◦43′10′′ N, 126◦37′15′′ E, with an elevation of
136–148 m and a total area of about 43.95 ha, as indicated by the red line in Figure 1. It has a
typical temperate, continental monsoon climate. The average annual temperature is 3.5 ◦C,
and the average annual precipitation is about 570 mm. The terrain of the study area is flat,
and the soil type is zonal black calcareous soil with good moisture conditions. The tree
species of this study is the camphor pine, which is an evergreen coniferous tree commonly
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found in Asia and widely planted in streets and parks in Northern China, covering a total
area of approximately 0.56 ha, as indicated by the blue line in Figure 1.
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Figure 1. Overview map of the study area.

2.2. ALS Data
2.2.1. ALS Data Acquisition Program

The data acquisition equipment was a DJI UAV Warp M300 RTK equipped with a DJI
Zenmuse L1 LiDAR device (SZ DJI Technology Co., Ltd., Shenzhen, China). The scanning
was conducted on 26 October 2022, and took about 30 min. One 80 m × 75 m study area was
laid out within the flight coverage of the UAV, with distinct markers for the area boundaries,
and all trees were numbered sequentially. A total of 148 camphor pines were planted in
the collection area in the evergreen foliage state. The altitude of the flight path was set to
40 m, and the flight speed was 3 m/s. In order to maximize the efficiency of data collection,
the “S-shaped” route was adopted, and the repeated scanning mode was used to ensure
the completeness of data collection. Regarding the flight parameters, the heading overlap
rate was 70%, the side overlap rate was 65%, the sampling rate was 160 kHz, and the triple
echo type was adopted. Based on the above scheme, we obtained the raw data, including
laser, RTK, and camera calibration data. We successfully converted the LiDAR data into
standard .LAS or .PLY format files by using the DJI Terra_4.0.1 software for processing.

2.2.2. ALS Data Preprocessing

The data preprocessing steps mainly include denoising, ground filtering, and individ-
ual tree segmentation. In the denoising and ground filtering stages, we mainly utilized
the open-source software CloudCompare_2.13.alpha for processing, the effect of which is
shown in Figure 2a–c. During the scanning process, the point cloud data may be affected by
noise due to the presence of external disturbances such as light, haze, equipment vibration,
and diffuse reflection on the object’s surface. In order to deal with this noise, the statistical
filtering algorithm was chosen in this study for the denoising operation. Specifically, we set
the number of proximity points parameter to 50 and the standard deviation multiplier to
1.0. After the filtering process, the total number of points in the dataset was reduced from
the initial 8,058,806 to 7,239,092, indicating that the filtering algorithm effectively removes
the noise and retains the main data features. The result of this denoising operation shows a
better effect and a clearer and more reliable database for the subsequent processing and
analysis of point cloud mono-wood segmentation data. The initial point cloud data col-
lected by ALS contain bare surface point clouds. Accordingly, in order to filter the surface
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information and separate ground features, the CSF (Cloth Simulation Filter) fabric filtering
algorithm [44] is utilized to separate the ground points. Based on the comprehensive con-
sideration of the features of the ground features and the filtering effect, in CloudCompare,
the fabric grid size was set to 0.5, the maximum number of iterations was set to 500, and the
threshold was set to 0.6. Figure 2c shows the effect after the ground features were separated.
The random walker segmentation algorithm proposed by Shendryk et al. was used for
mono-wood segmentation in this study [45]. This was achieved in the Linux environment
in combination with the PCL library and C++. Unlike most of the top-down, point cloud,
single-tree depiction algorithms, this method is a lightweight, bottom-up, individual tree
segmentation method from trunk to crown, which also has high segmentation accuracy for
trees with complex shapes [24]. A total of 148 camphor pine trees were processed in the
experiment, and the final segmentation results are shown in Figure 2d. We screened the
segmented individual tree point clouds one by one, manually deleted the tree point cloud
data with high incompleteness and overlap (refer to Figure 3), and selected 82 samples
with more complete data after segmentation as the experimental samples.
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2.3. Field Measurements in the Field

Our field data collection was conducted on 27 October 2022, involving three par-
ticipants over a total duration of three days. The field measurement results are shown
in Table 1. During data collection, we laid out a sample plot of 80 m × 75 m within
the UAV flight coverage. The four corners of the sample plot were labeled as points A,
B, C, and D, and obvious markers were set to indicate the boundaries so as to facilitate
the accurate positioning of the ALS data collection and to ensure the consistency and
accuracy of the measurement range. All trees within the sample plot were numbered
sequentially and manual measurements were taken to record RTK positioning, tree height,
crown base height, diameter at breast height, and crown width according to the following
measurement methods:

• Tree height (TH) is the distance from the rootstock of the tree at ground level to the
highest point of the canopy, usually measured by triangulation using a Blume–Leiss
altimeter (Nanjing Xiangruide Electrical Technology Co., Ltd., Nanjing, China). When
an altimeter is used to measure the height of an unknown point, the sight hole forms
a straight line with the apex of the tree. The angle between the straight line and the
horizontal line is θ. The horizontal distance from the person to the tree L and the
height of the person h are known, and the height of the tree can be obtained from the
tangent function as H = L × tanθ + h.

