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Abstract: Enhancement is a crucial step in the field of image processing, as it significantly improves
image analysis and understanding. One of the most commonly used methods for image contrast
enhancement is the incomplete beta function (IBF). However, the key challenge lies in determining the
optimal parameters for the IBF. This paper introduces a multi-strategy improved pelican optimization
algorithm (MIPOA) to address the low-illumination color image enhancement problem. The MIPOA
algorithm utilizes a nonlinear decreasing coefficient to boost the exploration ability and convergence
speed, whereas the Hardy–Weinberg principle compensates for the unsound exploitation mechanism.
Additionally, the diversity variation operation improves the ability of the algorithm to escape local
optimal solutions. The performance of the proposed MIPOA algorithm was evaluated using a
benchmark function and was found to outperform five variant algorithms in extensive comparisons.
To further harness the potential of the MIPOA algorithm, the authors propose a low-light forest
canopy image enhancement method based on the MIPOA algorithm. The MIPOA algorithm searches
for the optimal parameters of the IBF, leading to fast contrast enhancement of the image. The
segmented gamma correction function is designed to enhance the brightness of the low-light forest
canopy images. In determining the optimal parameters of IBF, the MIPOA algorithm demonstrates
superior performance compared to other intelligent algorithms in the feature similarity index (FSIM),
entropy, and contrast improvement index (CII) of 75%, 58.33%, and 75%, respectively. The proposed
MIPOA-based enhancement method achieves a moderate pixel mean and surpasses the conventional
enhancement method with an average gradient of 91.67%. The experimental results indicate that the
MIPOA effectively addresses the limitations of low optimization accuracy in IBF parameters, and
the enhancement method based on the MIPOA provides a more efficacious approach for enhancing
low-light forest canopy images.

Keywords: low-illumination forest canopy images; image enhancement; pelican optimization
algorithm; incomplete beta function; segmented gamma correction function

1. Introduction

Image enhancement is an essential preprocessing step in image-processing tech-
niques [1]. The purpose of enhancement is to improve the quality of the visual perception
of an image by transforming the contrast, brightness, and edge details of the image to
enhance the resolvability and usability of information [2]. This makes subsequent visual
analyses easier, such as image classification, target detection, image segmentation, and deep
learning model training. Therefore, image enhancement techniques are widely used in
many fields such as medical imaging [3,4], ocean engineering [5,6], and aerospace [7].

The main image enhancement methods are based on the histogram method (HE)
and retinex theory. HE is a fast, simple, and compelling image enhancement method [8]
based on transforming the gray-level probability distribution of the original image such
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that the histogram is uniformly distributed to achieve global enhancement [9]. However,
the global enhancement characteristic can cause the over-enhancement of bright areas in
low-illumination color images, noise amplification, and information loss. To overcome
the limitations of HE, Pizer et al. proposed the adaptive histogram homogeneous method
(AHE), which considers local information to enhance an image and highlight details and
textures [10]. However, this also generates significant noise [11]. To suppress the noise
issue of the AHE method, Zuiderveld [12] proposed an adaptive histogram equalization
algorithm with limited contrast (CLAHE). However, this method also suffers from color
distortion and detail loss when processing low-illumination color images. The adaptive
gamma correction method (AGCWD) proposed in Ref. [13] can adaptively adjust gamma
parameter values. However, when processing images with complex content, it is not easy
to obtain a transform function that matches the features of the image, such as color and
texture, by adjusting only the parameters [11]. In addition, to overcome the brightness
offset issue caused by histogram division in recent years, some scholars have proposed
dynamic histograms, histogram cropping, and their extension methods, mainly repre-
sented by brightness-preserving dynamic histogram equalization (BPDHE) [14], brightness-
preserving dynamic histogram equalization (ESIHE) [15], and dynamic multi-histogram
equalization (QDHE) [16]. However, these algorithms are still subject to color distortion
and detail loss when applied to low-illumination color images [17]. The retinex theoretical
method is also a classic traditional enhancement method and has received extensive atten-
tion from scholars in the form of the single-scale retinex enhancement algorithm (SSR) [18],
multi-scale retinex enhancement algorithm (MSR) [19], and retinex enhancement algorithm
with color recovery (MSRCR), which has been applied to a variety of low-illumination
image enhancements [20]. However, the SSR algorithm needs help in balancing color
fidelity and detail preservation, which also limits broad application of the SSR algorithm.
MSR changes the ratio of the R, G, and B channels. Therefore, the enhanced image will
have different degrees of halo and color distortions. MSRCR adds a color recovery factor
function to the MSR. Although the image contrast and brightness were improved to some
extent, halo and color distortions still existed.

IBF is a contrast enhancement method proposed by Tubbs that can completely cover
the typical transform function and is extensively used in low-illumination image enhance-
ment [21]. However, IBF parameter selection is inefficient and must be manually set.
Therefore, it reduces the efficiency and universality of IBF. To overcome the limitations
of IBF, scholars have used intelligent algorithms to determine the optimal parameters of
IBF and realize adaptive image enhancement. Intelligent optimization algorithms such
as the particle swarm optimization algorithm (PSO) [22], sparrow optimization algorithm
(SSA) [23], chimpanzee optimization algorithm (ChOA) [21], and bat optimization algo-
rithm (BA) [24] have been successfully applied in IBF parameter optimization searches.
Some scholars have found that the performance of intelligent algorithms significantly
affects the optimization of IBF parameters, which in turn affects the image enhancement
effect. Therefore, it has become a new direction of research to improve intelligent algo-
rithms to enhance their performance, and thus, the effectiveness of IBF parameter-finding.
Braik improved the mathematical model of the whale optimization algorithm (WOA) and
hybridized it with the chameleon algorithm (CSA) to improve the exploration and ex-
ploitation abilities of the WOA [25].The improved WOA algorithm (IWOA) outperformed
the other eight intelligent algorithms, including the WOA, in determining optimal IBF
parameters. However, mixed-intelligence algorithms inevitably increase the computation
time. Qu et al. classified different PSO particles according to the fitness value of the
population and used different weight transformation strategies to realize the dynamic
update of the population [22]. The convergence performance of the IPSO algorithm is
better than that of the PSO algorithm. However, the poor resistance of the PSO algorithm
to premature maturation has not been overcome. Once the algorithm falls into the locally
optimal solution to determine the optimal parameters, the contrast-enhancement effect of
the image is significantly affected. Shen et al. [26] introduced a self-perturbation strategy
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for the defect that causes the firefly algorithm (FA) to easily fall into local optimization.
Suppose that the number of times a person remains at an optimal point exceeds a threshold.
In this case, the best 20 percent of all particles replaced the worst 20 percent, and the rest
underwent Gaussian mutation. A superior population replacement strategy improves the
population’s convergence speed but reduces the population’s diversity. Gaussian variation
also lacks diversity, has difficulty in controlling the variation in step size, and has problems
with dependence. Therefore, the performance of firefly algorithm growth (FAG) must
be improved.