• Crown base height (CBH) refers to the height of the tree ground at the rootstock to the
bottom of the crown. The measurement method refers to the triangulation method of
tree height in which the Blume–Leiss altimeter sighting hole is aimed at the bottom of
the crown.

• Diameter at breast height (DBH) refers to the cross-sectional diameter of the tree trunk
at breast height. This value can be obtained by measuring the circumference of the
trunk at breast height with a tape measure (C), then DBH = C/π.

• Crown width (CW) usually refers to the average value of the crown width in the north–
south direction and the width in the east–west direction. Given that the horizontal
projection distance in the north–south direction is NS, and the horizontal projection
distance in the east–west direction is EW, the crown width CW = (EW + NS)/2.

Table 1. Field measurement results.

Average Value Maximum Value Minimum Value

TH (m) 17.95 20.73 13.82
CBH (m) 7.02 13.89 3.35

DBH (cm) 30.8 47.1 14.4
CW (m) 5.32 8.87 3.10

2.4. AdTree-Based 3D Model Reconstruction of Trees

For tree model reconstruction, we adopted the AdTree method proposed by Shenglan
Du et al. [11]. In the reconstruction process, AdTree is used to construct the initial tree
skeleton based on the intrinsic spatial distribution of the input points. On the one hand,
the Minimum Spanning Tree (MST) algorithm was utilized to efficiently extract the initial
skeleton of the tree from the input point cloud. On the other hand, specific skeleton
optimization strategies were developed to maintain the natural and realistic topology of
the tree branches.

The AdTree method is remarkably adaptive and robust in handling the 3D recon-
struction of diverse tree species and trees of different sizes. The method can be used to
effectively reconstruct highly accurate tree models from point cloud data with a clear
branching structure. AdTree can more realistically reproduce the details of tree trunks and
branches compared with other open-source tree modeling techniques such as PypeTree [46],
TreeQSM [25], and SimpleTree [47]. This method can also control the error between the
input point cloud and the final generated model within 10 cm, which provides a significant
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advantage in reconstructing complex structural trees in nature. Figure 4 illustrates the
complete process of reconstructing a 3D model of a tree based on ALS data, in which
Figure 4a represents the initial input point cloud. First, an initial map was constructed by
applying a 3D Delaunay triangulation to the input point cloud. An important feature of
the Delaunay triangulation is to maximize the minimum diameter of the possible voids
in the space. This means that the triangles generated via Delaunay triangulation have the
largest possible internal tangent circles, ensuring that there are no large voids, making the
topological relationships more accurate. Moreover, the outer circle of each triangle does
not contain other points, which guarantees the integrity of the data. At the same time,
Delaunay triangulation helps to complete missing regions or incomplete branches. The
obtained Delaunay triangular profile is shown in Figure 4b. After obtaining the triangular
profile graph, all the edges were weighted according to the length of the edges in the
Euclidean space. The shortest paths from all points to the source point (the start of the
trunk) were found from the weighted directed graph based on Dijkstra’s shortest path
algorithm, which serves as the initial skeleton of the tree. Considering that the initial
skeleton contains a large number of redundant vertices and edges, the tree skeleton needs
to be further simplified. In this work, the simplification was carried out in two main steps:
First, weight values were assigned to vertices and edges to remove redundant noise points.
Then, the Douglas–Peucker [48] line segment simplification method was employed, and
branching simplification was carried out for singleton and multinode nodes by iteratively
checking the proximity between neighboring vertices so as to rebuild the lightweight tree
skeleton as in Figure 4c. Based on the simplified tree skeleton, the branches were fitted
using the cylindrical fitting method, i.e., a 3D tree stereo geometry model with a higher
degree of 3D realism was obtained. Compared with the complex curve fitting method,
cylindrical fitting is computationally relatively easy and fast. Figure 4d shows the final
reconstructed 3D tree skeleton model after cylindrical fitting. Figure 4e demonstrates the
degree of alignment of the fitting effect with the original point cloud, in which it can be
observed that the point cloud of the original branch is attached to the surface of the fitted
branch, while the dense leaf nodes are not involved in the 3D reconstruction process of
the branch.
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reconstructed 3D tree skeleton model. (e) The degree of alignment with the original point cloud after
fitting.
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2.5. Model Refinement and Stand Factor Extraction