The successful combination of intelligent algorithms and improved intelligent al-
gorithms with IBF proves the effectiveness of intelligent algorithms in IBF parameter
optimization and the necessity of enhancing their performance. In recent years, scholars
have been enthusiastic about intelligent algorithms, and many intelligent algorithms with
excellent performance have emerged, bringing new vitality to the study of IBF parameter
optimization. In 2022, Trojovský and Dehghani proposed the POA [27]. Since its proposal,
it has received extensive attention from researchers. Numerous scholars have improved the
POA algorithm to enhance its performance, and Table 1 lists five POA-variant algorithms.

Table 1. Five POA improvement algorithms.

No. Method Algorithm Performance Improvement

[28] Introducing the sine–cosine algorithm and linear weights w
in the POA exploratory phase Improving the population’s optimization accuracy

Perturbing the new individuals after the population
iteration is completed Increasing the convergence accuracy of the population

[29] Good point set initialization populations Improving exploration capabilities
Inverse computation of pelican positions using reverse

difference evolutionary algorithm Fast approach to the optimal solution

Introducing an adaptive t-variation perturbation strategy
near the optimal solution

Improving convergence accuracy and avoiding falling into
local optimal solutions

[30]
A new quality perturbation method is introduced.

The principle is to converge to a better solution by detecting
points near the distribution points

Effectively improves the convergence accuracy of the POA
algorithm when dealing with multi-peak functions

[31] Tent chaotic and refractive reverse learning strategies to
initializing pelican populations Increasing the diversity of populations

Nonlinear inertia weighting factors Improving the convergence speed of the algorithm

Leader strategy of the salp swarm algorithm Coordinate algorithm exploitation and
exploration capabilities

[32] Initialization of pelican populations using Tent
chaos mapping Improving the algorithm’s global search capability

The dynamic weighting factor θ helps the pelican particles
to update their positions constantly

The algorithm is motivated to perform a better localized
search while speeding up convergence

The above scholars have improved the POA owing to its defects and outperformed
the POA in dealing with real-world optimization problems. This shows that the POA is
worthy of further research and application. According to the principle of no free lunch [33],
no perfect algorithm can solve all the problems. There is still much room for improvement
when applying MIPOA to complex issues, such as image enhancement. This study pro-
poses a low-illumination forest canopy image enhancement method based on MIPOA to
address the shortcomings of traditional POA and image enhancement methods. The main
contributions are as follows:

• Aiming at the defects of the POA, which is slow in convergence, weak in exploitation,
and easily falls into local optimum, it is improved using nonlinear decreasing coeffi-
cients, the Hardy–Weinberg principle, and diversity variation operation, respectively.

• MIPOA is used to determine the optimal parameters of IBF, which overcomes the
low efficiency of IBF parameter selection and effectively improves the contrast of
low-illumination forest canopy images.
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• Owing to the uneven brightness distribution of forest canopy images, a segmented
gamma correction function was designed to equalize the brightness of low-illumination
forest canopy images.

• We investigated the performance of the MIPOA and MIPOA-based enhancement meth-
ods on the benchmark function and low-illumination forest canopy image problem,
respectively.

• We compared MIPOA with five POA-variant algorithms. MIPOA performed better
than the other POA-variant algorithms. The enhancement results show that the
MIPOA-based enhancement method effectively improves enhancement quality.

The rest of the paper is organized as follows. Section 2 describes the fundamentals of
the POA, and presents a new approach. Section 3 provides the proposed the issues of image
enhancement methods. Section 4 verifies the performance of the improved algorithm using
the benchmark function. Section 5 presents the analysis and discussion of the enhancement
results of each algorithm. Finally, conclusions are presented in Section 6.

2. Establishment of the POA Model
2.1. The Standard POA

The POA is inspired by the attacking and hunting behavior of pelicans, and the search
mechanism of POA is shown in Figure 1. The mathematical model is as follows:

Figure 1. Search mechanism of POA.

2.1.1. Initialization

The mathematical description of the pelican population initialization is as follows:

Xi,j = lb + rand.(ub − lb),

i = 1, 2, . . . , N, j = 1, 2, . . . , m
(1)

where Xi,j is the j-th dimensional position of the i-th pelican. N is the population sizes of
the pelicans. m is the dimension of the solution. rand is a random number in the range
of [0, 1]. ub and lb are the upper and lower bounds of the j-th dimension of the solution,
respectively.

The population matrix of the pelican population is represented as follows:

X =



X1
...

Xi
...

XN


N×m

=



X1,1 · · · X1,j · · · X1,m
...

. . .
...

...
Xi,1 · · · Xi,j · · · Xi,m

...
...

. . .
...

XN,1 · · · XN,j · · · XN,m


N×m

(2)

where X is the population matrix of pelicans; Xi is the location of the ith pelican.
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The vector of objective function values for the pelican population is represented
as follows:

F =



F1
...
Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN)


N×1

(3)

where F is the objective function vector of the pelican population; Fi is the objective function
value of the ith pelican.

2.1.2. Exploration Phase

In the exploration phase, pelicans and prey search for each other and move towards
each other in the search space. To enhance the exploration capability of the POA in solving
the exact search problem, the location of the prey is randomly generated. The mathematical
modeling of the exploration phase is as follows:

XP1
i,j = Xi,j + rand.

(
Pj − I.Xi,j

)
, Fp < Fi (4)

XP1
i,j = Xi,j + rand.

(
Xi,j − Pj

)
, Fp > Fi (5)

where XP1
i,j is the j-th dimensional position of the i-th pelican after the exploration phase

update. rand is a random number in the range of [0, 1]. I is a random number of 1 or 2. Pj
is the j-th dimensional position of the prey. FP is the objective function value of the prey.

If the objective function value is improved at that position, then the new position of
the pelican is accepted. The specific description formula is as follows:

Xi =

{
XP1

i , FP1
i < Fi

Xi, else
(6)

XP1
i is the new position of the i-th pelican; FP1

i is the objective function value of XP1
i .

2.1.3. Exploitation Phase

The exploitation phase models the pelican’s arrival at the water surface for feeding.
For better exploitation of the hunting area, the algorithm examines the pelican’s nearby
location, which is mathematically modeled as follows:

XP2
i,j = Xi,j + R ·

(
1 − t

T

)
· (2 · rand − 1) · Xi,j (7)

where XP2
i,j is the j-th dimensional position of the i-th pelican after the exploitation phase

update. rand is a random number in the range of [0, 1]. R is a constant which is equal to 0.2.
t is the number of current iterations. T is the maximum number of iterations.

During the exploitation phase, valid updates are also used to accept or reject new
pelican positions, which is mathematically modeled as follows:

Xi =

{
XP2

i , FP2
i < Fi

Xi, else.
(8)

2.2. MIPOA

The results of testing the benchmark functions show that POA (Algorithm 1) outper-
forms genetic algorithms [34], PSO [35], teaching and learning optimization algorithms [36],
grey wolf optimization algorithms [37], WHO [38], gravitational search algorithms [39],
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beleaguered swarm algorithms [40], and marine predator algorithms [41] in terms of ex-
ploitation and exploration performance. However, problems such as weak exploratory
ability, unsound exploitation mechanisms, and easily falling into local optimization also
exist. To address these issues, the following improvement strategies were used:

Algorithm 1 Pseudo-code of POA

Input: N, n, T, I
1: Initialization for pelican populations using Equation (1)
2: Calculate the fitness value of each pelican particle
3: while (t < T) do
4: Generate the position of the prey at random
5: for i = 1 : N do
6: Exploration phase: Moving towards prey
7: for j = 1 : n do
8: Calculate new status of the jth dimension using Equations (4) and (5)
9: end for

10: Update the ith population member using Equation (6)
11: Exploitation phase: Winging on the water surface
12: for j = 1 : n do
13: Calculate new status of the j-th dimension using Equation (7)
14: end for
15: Update the ith population member using Equation (8)
16: end for
17: Update best candidate solution
18: end while
Output: Xbest

2.2.1. Dynamic Nonlinear Decreasing Factor

The fitness value of the prey in (4) was superior to that of the pelican particles. The pel-
ican particles moved towards the prey, indicating that the randomized prey found a better
position in the solution space. Therefore, strengthening the randomness in this part is
more conducive for the algorithm to correctly search the solution space and find the global
optimal solution. However, the traversal of rand is not strong, and the randomness is too
blind, which inhibits the algorithm’s global exploration ability and simultaneously slows
down the convergence of the algorithm at the same time. The rand-dot plot is shown in
Figure 2a.

(a) (b)

Figure 2. The dot plot of w and rand. (a) rand dot plot. (b) w dot plot.

The rand parameter in (4) is now improved as follows to address the above deficiencies:

w =

[
wmax − e(

−t
T )

2
]
∗ rand ∗ cos(2πR) (9)
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where wmax = 3, t denotes the current iteration, and T denotes the maximum number
of iterations. rand is a random number in the range [0, 1].R is a random number in the
range [−1, 1]. The dot plot of the dynamic nonlinear decreasing coefficient w is shown
in Figure 2b. From the figure, it can be observed that at the beginning of the iteration,
w explores the solution space randomly in the interval [−2, 2] with a large step size to
increase the global exploration capability of the algorithm. As the number of iterations
increases, the dynamic nonlinearity of the w value decreases, accelerating the convergence
of the algorithm. The end of iteration is perturbed in the interval [−0.5, 0.5] to increase
the diversity of the population in the later iterations. The improved iteration formula is
as follows:

XP1
i,j = Xi,j + w ·

(
Pj − I · Xi,j

)
, FP < Fi. (10)

2.2.2. Hardy–Weinberg Principle

The basic POA algorithm adds a neighborhood radius R(1 − t/T) to each particle
in the exploitation phase to improve the algorithm’s exploitation. The neighborhood
radius decreases linearly with the number of iterations. The POA algorithm scans the area
around each particle in smaller and more accurate steps during the exploitation phase.
However, this is accompanied by a decrease in population diversity at the later stages of
the iteration, which makes it easy to fall into a locally optimal solution and exponentially
increases the computational effort. When the number of pelican particles is small, even
if each pelican particle is set with a neighborhood radius, the optimal solution may not
be in the encirclement. When the optimal solution is not in the encirclement, adding the
neighborhood radius drives the algorithm to premature maturity. If the number of particles
is large, computational effort increases. To overcome the limitations of the exploitation
mechanism of the POA, the Hardy–Weinberg principle is used in this section to improve
the exploitation ability of the POA.

Hardy and Weinberg discovered the Hardy–Weinberg principle in 1908, which has
been widely used in biology and genetics since then. The diagram of the Hardy–Weinberg
principle is shown in Figure 3. When there is only one pair of alleles (Aa), the frequency
f (A) of gene A is p, and the frequency f (a) of gene a is q. Then, A + a = p + q = 1 and
AA + 2Aa + aa = p2 + 2pq + q2 = 1. In 2020, Mohd et al. [42] applied the Hardy–Weinberg
principle to the study of swarm intelligence algorithms with good results. In this study,
the Hardy–Weinberg principle was introduced into the exploitation phase to improve the
exploitation of POA. The exploitation iteration formula based on the Hardy–Weinberg
principle is as follows:

x(A) = rand perm(N) (11)

x(a) = rand perm(N) (12)

XP2_new
i,j = px(A) + qx(a) (13)

where p ∈ [0, 1], q = (1 − p) · p, and q represent the percentage of x(A) and x(a) in
XP2new

i,j . If p is 0.6, this means that x(A) is 60% of XP2new
i,j , and x(a) is 40%. x(A) and x(a)

are randomly generated and reproduced according to the Hardy–Weinberg principle to
produce new individuals, which undoubtedly increases the diversity of the population and
improves the exploitation of the algorithm.
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Figure 3. Schematic diagram of Hardy–Weinberg.

2.2.3. Diversity Variation Perturbation

(1) Degree of aggregation of populations: The population diversity gradually
decreased during the iterative process, particularly in the later iterations. The population
is clustered into one or more local optimal positions. At this time, the algorithm’s ability
to resist precociousness was tested. If the algorithm cannot jump out of the local optimal
position, then the algorithm is precocious in the local optimal solution and the search
for optima is a failure. If the algorithm can break free from the local optimal solution,
its optimization accuracy will be effectively improved. Therefore, when the population
is aggregated to a certain degree, it is necessary to perform variance operations on the
population to help it jump out of the local optimal solution. The population fitness variance
is expressed as follows:

σvar =
1
N

N

∑
i=1

(
fi − favg

fmax − fmin

)2

(14)

where N is the number of populations, fi is the fitness value of the ith individual, and fmax
and fmin are the maximum fitness and minimum fitness values of the current population,
respectively. favg is the average fitness value of the current population. σvar reflects
the degree of aggregation of the individuals in the population. The smaller its value,
the more aggregated the population is and the more it tends to converge; on the contrary,
the population is in the random search stage.