Currently, the AdTree technique is limited to reconstructing the geometric structure of
trees based on scanned point cloud data and has not yet been able to accurately measure the
parameters of tree trunks, crowns, and other components. Therefore, the model constructed
using this method fails to quantitively assess standing wood factors, and its structural
model inherently lacks the ability of quantitative analysis. Based on this, the AdTree
algorithm was expanded in this study, and a complete set of stumpage factor estimation
methods is proposed to improve the quantitative analysis of stumpage factors. The overall
flow chart of the experiment is shown in Figure 5.
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1. For tree height (TH) and crown base height (CBH), the maximum and minimum
distances from the ground of all crown points on the z-axis of the three-dimensional
Cartesian coordinate system were calculated by using connectivity analysis of the
detection results;

2. For the value extraction of the diameter at breast height (DBH) feature, a 3D cylinder was fit-
ted to the torso points at the diameter at breast height using the Levenberg–Marquardt-based
cylinder fitting algorithm proposed for AdTree;

3. For crown width (CW), a top-down projection was used for the crown points, and the
maximum diameter of the crown was retrieved stepwise as the crown diameter using
the Welzl algorithm [49];

4. For trunk inclination, the angle between the z-axis and the axis of the fitted cylinder
was calculated, which is the tree trunk inclination;

5. For crown volume (CV) characterization, in the methodology of this study, the crown
was reconstructed as a watertight enclosing mesh using the crown-point and alpha-
shape algorithms, and the estimation of the crown volume was controlled by adjusting
the value of the parameter alpha.
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This study of model parameter quantification significantly improves the utility of the
AdTree reconstruction algorithm, providing not only an accurate reconstruction of tree
geometry and topology but also a quantitative analysis of tree parameters within the field
of tree modeling and analysis.

2.5.1. Crown Segmentation Method Based on MST Skeleton Map

In the quantitative analysis of the tree, the parameters such as diameter at breast height
(DBH), crown base height (CBH), crown width (CW), and crown volume (CV) are based
on the information of the main trunk and crown. Therefore, to facilitate the extraction of
specific parameters for the crown and trunk, we need to separate the crown and trunk
to ensure complete tree point cloud data. Specifically, the method utilizes the AdTree
reconstructed tree skeleton map MST to establish the ground contact points of the tree in a
3D spatial Cartesian coordinate system based on the assumption of the minimum z-value
attribute. Subsequently, the main axis of the trunk of the tree skeleton map is determined
using a graph traversal algorithm by retrieving a path starting from this contact point
up the trunk to the bifurcation of the crown and the trunk. In this process, the spatial
coordinates of the nodes in the skeleton graph are extracted to form a point set describing
the main axis of the trunk. Next, the maximum z-value in the path point set is used as a
divider and points smaller than this maximum z-value are filtered out from the complete
tree point cloud data as potential trunk point clouds. Finally, a spatial search is performed
on these points based on the high-dimensional spatial nearest neighbor search KDTree [50]
method to retrieve points neighboring the main axis of the trunk with a certain radius,
and these searched points are the original trunk point cloud, which we label as the trunk.
Overall, the automatic separation of the trunk from the crown is successfully realized.

2.5.2. Calculating TH and CBH Based on Spatial Connectivity

In a single-tree point cloud, the original point cloud data of the tree need to be
downsampled first to reduce the amount of computation and increase the processing
rate. The distance between the nearest point clouds in the point cloud downsampling
computation must be lower than a predefined threshold to ensure accuracy and to satisfy
the requirement of 3D spatial connectivity. Tree height (TH) can be estimated by extracting
the maximum and minimum points of the z-axis in 3D Cartesian coordinates from the
downsampled individual tree point cloud and calculating the difference between the two
z-axes to estimate the tree height (TH). The estimation method of the crown base height
(CBH) is the same, and the initial data are the main trunk portion of the tree after the crown
is separated from the main trunk. Specifically, the point cloud of the tree trunk after the
separation of the crown and the trunk is downsampled, and the difference between the
maximum and minimum z-axis points of the downsampled data is extracted to estimate
the size of the crown base height (CBH).

2.5.3. DBH Based on LM Cylindrical Fitting Algorithm

Based on the main stem point cloud data, the cylindrical fitting method was used to
extract the diameter at breast height (DBH), as this method can effectively avoid the problem
of loss of accuracy caused by the fact that the axial and radial directions of the horizontal
layer of the main stem point cloud are not calculated together because of the integrated
consideration of multidimensional information [26]. In the process of cylindrical fitting,
the acquisition of realistic LiDAR data is often accompanied by noise, which is difficult to
remove, thus affecting the cylindrical fitting. In order to further improve the accuracy of
the extraction results, in this study, we referred to the iterative weighted nonlinear least
squares method for AdTree [43], which effectively reduces the impact of noise on the fitting
results and improves the stability and accuracy of the fitting. We intercepted the main
stem point cloud 1.3 m above and below the ground by expanding the range of 5 cm as the
boundary. Cylindrical fitting was performed on the intercepted point cloud segments.
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The cylindrical fitting process in three-dimensional space requires the parameters and
objective function of the solution, as shown in Figure 6.

• Input data: position p of the input point.
• Parameters to be solved: axial vector a of the cylinder, position pa of the end point on

the axis, and radius r of the cylinder.
• Objective function: the sum of the squares of the distances d from the point to the face

of the branching column, with the following formula:

∑n
i=1 dist(pi) (1)

where dist(pi) denotes the distance from pi to the cylinder surface.
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In order to solve the effect of noise in the process of cylinder fitting, the nonlinear
least squares method was adopted based on the Levenberg–Marquardt algorithm [51],
which is a commonly used data fitting method that combines the high algorithmic stability
of the gradient descent method and the fast convergence of the Gauss–Newton method
with their respective advantages. This method can also effectively deal with nonlinear
parameter estimation problems. The core idea is to iteratively introduce weighting factors
and continuously give different weights to the observations to minimize the residuals
between the fitted model and the observed data. The specific idea of weight assignment is
based on the distance between the point and the cylinder, giving more weight to points
near the cylinder and less weight to points farther away from the cylinder. The weight wi
for a particular point pi is defined as follows:

wi = 1 − dist(pi)

distmax
(2)

where distmax is the maximum distance from all points to the cylinder and dist(pi) denotes
the distance from the current i-th point to the cylinder obtained via initial computation;
in this way, we normalized all point weights to the range [0, 1]. The objective function is
accordingly expressed as follows:

∑n
i=1 wi ∗ dist(pi) (3)

Based on the above objective function, we can fit the segmented cylinder near the
breast diameter and solve for the corresponding breast diameter (DBH). Figure 7 shows the
intercepted cylinder near the breast diameter with the Levenberg–Marquardt nonlinear
least-squares-based fitting process.
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Figure 7. Estimation of DBH based on Levenberg–Marquardt cylindrical fitting algorithm. (a) Extract
the main stem point cloud within a vertical range around 1.3 m above the ground. (b) Side view of
the extracted point cloud. (c) Top view of the extracted point cloud. The colors of the point clouds in
subfigure (a) are the “Scalar field” pattern in CloudCompare.

2.5.4. Trunk Lean Angle

Estimating the trunk lean angle is an important step in tree modeling and analysis
which helps us to understand tree growth characteristics, structural stability, and evaluation
of fall risk, among other aspects. Many of the trees collected in the ALS data have inclined
trunks, which are usually not orthogonal to the XY plane.

In studies where trunk angle estimation is performed, it is often necessary to fit three-
dimensional cylinders to the trunks in order to more accurately analyze their structural
characteristics. In this process, the trunk is decomposed into a series of cylinders, each
representing a part of the trunk. By analyzing the position vectors of these decomposed
cylinders, important information about the overall shape and inclination of the trunk can
be obtained to quantify the spatial orientation of the trunk. Specifically, first, the three-
dimensional Cartesian x, y, and z coordinate position vectors of the bottom-most cylinder
and the top-most cylinder are determined. These coordinates represent the start- and end-
point x, y, and z position vectors of the tree trunk, respectively. By calculating the difference
of these two vectors, a new difference vector is obtained, which visually represents the
straight-line distance and direction from the bottom to the top of the trunk. Further, the tilt
angle of the trunk is obtained by calculating the angle of this resultant vector with respect
to the vertical x–y plane. This angle is the degree of deviation of the trunk with respect to
the z-axis and is an important parameter for assessing tree growth and structural stability.

2.5.5. Crown Width (CW) Based on Welzl Algorithm

The Welzl [49] algorithm was used in this study to estimate the parameter of crown
width. This method demonstrates efficiency and accuracy in calculating crown width values
for tree point clouds. Firstly, to process 3D point cloud data, we carried out preprocessing
to project the crown point cloud onto a 2D plane to simplify the calculation process.
During the projection process, it is crucial to choose the appropriate projection plane and
method to ensure that the main features of the data are preserved while minimizing the
loss of information. Such preprocessing work lays the foundation for subsequent crown
width estimation.

After obtaining the 2D point cloud data, we introduced the Welzl [49] algorithm for
processing in order to find the smallest enclosing circle that can completely enclose all the
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points. The Welzl [49] algorithm, also known as the smallest enclosing disks algorithm, is
an incremental method for calculating the crown width of a vertex given n vertices Sn = {P0,
P1, ..., Pn−1} of the smallest enclosing disks. The algorithm is based on the principle that if
the point set Si = {P0, P1, ..., Pi−1} of the minimal enclosing sphere is Di, then Di needs to
contain another point Pi located outside the sphere Di, and then the new minimal bounding
sphere Di + 1 must contain the point Pi on its sphere. A two-dimensional schematic is
shown in Figure 8.
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Figure 8. The 2D schematic of the Welzl algorithm.