(2) Exponential Levy flight: Levy flight is a random wandering approach first pro-
posed by the French mathematician Paul Levy, whose flight steps satisfy a stable distribu-
tion of heavy tails [43]. The mathematical model of Levy flight is as follows:

Levy(λ) = 0.01 × µ × σ

|v|
1
β

(15)

where the parameters µ and v obey a normal distribution, λ = β + 1,

µ ∼ N
(

0, σ2
)

, v ∼ N
(

0, σ2
v

)
(16)

σ =

 Γ(1 + β)× sin πβ
2

Γ
(

1+β
2

)
× β × 2

(
β−1

2

)


1
β

, σv = 1. (17)

The step length can be described as

S =
µ

|v|
1
β

(18)

where β is the constant β = 1.5.
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Figure 4a simulates the position update of an individual performing 500 Levy flight.
The figure shows that many small-step random wandering and a small number of large-
step-skipping behaviors characterize Levy flight [44–46]. This unique action pattern makes
Levy flight highly stochastic. Thus, it is widely used to improve the algorithm’s ability to
jump out of the local optimal solution and enhance global exploration ability. Researchers
have also made micro-improvements to Levy flight based on their needs in recent years.

(a) Trajectory of Levy flight. (b) Trajectory of exponential Levy flight.

Figure 4. Trajectory of Levy flight and exponential Levy flight. (In (b), yellow represents Levy
flight, blue represents [47], black represents [48], green represents [49], red represents Exponential
Levy flight).

Su et al. [47] and Wang et al. [48] addressed the defect of fixed step size in Levy flight
that weakens the accuracy of the algorithm in the later stages of the search. The Cauchy
function was adopted to control the step size of the Levy flight. Therefore, the step size of
the Levy flight is gradually reduced from a large step size in the early stage of the search to
a small step size in the later stages in order to achieve a smooth transition. Wei et al. [49]
considered that the value of σ affects the direction and step size of Levy flight. Therefore,
adaptive Levy flight is presented to control the position update during the iteration process.

The above researchers embed the improved Levy flight into the iterative formulation
of the algorithm and perform a Levy flight perturbation during each iteration to help the
algorithm jump out of the local optimal solution. However, the behavior of large step size
jumps also weakens the algorithm’s accuracy in finding the optimum and convergence
speed in the later stages of the search. If the step size is reduced, the advantage of Levy
flight will no longer exist. Given the above limitations, this study adopts the population
aggregation degree to implement the Levy flight perturbation strategy. It can fully use the
advantages of Levy flight and avoid the impact on optimization accuracy and convergence
speed in the later stages of iteration. This study improves the parameters of the Levy flight
model to improve its search area such that the perturbed particles can be fully distributed
in the search space. The improved parameters are as follows:

σ =

Γ(1 + β)× exp(πβ
2 )

Γ
(

1+β
2

)
× β × 2

β−1
2

 1
β

. (19)

The flight trajectories of the proposed exponential Levy flight and other Levy flight
variants are plotted in Figure 4b. From the figure, it can be seen that the exponential-based
Levy flight has a more robust search capability than other variants, which is more helpful
for the particles caught in precocity to break free from the local optimal solution and redis-
tribute in the search space to continue to search for the optimal solution. The framework of
the diversity variation operation is as follows:

1. Set the population aggregation threshold d.
2. Calculate the degree of population aggregation σvar.
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3. Judge whether σvar is less than the threshold d. If less, execute step 4; otherwise, jump
to step 2.

4. Randomly selected 1/4 population particles for exponential Levy flight.

2.2.4. The Framework of the MIPOA

The improvement strategy is introduced into POA, and the pseudo-code of the pro-
posed MIPOA algorithm is shown in Algorithm 2:

Algorithm 2 Pseudo-code of MIPOA

Input: N, n, T, wmax, I, β, p, q
1: Initialization for pelican populations using Equation (1)
2: Calculate the fitness value of each pelican particle
3: while (t < T) do
4: Generate the position of the prey at random
5: for i = 1 : N do
6: Exploration phase: Moving towards prey
7: for j = 1 : n do
8: Calculate new status of the jth dimension using Equations (5) and (10)
9: end for

10: Update the i-th population member using Equation (6)
11: Exploitation phase: Hunting is based on the Hardy- Weinberg principle
12: for j = 1 : n do
13: Calculate new status of the j-th dimension using Equation (13)
14: end for
15: Update the i-th population member using Equation (8)
16: Diversity Variation perturbation:
17: Calculate the degree of population aggregation σvar using Equation (14)
18: if σvar < d then
19: Random selection of 1/4 pelican population particles for exponential Levy

flight
20: else
21: Recalculate the value of σvar until the condition is satisfied
22: end if
23: end for
24: end while
Output: Xbest (Xbest is the current optimal solution)

3. Low-Illumination Forest Canopy Image Enhancement Based on the MIPOA
3.1. Data Sources and Analysis

Forest canopy images were obtained from the Liangshui Experimental Forestry Farm of
the Northeast Forestry University. The Liangshui Experimental Forest is located in Yichun
City, Heilongjiang Province (128◦47′8′′–128◦57′19′′ E, 47◦6′49′′–47◦16′10′′ N), with an
east–west width of 13.0 km and a north–south length of 17.0 km, with a total area of
12,133,000 hm2. The Liangshui Experimental Forest is a mixed coniferous and broadleaf
forest. The tree species mainly included red pine, spruce, maple, birch, and larch. Canopy
images were randomly acquired with a Panasonic DMC-LX5 camera with a fisheye lens
Samyang AE 8/3.5 Aspherical IF MC Fisheye with a resolution of 2736 × 2736 in the morn-
ing, midday, and evening from July to October. With the wide field of view of the fisheye
lens, the resulting hemispherical images of the forest canopy can cover a full range of zenith
angles and, therefore, contain rich information about the forest canopy. Forest canopy
parameters have been widely used as visual judgment indices for community appearance
in forest ecosystem research [50,51]. With the rapid development of image processing
technology, obtaining forest canopy parameters and analyzing vegetation growth status
and trends using canopy images have become hot research topics. However, the quality
of the captured images was poor owing to the influence of the shooting method [52,53],
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shooting time, light intensity [54], and forest gap [55]. These low-quality canopy images
significantly hindered the acquisition of canopy parameters and were not conducive to the
subsequent processing of images.

To verify the applicability of the proposed method. Twelve canopy images taken at
three different light intensities were selected for testing. The test images are shown in
Figure 5. L1–L4 are canopy images acquired under low-illumination conditions. The overall
tone is dark, especially at the lower part of the trunk, which is almost mixed with the
background and difficult to distinguish. N1–N4 are the canopy images acquired under
normal illumination conditions, subject to the way of acquiring canopy images (elevation
shot) and the influence of forest gaps. Under ideal lighting conditions, the lower part of
the trunk will also appear with low brightness and unclear details. S1–S4 are the canopy
images acquired under strong light. They are characterized by uneven brightness, low
brightness in the trunks, and blurring of the treetops bordering the sky because of sunlight
reflection. Therefore, regardless of the type of canopy image, effective enhancement is an
important test for the algorithm.

L1 L2 L3 L4

N1 N2 N3 N4

S1 S2 S3 S4

Figure 5. Canopy images of forests under different types of illumination.