According to this principle, three points are randomly selected initially to construct
a circle, and the center and radius of the circle are dynamically adjusted as points are
added one by one until the smallest circle covering all points is found. The top view of the
camphor pine canopy is shown in Figure 9. In this process, each time a new point is added,
it is checked whether it is within the current circle. If the point is within the current circle, it
is not processed; if not, the current circle needs to be extended. The method of extending the
circle relies on the processed points and the newly added points to determine the optimal
location and size of the new circle by calculating the geometric relationship between them.
Eventually, a minimum outer circle containing all the points of the point set is determined
using Welzl’s algorithm. The diameter of this outer circle is the estimated crown width
(CW). To further improve the efficiency of the algorithm and avoid falling into local optimal
solutions, we usually randomize the point set before processing. This randomization helps
the algorithm to search for the optimal solution globally, rather than relying solely on the
order of particular points. Through this process, we are able to estimate the crown width
parameter more accurately, which provides reliable data support for subsequent research
and applications.
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2.5.6. Alpha-Shape-Based Canopy Volume (CV)

We explored the synthesis and quantification of canopy shapes based on the alpha-
shape algorithm for the calculation of the canopy volume (CV) of a canopy point cloud.
The alpha-shape algorithm is a geometric reconstruction method based on point cloud
data which recovers the geometry of the original dataset by generating a convex polygonal
topology and thus restores the geometry of the original dataset. The algorithm adapts
to the localized features of the point cloud, generating models that capture voids and
concave parts, a property that is particularly important for natural shapes such as tree
canopies, which may contain multiple layers and voids. The algorithm was originally
proposed in two dimensions and was subsequently extended to three dimensions by
Herrero-Huerta et al. [41]. The basic principle is to control the shape of the generated
polygons by adjusting the parameter alpha to ensure that the shape is neither overly
smooth nor distorted. Figure 10 shows the level of detail in the final canopy corresponding
to different alpha values.
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The steps of the alpha-shape algorithm include the following:

1. Constructing the Delaunay triangles: the given point cloud data are first subjected to
Delaunay triangulation to generate a set of non-overlapping triangular meshes (TINs)
covering all data points.

2. Calculating alpha complexes: A crucial part of the alpha-shape algorithm is determin-
ing which triangle meshes (TINs) should be included in the alpha complexes. The
implementation of this step usually depends on the value of the parameter alpha,
which is used to filter the TINs and combine the eligible TINs into alpha complexes.
In general, this process is based on the judgment of the radius of the outer circle; if
the radius of the outer sphere is less than or equal to alpha, then the corresponding
triangles are combined into a set and are known as alpha complexes.

3. Extracting the alpha shape: Edges and vertices are extracted from the alpha complexes,
and triangles that are not contained inside any of the external circles are eliminated to
form the final alpha shape, which represents the topology of the point cloud data.
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4. By adjusting the value of the parameter alpha, geometric reconstruction results with
different accuracies and shapes can be obtained. The canopy volume (CV) can be
directly estimated based on the final approximated canopy shape.

In the alpha-shape algorithm, the shape of alpha for a finite set of points is a poly-
hedron uniquely determined using a given set of points and the parameter number
alpha [0, ∞]. In the extreme case (alpha = ∞) the shape is close to the convex packet
of the given points, and the crown volume (CV) calculated based on this shape may be
higher than the true value. As alpha approaches zero, the shape shrinks and gradually
forms a cavity, and this overly refined crown shape may result in a lower estimated crown
volume than the true value. Therefore, the choice of the alpha value is crucial for the shape
of the generated convex polygon in ensuring the accuracy and reliability of the results.

3. Results

In this study, we validated and analyzed the accuracy of the model-extracted parame-
ters such as tree height (TH), crown base height (CBH), diameter at breast height (DBH),
crown width (CW), and crown volume (CV) in comparison with the manually measured
data. The accuracy of the model was evaluated using the metrics bias, RMSE, R2, rBias and
rRMSE. The corresponding formulas are as follows:

Bias =
1
n∑n

i=1

(
ypi − yi

)
(4)

RMSE =

√
∑n

i=1
(
ypi − yi

)2

n
(5)

R2 = 1 −
∑n

i=1
(
yi − ypi

)2

∑n
i=1(yi − yi)

2 (6)

rBias =
Bias

yi
× 100% (7)

rRMSE =
RMSE

yi
× 100% (8)

In the above equation, i is the current number of samples, n is the total number of
samples, yi is the true value of each sample, ypi is the predicted value of each sample, and
yi is the average of the true value of each sample.

We also compared the parameter extraction method in this study with two methods,
TreeQSM [25] and AdQSM [26]. The results are shown in Table 2.

Table 2. TH, CBH, DBH, and CW evaluation indexes of the method in this study.

Model Evaluation Metrics TH (M) CBH (M) DBH (CM) CW (M)

TreeQSM

Bias −0.56 −0.58 6.24 0.24
RMSE 0.81 1.57 10.65 0.95

R2 0.73 0.55 0.28 0.50
rBias −3.1% −8.4% 20.3% 4.5%

rRMSE 4.5% 22.7% 34.6% 17.9%

AdQSM

Bias −0.30 0.35 9.39 0.60
RMSE 0.62 1.51 15.44 1.04

R2 0.78 0.64 0.09 0.60
rBias −1.7% 5.1% 30.5% 11.3%

rRMSE 3.5% 21.8% 50.1% 19.5%
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Table 2. Cont.

Model Evaluation Metrics TH (M) CBH (M) DBH (CM) CW (M)

Our study

Bias −0.32 −0.21 0.49 0.03
RMSE 0.55 1.02 4.10 0.61

R2 0.85 0.88 0.63 0.74
rBias −1.8% −3.0% 1.6% 0.6%

rRMSE 3.1% 14.7% 13.3% 11.5%

3.1. Tree Height and Crown Base Height Results

In the comparative analysis of the model-extracted values with the measured values,
it is found that the reference values of field measurements range from 13.8 m to 20.7 m for
TH and from 3.4 m to 13.9 m for CBH, whereas in the case of the extracted values based
on this paper, the range of the values of TH is from 13.5 m to 19.3 m. The extracted values
of CBH are from 2.2 m to 13.4 m. Overall, there is a slight underestimation of the TH and
CBH values extracted based on this study compared to the measured values. Specifically,
based on the comparison, the model-extracted TH values show a certain degree of negative
deviation relative to the measured values. This is confirmed by evaluating the Bias and
RMSE of TH. In particular, the Bias value of TH was −0.32 m and the RMSE value was
0.55 m. A total of 92% of the trees had a TH deviation of less than 1 m in absolute value.
The Bias value of CBH was −0.21 m and the RMSE value was 1.02 m. Overall, the model-
extracted tree heights (TH) and crown base heights (CBH) were basically in agreement
with the measured values, which showed a high degree of accuracy. Meanwhile, we
compared the two methods of TreeQSM [25] and AdQSM [26]. In terms of TH estimation,
the slopes of the corresponding trendline fitting equations of the three methods are all
around the number 1, and the corresponding R2 values of this paper and the three methods
of TreeQSM [25] and AdQSM [26] are 0.85, 0.73, and 0.77, respectively. In terms of CBH,
the R2 values of the scatterplot trendlines of the three methods of this paper and the three
methods of TreeQSM [25] and AdQSM [26] were 0.88, 0.55, and 0.64, respectively. The
corresponding experimental scatterplots and trend lines for the specific tree height (TH)
and crown base height (CBH) are shown in Figure 11.
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3.2. Diameter at Breast Height Results

In the collected data, the reference values of the DBH ranged from 14.4 cm to 47.1 cm,
and the extracted values based on the method of this study ranged from 19.2 cm to 45.4 cm.
The comparative analysis of the DBH measurements showed that the bias of the DBH was
0.49 cm, and the RMSE was 4.1 cm. A total of 89% of the trees in the reference range of
82 camphor pines had a deviation of the DBH of less than 5 cm in absolute terms. The
extracted values of breast diameter were evenly distributed on both sides of the reference
range. In contrast, the overall breast diameter values estimated based on the TreeQSM [25]
and AdQSM [26] methods have a certain degree of positive deviation, and more values are
larger than the actual values. The corresponding specific scatter plots and fitted straight
lines are shown in Figure 12.
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3.3. Results of Crown Width

The CW of the extracted values based on Welzl’s algorithm ranged from 3.22 m to
9.20 m, and the reference values of the field measurements ranged from 3.1 m to 8.87 m.
The bias value of the CW was 0.03 m, and the RMSE value was 0.61 m. Nearly 83% of the
trees in the experiments had absolute values of CW bias of 0.6 m or less. The scatter plot
trend line of the CW had a trend line of R2 of 0.74, and a slope of 0.9172. Taken together,
the high agreement between the algorithmic estimates of CW and the actual measurements
demonstrates the effectiveness and stability of this study in capturing CW data.
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3.4. Crown Volume Results

As can be seen from Figure 10, the alpha value controls the detail level of the final
canopy, and its size selection is especially critical. The selection of an excessive or insuffi-
cient alpha value will lead to a canopy value that is too large or small. Take the camphor
pine crown in Figure 10 as an example; when alpha = 3, vertices = 14,945, and faces = 690,
the crown envelope effect is similar to that of the “convex packet algorithm”. The overall
shape of the calculated crown volume (CV) is much higher than the real value. When
alpha = 0.3, the value of vertices remains unchanged, and the number of faces grows to
8802, which is the closest to the original point cloud and has the best estimation effect.
When alpha = 0.2, the number of faces reaches 152,734, indicating over-refinement, and the
estimation effect is on the small side. Based on this, we set the overall alpha value to 0.3.