3.2. IBF

IBF contains four typical grayscale transformation functions, and different transfor-
mation functions can enhance different image types [56–58]. Figure 6 shows graphs of
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the four grayscale transformation functions. The horizontal axis represents the gray value
of the input image, and the vertical axis represents the gray value of the output image.
In this case, Figure 6a is used to expand the darker region, Figure 6b is used to expand the
brighter region, Figure 6c is suitable for stretching the middle area, and Figure 6d shows
the stretching of the ends and compression of the middle region. The normalization can be
described as follows:

F(u) = B−1(α, β) ∗
∫ u

0
tα−1(1 − t)β−1dt (20)

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt. (21)

(a) (b)

(c) (d)

Figure 6. Four typical curves of the grayscale transformation function. (a) Expand the darker areas.
(b) Expand the brighter areas. (c) Stretch the middle and compress both ends. (d) Stretch both ends
and compress the middle.

From (21), different types of nonlinear transformation curves can be obtained by
adjusting the parameters α, β. Intelligent algorithms can perform efficient operations
in parallel in a complex parameter space to obtain the highest-quality solution possible
with minimal problem information and operation costs. The process of finding the IBF
parameters is regarded an optimization problem. Using the global optimization search
capability of the intelligent optimization algorithm, the values of the optimal transformation
parameters α and β can be determined dynamically, thus achieving adaptive enhancement.

The design of the objective function is an essential step in the optimization pro-
cess. Variance is often used to objectively evaluate the contrast enhancement of an image.
The larger its value, the greater the content of the image and the larger the dynamic range of
the image pixel values. In this study, IBF was used to enhance the image contrast. Therefore,
the selection of the objective function was based on the variance of the image. Specifically,
this was calculated as shown in Equation (22):

F =
1

M ∗ N

M

∑
x=1

N

∑
y=1

i2xy −
(

1
M ∗ N

M

∑
x=1

N

∑
y=1

ixy

)2

. (22)
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Since the intelligent algorithm is used to find the minimum value, the search for the
maximum value is changed to the search for the minimum value:

f itness = −F. (23)

3.3. Segmented Gamma Function

Brightness enhancement plays a decisive role in the enhancement of low-illumination
images. This can improve the visual effect and quality of the images. The gamma correction
function is a classical image brightness enhancement method [59], which is a nonlinear im-
age transformation using the parameter to change the distribution of the image’s brightness.
The gamma correction function is, in its basic form, as shown in (24):

T(l) = lmax

(
l

lmax

)γ

(24)

where l is the actual intensity value of the input image, which takes the range of l ∈ [0, lmax];
lmax is the maximum intensity value of the input image. T(l) is the intensity value of the
output image after the gamma correction. γ is the correction parameter. When γ is less
than 1, the image is stretched to increase its brightness; when γ is greater than 1, it is
compressed to darken its brightness. In Figure 7, the dotted lines show the enhancement
curves for different γ values. Figure 8 shows the enhancement results of low-illumination
forest canopy images with different γ values.

Figure 7. Variation of enhancement curves for different values.

From Figure 8, the processed image is severely exposed when γ = 0.1. There is no
change in the brightness of the enhanced image when γ = 1. The processed image has a
better quality when γ is 0.4 and 0.6. The brightness is superior at γ = 0.4, but the processing
of the sky portion is unsatisfactory, and the treetop bordering the sky is blurred due to the
exposure. The inferiority of the brightness is obvious at γ = 0.6, although the detail of the
sky portion is superior to that at γ = 0.4. In enhancing the low-illumination canopy image,
there is a contradiction between the brightness enhancement of the dark areas and the
exposure of the high-brightness areas. This contradiction stems from the fact that gamma
is a global enhancement method. During the image brightness stretching, regardless of
the value of γ, the bright area will stretch the image. If the brightness of the dark area
is moderate, the bright area will inevitably appear in the exposure phenomenon. If the
brightness of the highlighted area is mild, the brightness enhancement of the dark area is
not noticeable, and the details cannot be emphasized. For this defect, the gamma correction
function is improved as follows:

T(l) =

{
k ∗ lmax ∗

(
l

lmax

)γ
, l ≤ a

l, l > a
. . . (25)



Forests 2024, 15, 1783 14 of 30

k =
a

lmax

(
a

lmax

)γ (26)

where γ is the luminance correction factor. The histogram of the same type of canopy
image is very similar, and γ = 0.4 in this study. a is the input image intensity threshold—
in this study, a = 210. The improved gamma correction function is segmented from (25).
The coefficient k is added to the gamma correction function when l ≤ a. The increase of
coefficient k causes the output T(l) value of the gamma correction function to be located
between γ = 0.4 and γ = 0.6 in the low-brightness region (l < 150). The image of the dark-
region was in the optimal brightness-stretching interval. The stretching intensity is reduced
in the moderate brightness region (150 < l < 210), and its output T(l) value is less than that
of γ = 0.6 to prevent overstretching. In the highlighted area (210 < l < 255), the output
T(l) value is equal to that of γ = 1, indicating that the brightness of the highlighted area
is not enhanced. This improvement prevents overexposure of the highlighted areas and
effectively preserves the details. The segmented gamma correction function curves are
shown as solid red lines in Figure 7. Figure 9 shows the enhancement results of the sky area
at γ = 0.4, segmented gamma, and γ = 0.6, respectively. As can be seen from the figure,
the brightness of the sky region enhanced by the segmented gamma correction function
is better than that of the enhancement result at time γ = 0.6, and the details of the border
between the treetops and the sky are better than in the enhancement result at time γ = 0.4.
The results are shown in Figure 9. The segmented gamma correction function improves the
brightness of the image and prevents overexposure of the sky area.

γ = 0.1 γ = 0.4

γ = 0.6 γ = 1

Figure 8. Plot of enhancement results for low-illumination forest canopy images at different values of γ.
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γ = 0.4 Segmented gamma γ = 0.6

Figure 9. Results of sky enhancement for different parameters.

3.4. Algorithm Implementation

In this study, we enhanced the low-illumination forest canopy image in terms of
contrast and brightness. First, MIPOA searches for the optimal parameters (α, β) of IBF
to enhance contrast. It is worth noting that the proposed MIPOA can find the optimum,
reducing the possibility of falling into the local optimum in the IBF parameter search. Thus,
the contrast of the image is effectively improved. Second, the segmented gamma correction
function is designed to equalize the brightness of the low-illumination canopy image.
Figure 10 shows the flowchart of the proposed MIPOA-based enhancement algorithm.
The framework of the proposed algorithm is as follows:

1. Input the image to be enhanced.
2. Judge whether the input image is a grayscale image. If this is true, then normalization

is performed directly. If it is a color image, then grayscale processing is performed
first followed by normalization.