Due to the difficulty of measuring the volume of the tree crown, the most accurate
estimation needs to be made by felling the sample trees, and this method cannot protect
the tree vegetation in the sampling site. Therefore, the crown volume (CV) extracted based
on the TreeQSM [25] algorithm was compared and analyzed with the crown volume (CV)
values extracted using the alpha-shape method in this study. The specific data results are
shown in Figure 13. The volume extracted based on the alpha algorithm (alpha-shape)
in TreeQSM [25] ranges from 2.5 to 126.3 m3, and the results of these data are closer to
the overall results in this study when alpha takes the value of 0.5. In contrast, the crown
volume extracted based on the convex hull algorithm in TreeQSM [25] ranges from 22.5 m3

to 272.5 m3, showing overall high crown volume values.
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4. Discussion
4.1. Exploration of Comparisons between Different Models

The aim of this study was to add the quantitative analysis capability of tree attribute
estimation to the existing AdTree modeling approach. The quantitative structural modeling
of trees based on LiDAR point clouds is still relatively scarce in existing studies. We
compared the method of this study with the TreeQSM [25] model and the AdQSM [26]
model in terms of the analysis of tree height (TH), crown base height (CBH), diameter at
breast height (DBH), crown width (CW), and other parameters for an in-depth analysis of
tree attribute estimation.

First, the analysis for the tree height (TH) parameter shows that the slope of the trend
line for all three models was close to 1. In the TreeQSM [25] model, we observed that
its linear fitting equation was y = 0.9333x + 1.72, with a correlation coefficient (R2) of
0.73. In the AdQSM [26] model, the slope of the trend line for the tree height was 0.9115,
with a correlation coefficient (R2) of 0.78. These results indicate that both the method
proposed in this study and the existing models showed high accuracy and stability in tree
height estimation.

Regarding the crown base height (CBH) parameter, the bias and RMSE values of
this study and the TreeQSM [25] model were −0.21 m and 1.02 m, and −0.58 m and
1.57 m, respectively, while the bias value of the AdQSM [26] model was 0.35 m, and the
RMSE value was 1.51 m. This study’s method demonstrated a higher estimation accuracy,
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especially in terms of reduced effectiveness in terms of bias. With regard to the scatterplot
trendline performance, the overall fitted trendline slope of our study was closer to 1, and
the correlation coefficient (R2) had the largest value, which highlights the superiority of the
present study’s method in CBH estimation.

In terms of the analysis of diameter at breast height (DBH), this study showed signifi-
cant advantages over the TreeQSM [25] and AdQSM [26] models. Specifically, the present
method demonstrated a lower bias value (0.49 cm), a smaller RMSE (4.1 cm), and a higher
correlation coefficient (R2) (0.63). These indicators reflect the accuracy and reliability of the
present method in estimating chest diameter. The other two models, on the other hand, had
some degree of positive bias. Specifically, the bias values of TreeQSM [25] and AdQSM [26]
were 6.24 cm and 9.39 cm, respectively, and in general, the estimates of the chest diameter
using the TreeQSM [25] and AdQSM [26] models were larger than the true values.

In the evaluation index of crown width (CW), the method of this study achieved a
greater accuracy advantage, with a trend line slope of 0.9172, and the extracted values of
crown width were uniformly distributed on both sides of the reference value. In contrast,
the AdQSM [26] and TreeQSM [25] models are less accurate.

In summary, the AdTree modeling technique was thoroughly investigated and opti-
mized in this study through quantitative analysis methods. Significant progress was made,
especially in the accuracy and stability of tree attribute estimation. These findings not
only enrich the research content in related fields but also provide valuable references and
methods for similar work in the future.