3. Generate the population and parameters of MIPOA.
4. Apply (20) to achieve image contrast enhancement.
5. Calculate the fitness value of the population using (23).
6. Update the best agent.
7. Check whether the agent goes beyond the search space.
8. Generate the position of the prey at random.
9. Calculate the amount of movement between the pelicans and prey (10, 5).
10. Update new positions (6).
11. Perform hunting based on the Hardy–Weinberg principle (13).
12. Update new positions (8).
13. Determine whether the aggregation of populations satisfies these requirements.
14. If the conditions are met, perform random selection of 1/4 pelican population particles

for exponential Levy flight.
15. Repeat Steps 3–14 until the algorithm meets the stop condition.
16. Output the result of MIPOA as the optimal values of (α, β) for IBF.
17. Use the optimum parameters (α, β) found in Step 16 to enhance the contrast of the

input image.
18. Output the contrast-enhanced image with reverse normalization.
19. Use the segmented gamma function to improve the brightness of the image (25).
20. Output the enhanced image.
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Figure 10. Flowchart of enhancement based on the MIPOA algorithm.

4. Performance Testing and Analysis of the MIPOA
4.1. Benchmark Test Functions

As shown in Table 2, six benchmark functions were selected for testing to verify
the performance of the MIPOA. Among them, F1∼F2 are high-dimensional, single-peak
functions. Such functions have only one global optimum and no local optimum. They were
used to test the optimization speed and exploitation capability of the algorithms. F3∼F4
are high-dimensional, multi-peak functions. These functions have multiple local optimal
values, and many local optimal values will increase the probability of the algorithm falling
into the local optimal solution. Therefore, this type of function is suitable for testing the
algorithm’s exploration ability and the ability to jump out of the local optimal solution.
F5∼F6 are low-dimensional, multi-peak functions. Compared with the high-dimensional,
multi-peak function, its dimension is a lower fixed dimension. This type of function is used
to test the balance ability between algorithm exploration and exploitation.

Table 2. Information of benchmark functions.

Style Functions Dim Range fmin

Unimodal

F1(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−30,30] 0

F2(x) =
n
∑

i=1
([xi + 0.5])2 30 [−100,100] 0
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Table 2. Cont.

Style Functions Dim Range fmin

Multimodal

F3(x) =
π

n


10 sin(πy1)+

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+

(yn − 1)2

+
n

∑
i=1

u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4
, u(x, a, k, m) =


k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

30 [−50,50] 0

F4(x) = 0.1


sin2(3πx1)+

n
∑

i=1
(xi − 1)2[1 + sin2(3πx1 + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]
+

n
∑

i=1
u(xi, 5, 100, 4)

30 [−50,50] 0

Fixed-
dimension

F5(x) = −
5
∑

i=1

[
(x − ai)(x − ai)

T + ci

]−1 4 [0,10] −10.1532

F6(x) = −
7
∑

i=1

[
(x − ai)(x − ai)

T + ci

]−1 4 [0,10] −10.4028

4.2. Experimental Setup

The experiment was conducted on an Intel CPU@2.50 GHz PC with 16 GB of RAM
and Windows 11. To objectively evaluate the performance of the MIPOA, the basic POA
and five POA variants (IPOA1 [28], IPOA2 [29], IPOA3 [30], IPOA4 [31], and IPOA5 [32])
were selected for the comparative algorithm. In the experiment, the population size (N)
was set to 30, and the maximum number of iterations (T) was set to 500. Each benchmark
function was run independently 30 times to avoid the possibility of chance errors in the
optimization search.

4.3. Comparative Results and Analysis of the MIPOA with POA Variants
4.3.1. Effect of the Value of the Threshold Parameter redd on the Performance of
the Algorithm

The threshold parameter d needs to be decided according to the specific problem. If the
threshold is too high, the algorithm cannot jump out of the local optimal solution in time;
if the threshold is too low, the individuals in the population will be perturbed frequently,
affecting the population’s optimization accuracy and convergence speed. In this study,
Table 2 is used as the test function, and the mean fitness value is used as the evaluation index
to conduct 30 trials to select the optimal threshold parameter d. The experimental results
are shown in Table 3. Table 3 shows that in optimizing F1 and F2, the highest optimization
accuracy is achieved at d = 0.5, while d = 0.7 and d = 0.3 have the highest search accuracy
on F3 and F4, respectively. d = 0.5 is slightly lower and ranks second. From the optimization
results of F5 and F6, it can be seen that the value of d does not affect them, which confirms
that the exponential Levy flight perturbation strategy based on population variation does
not affect the balance between algorithm exploration and exploitation.



Forests 2024, 15, 1783 18 of 30

Table 3. Comparison of optimization results for different values of parameter d.

d 0.1 0.3 0.5 0.7 0.9 rand

F1 2.7113 × 10−18 1.094 × 10−15 1.5555 × 10−19 2.0785 × 10−16 1.1022 × 10−9 1.2738 × 10−6

F2 2.0009 × 10−31 4.2761 × 10−31 0 0 0 1.7804 × 10−20

F3 3.7121 × 10−31 5.6552 × 10−31 3.7108 × 10−31 1.5452 × 10−31 1.1499 × 10−30 1.4978 × 10−15

F4 4.6631 × 10−31 1.3703 × 10−32 5.4507 × 10−32 1.0934 × 10−30 5.8286 × 10−32 1.4723 × 10−22

F5 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532 −10.1532
F6 −10.4028 −10.4028 −10.4028 −10.4028 −10.4028 −10.4028

In summary, d = 0.5 is selected as the final threshold value in this study. In addition,
scholars often use a random number, rand, for threshold selection. However, in this test, it
is far inferior to other fixed thresholds.

4.3.2. Optimization Accuracy Analysis

The mean value reflects the algorithm’s optimization accuracy. The closer the mean
value is to the optimal value of the function, the higher the accuracy of the optimization
search [60–62]. The mean fitness value of each algorithm on the test function is shown in
Table 4. From Table 4, it can be seen that on F1, IPOA1∼IPOA5 are inferior to the basic POA.
On F2, IPOA1 and IPOA5 are slightly better than the POA but are far from the optimal
value. In contrast, the MIPOA outperforms the other variants by 17 orders of magnitude on
F1 and achieves the ideal value on F2. It shows strong exploitation ability and the ability to
jump out of the local optimal solution. MIPOA has the same obvious advantage on F3 and
F4, and the searching accuracy is 100% better than the comparison algorithms, which have
strong exploration ability. In addition, the IPOA1 and IPOA5 are also effective in improving
the exploration ability, with better search accuracy than the POA. Only the MIPOA obtains
the ideal value for F5 and F6, outperforming the other POA variant algorithms. This shows
that the MIPOA can improve the exploitation and exploration capabilities while striking a
balance between the two.

Table 4. Mean fitness values of test functions.