4.2. Possible Reasons for the Underestimation of TH and CBH

In the experimental sample of 82 camphor pines, according to the analysis of the
obtained data, the bias of the tree height was −0.32 m, and the linear equation of the
scatterplot fit was y = 0.9641x + 0.31, with a correlation coefficient of R2 = 0.85. The bias
of the crown base height was −0.21 m, and the equation of the scatterplot trend line was
y = 0.9475x + 0.28, with a correlation coefficient of R2 = 0.88. The bias of the tree height was
generally similar to the bias of the crown base height. Overall, both the tree height and
crown base height values extracted with the model showed a negative deviation relative
to the measured values. It was analytically determined that this phenomenon may have
originated from the weed layer covering the surface of the study area with a thickness of
about 20–35 cm. When employing the CSF-based filtering algorithm, these weeds were
misclassified as surface features with a corresponding thickness. As a result, a certain height
of the underlying tree trunks may be incorrectly filtered out during the feature separation
process, leading to an underestimation of the tree height and crown base height. To address
this problem, we need to fully consider and correctly process the height information of the
weed layer in the data preprocessing stage to improve the model’s accurate measurement
of tree dimensions and the accuracy of feature separation.

4.3. Impact of Point Cloud Quality on Parameter Estimation Results

It is important to note that the point cloud quality is directly related to the accuracy
and reliability of the resulting parameters and single-tree reconstructions. This uncertainty
stems from several factors, including the performance of the laser scanning equipment,
environmental conditions, and post-data processing methods. In addition, noise and
errors during data processing may further affect the point cloud quality and hence the
accuracy of parameter estimation. The influence of point cloud quality on the parameter
estimation results is mainly reflected in two aspects: firstly, the influence on the estimation
of branch parameters such as breast diameter and height, and secondly, the influence on the
modeling effect. The point cloud data based on airborne radar tend to have high-quality
canopy information; however, in the highly enclosed camphor pine plantation forest in this
experiment, part of the laser could not penetrate the canopy to return branch information.
As a result, the density of the collected point clouds in the branch part of the tree was low,
and a large number of point clouds of the trunks were missing. From the experimental data,
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it can be observed that the bias of the DBH is 0.49 cm, and the RMSE is 4.1 cm. Compared
with the canopy parameters, the error is increased to a certain degree. In terms of modeling
effect, the single-wood data with varying integrity were compared for the 3D reconstruction
experiments, and after comparison, the difference in point cloud quality directly affected
the accuracy and reliability of the modeling. As shown in Figure 14, the reconstruction of
point clouds with low completeness resulted in lower skeleton realism and completeness.
The study by Shenglan Du et al. [11] highlights the importance of point cloud quality on
the modeling results.
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4.4. Limitations of Large-Scale Industry in Terms of Productivity

In large-scale industrial production, enhancing productivity is a critical factor for
the widespread application of technological solutions. However, the UAV flight pa-
rameters employed in this study—specifically, a flight height of 40 m and a speed of
3 m per second—while appropriate for certain high-precision measurement contexts, sig-
nificantly restrict the industrial applicability of UAV-based point cloud technology for 3D
tree modeling and parameter extraction due to their low productivity. The relatively slow
flight speed results in limited area coverage during each flight and prolonged data acquisi-
tion times, which are inadequate for the rapid acquisition of high-resolution point cloud
data over extensive forested regions. This limitation renders the technology unsuitable for
industrial applications that demand efficient data processing, such as large-scale forest mon-
itoring and resource assessment. Consequently, under the current parameter settings, this
technology cannot be regarded as a viable solution for large-scale commercial applications.

Nonetheless, this technology retains considerable value in specific scenarios. The-
oretically, it can facilitate the establishment of permanent sample plots in remote and
challenging terrains for long-term ecological monitoring. Furthermore, the low flight al-
titude and speed enhance the reliability of high-precision point cloud data acquisition,
particularly in complex landscapes or densely vegetated areas. This data can also be utilized
to validate forestry taxation assessments, thereby ensuring accuracy and reliability. Overall,
while the technology’s applicability for large-scale industrial use is limited, it demonstrates
significant potential in small-scale, precision-focused applications.

5. Conclusions

Our contribution is to extend the AdTree algorithm by proposing a complete set
of stumpage factor estimation methods, which increases the capability of quantitative
analysis to obtain stumpage factors by modeling the AdTree method alone. Comprehensive
analysis of the above results can lead to the conclusion that the model proposed in this
study performs well in the estimation of crown volume (CV), diameter at breast height
(DBH), crown width (CW), tree height (TH), and crown base height (CBH), with a certain
degree of accuracy and reliability. However, the existence of the height underestimation
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phenomenon and the impact of point cloud quality on the accuracy of parameter estimation
in this study still need to be noted in practical applications, and it may be necessary to
improve the accuracy of the model by further optimizing the data preprocessing steps or
increasing the completeness of data collection. Overall, the model in this study has some
application prospects in tree structure parameter extraction, especially in the management
and monitoring of trees in urban environments and plantation forests with potential value
and feasibility. Future research could focus on further optimizing the applicability of the
algorithm to different types of trees to improve the prediction accuracy and generalization
ability of the model. In addition, enhanced comparative validation with field measurements
will help to ensure the reliability and applicability of the model in different scenarios and
further promote the development of related fields.
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