Function IPOA1 IPOA2 IPOA3 IPOA4 IPOA5 POA MIPOA

F1 6.845 7.7161 8.0252 7.7614 6.4686 6.3346 1.53 × 10−17

F2 3.75 × 10−3 0.50931 0.93683 0.24565 0.10587 0.14188 0
F3 1.14 × 10−3 6.64 × 10−2 0.24127 3.92 × 10−2 8.37 × 10−3 2.83 × 10−2 7.47 × 10−32

F4 5.05 × 10−3 0.52224 0.49832 0.2703 0.23057 0.33185 5.19 × 10−30

F5 −7.4037 −10.151 −3.824 −8.4475 −9.471 −9.6433 −10.1532
F6 −8.152 −10.4008 −3.6839 −9.8673 −10.2244 −8.9854 −10.4028

4.3.3. Stability Analysis

Table 5 shows the standard deviation values of each algorithm on the test function.
The lower the standard deviation value, the better the stability [63–65]. From Table 5, it
is clear that the MIPOA achieves all the optimal values and outperforms the comparison
algorithm by 100% in terms of stability. The five POA variant algorithms have their own
merits regarding stability. Compared to the POA, the IPOA1 IPOA5 algorithms improved
instability by 66.67%, 50%, 100%, 50%, and 83.33%, respectively. Among them, IPOA3
performs well and garners an overall improvement in stability, but its improvement is
low. MIPOA algorithm improves by 16, 29, 28, 6, and 4 orders of magnitude relative to the
IPOA3 on F1, F3∼F6, respectively. The MIPOA achieves the desired value of 0 on F2 and
only 0.1496 for IPOA3, which is a far cry from the others.
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Table 5. Means of Variance of Test Functions.

Function IPOA1 IPOA2 IPOA3 IPOA4 IPOA5 POA MIPOA

F1 0.38883 0.8502 0.24278 0.18844 0.57132 0.68305 7.11 × 10−17

F2 2.54 × 10−3 0.2642 0.1496 0.19721 0.14571 0.15422 0
F3 7.97 × 10−4 4.90 × 10−2 6.14 × 10−2 3.25 × 10−2 1.50 × 10−2 6.19 × 10−2 1.33 × 10−31

F4 5.30 × 10−3 0.24374 0.10386 0.20668 0.1758 0.19504 2.84 × 10−29

F5 2.4497 3.67 × 10−3 0.5296 2.4398 1.7617 1.5555 3.98 × 10−7

F6 2.5498 3.30 × 10−3 0.77742 1.6205 0.97018 2.3906 4.62 × 10−5

4.3.4. Convergence Analysis

The convergence curve can visualize the convergence speed, convergence accuracy,
and ability to jump out of the local optimal solution of each algorithm [66–68]. Figure 11
shows the convergence curves of the test functions. The figure shows that the MIPOA
algorithm’s optimization accuracy is significantly better than other algorithms on F1∼F4.
When other algorithms are trapped in the local optimal solution and cannot break free,
the MIPOA can successfully break through the constraints of the local optimal solution
to continue to find the overall optimum. Additionally, the convergence curve steadily
progresses, which indicates that it has strong stability. There is not much difference in the
optimization accuracy of the algorithms for F5 and F6, and the MIPOA is slightly better
than the comparison algorithms in terms of optimization accuracy and convergence speed.
On the contrary, IPOA3 is somewhat lower. It is consistent with the results of the data in
Table 4.

F1 F2 F3

F4 F5 F6

Figure 11. Convergence curves of each algorithm on the test function.

4.3.5. Statistical Analysis

The Wilcoxon rank sum test is a non-parametric statistical method. Compared with
common tests such as the t-distribution test, Fisher’s eExact test, and the Kruskal–Wallis H
test, the Wilcoxon rank sum test has the following advantages:

(1) The distribution is free, and assuming that the sample data follows a normal distribu-
tion is unnecessary.
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(2) Strong stability; not affected by outliers.
(3) Simple, convenient, intuitive, and understandable.

Therefore, the non-parametric Wilcoxon rank–sum test is used to evaluate algorithms’
performance and statistically verify whether there are significant differences in the results
of each run between algorithms [69–71].

Where 0.05 is the significance level, a p-value greater than 0.05 means that the dif-
ference between the two groups is insignificant, and a p-value less than 0.05 means that
the difference between the two groups is substantial. The Wilcoxon rand rank–sum test
values for each algorithm are shown in Table 6. The MIPOA is statistically different from
all the comparative algorithms, indicating that the MIPOA has improved significantly in
statistical analysis.

Table 6. p-values of the Wilcoxon rank–sum test over 30 runs (p > 0.05 has been in bolded).

Function
MIPOA vs.

IPOA1
MIPOA vs.

IPOA2
MIPOA vs.

IPOA3
MIPOA vs.

IPOA4
MIPOA vs.

IPOA5
MIPOA vs.

POA

F1 1.27 × 10−11 2.52 × 10−11 1.79 × 10−11 1.96 × 10−11 2.63 × 10−11 2.40 × 10−11

F2 1.21 × 10−12 2.37 × 10−12 1.21 × 10−12 1.72 × 10−12 3.16 × 10−12 1.72 × 10−12

F3 6.48 × 10−12 3.16 × 10−12 1.21 × 10−12 5.22 × 10−12 3.16 × 10−12 1.72 × 10−12

F4 1.72 × 10−12 1.72 × 10−12 2.37 × 10−12 4.11 × 10−12 3.16 × 10−12 3.16 × 10−12

F5 2.79 × 10−11 2.85 × 10−11 2.94 × 10−11 2.91 × 10−11 4.97E − 10 4.41 × 10−7

F6 2.98 × 10−11 2.98 × 10−11 3.01 × 10−11 2.86 × 10−11 1.23 × 10−7 7.61 × 10−5

5. Results and Discussion of MIPOA-Based Enhancement Algorithm
5.1. Evaluation Indicators
5.1.1. FSIM

FSIM compares the feature similarity between the original image and the enhanced
image. The larger the value of FSIM, the more similar the original image is to the enhanced
image and the higher the quality of the enhanced image [72]. The formula for FSIM is
shown in Equation (27).

FSIM =
∑x∈Ω SL(x)× PCm(x)

∑x∈Ω PCm(x)
(27)

where Ω is the pixel value of the whole image, SL(x) denotes the similarity value, and PCm(x)
represents the phase consistency measure.

PCm = max(PC1(x), PC2(x)). (28)

PC1(x) and PC2(x) denote the phase coherence of the reference and enhanced images,
respectively.

SL(x) = [SPC(x)]α · [SG(x)]β (29)

SPC(x) =
2PC1(x)× PC2(x) + T1

PC2
1(x)× PC2

2(x) + T
(30)

SG(x) =
2G1(x)× G2(x) + T2

G2
1(x)× G2

2(x) + T2
(31)

where SPC(x) represents the feature similarity of the image; SG(x) represents the gradient
similarity of the image; G1(x) and G2(x) represent the gradient magnitude of the reference
image and the enhanced image, respectively; and α, β, T1 and T2 are constants.

5.1.2. Entropy

Entropy measures the richness of the information contained in an image. The greater
the entropy value of an image, the greater the amount of information contained in the
image and the richer the details [57]. The calculation formula is given by Equation (32).
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H = −
255

∑
i=0

p(i)× log2(p(i)) (32)

where p(i) denotes the probability of gray value i.

5.1.3. CII

The CII is a classic metric used to evaluate the effect of contrast improvement in
images [73]. It quantifies the degree of contrast enhancement in an image to judge the
impact of contrast improvement [74]. The higher the value of CII, the more significant the
contrast improvement. The calculation formula is shown in (33).

CII =
std(Ienhanced)− std

(
Ioriginal

)
mean(Ienhanced)− mean

(
Ioriginal

) (33)

Ioriginal is the original image, Ienhanced is the processed image, std(.) is the standard deviation,
and mean(.) is the mean.

5.1.4. Average Gradient

The average gradient can be sensitive to the image’s ability to express the contrast of
small details. Therefore, it is often used as a measure of image clarity. Usually, the more
significant the average gradient value, the greater the rate of change of gray levels in a
specific image direction, the richer the layers, and the better the visual effect presented by
the image [75]. The expression defining the average gradient is

AG =
1

m × n

m

∑
i=1

n

∑
j=1

(((
∂ f
∂x

)2
+

(
∂ f
∂y

)2
)

/2

)1/2

(34)

where m and n are the width and height of the image, respectively; ∂ f /∂x represents the
horizontal gradient; and ∂ f /∂y represents the vertical gradient.

5.1.5. Pixel Mean

The pixel mean reflects a color image’s brightness, exposure, and contrast better than
the gray mean. A higher pixel mean value indicates that the image is brighter overall,
with sharper and more precise details. A lower pixel mean value indicates a darker image
with less detail. However, a higher pixel mean is not always better. An overexposed image
has a high pixel mean. The expression for pixel mean value is given below:

Mean =
1

m ∗ n

m

∑
i=1

n

∑
j=1

Pi,j (35)

where m and n are the width and height of the image, respectively, and Pi,j is the pixel
value corresponding to the (i, j) position.

5.2. Analysis of IBF Parameter Optimization Experiment Results

To verify the effectiveness of MIPOA in determining the optimal IBF parameters,
HWOA [25], FAG [26], PSO [22], ChOA [21], and POA were used for comparison exper-
iments. Twelve typical low-illumination canopy images (Figure 5) were selected as the
experimental images. FSIM, entropy, and CII were used as evaluation indices for the merit
of enhancement.

The FSIM values obtained by each intelligent algorithm for the forest canopy images
are listed in Table 7. From the table, it is clear that the MIPOA obtained competitive results
for all types of canopy images. The optimal FSIM values were obtained for nine canopy
images, which were slightly lower than those of the PSO, HWOA, and PSO algorithms on



Forests 2024, 15, 1783 22 of 30

L2, N4, and S4, and are located in the second position. This indicates that the enhanced
image based on the MIPOA algorithm has a higher feature similarity with the original
image, less distortion, and more natural enhancement. The ChOA algorithm is also tied
with the MIPOA algorithm for first place on seven images, but it is better at enhancing
canopy images with normal illumination. Although the PSO algorithm obtained the
optimal FSIM values on L2 and S2, it had much lower FSIM values on the other images
than the other algorithms and was less stable. The HWOA outperformed the comparison
algorithm for N4. However, the FSIM values obtained on other images are as good as those
of FAG and POA, better than PSO and inferior to ChOA and MIPOA.

Table 7. The FSIM value obtained by each intelligent algorithm.

Image PSO ChOA FAG HWOA POA MIPOA

L1 0.4196 0.7409 0.6450 0.6457 0.6444 0.7409
L2 0.7891 0.7542 0.7863 0.7866 0.7861 0.7872
L3 0.4715 0.8729 0.4715 0.4715 0.4715 0.8729
L4 0.6813 0.7544 0.6763 0.6855 0.6762 0.7782
N1 0.4545 0.5574 0.4545 0.4545 0.4545 0.5574
N2 0.4541 0.6955 0.6368 0.6352 0.6398 0.6955
N3 0.4208 0.7366 0.6578 0.6641 0.6589 0.7366
N4 0.4578 0.6834 0.6192 0.7465 0.6286 0.6834
S1 0.6611 0.6728 0.6623 0.6624 0.6623 0.6728
S2 0.7171 0.7072 0.7023 0.7024 0.7059 0.7072
S3 0.7228 0.7472 0.7232 0.7453 0.7318 0.7472
S4 0.4702 0.52775 0.6731 0.50391 0.6722 0.6735

The entropy values obtained by each intelligent algorithm on the canopy images
are shown in Table 8. The table shows that the MIPOA algorithm performs well on low-
illumination (L1–L4) and normal-illumination (N1–N4) canopy images, outperforming
the comparison algorithms by 75%. For instance, the entropy values of PSO, ChOA,
FAG, HWOA, POA, and MIPOA are 0.7238, 0.7238, 0.7238, 0.7238, 0.7238, 0.7238, 0.7238,
and 1.2062, respectively, at enhanced L3. This indicates that the comparison algorithms
have fallen into the local optimal solution and have not found the optimal parameter of IBF.
Therefore, the FSIM values of the comparison algorithms are the same. At the same time,
the MIPOA algorithm can break free from the local optimal solution and continue to find
the overall optimal parameter. The obtained entropy value is higher, and the enhanced
image has richer details and higher image quality. In the enhancement of N1, the entropy
value of all algorithms is 0.7525, indicating that all algorithms have the same performance
in terms of optimization seeking on N1, and the enhanced image contains the same degree
of information richness.

Table 8. The entropy value obtained by each intelligent algorithm.

Image PSO ChOA FAG HWOA POA MIPOA

L1 0.6020 0.6095 0.6093 0.6095 0.6020 0.9963
L2 1.0496 1.0491 1.0329 1.0329 1.0329 1.0680
L3 0.7238 0.7238 0.7238 0.7238 0.7238 1.2062
L4 1.0906 1.0998 0.9876 1.1006 6.1894 5.4951
N1 0.7525 0.7525 0.7525 0.7525 0.7525 0.7525
N2 0.6889 0.6889 0.6889 0.6889 0.6889 0.7093
N3 0.6552 0.6657 0.6717 0.6717 0.6717 1.0131
N4 0.7021 0.7021 0.7021 0.9493 0.7021 0.7223
S1 0.8912 0.8117 0.8117 0.8117 0.8117 0.8999
S2 1.0237 0.8814 0.9114 0.9390 0.9463 0.9464
S3 0.9510 0.9933 0.9510 0.9777 0.9643 0.9977
S4 0.5689 0.6231 0.6206 0.6206 0.6206 0.6206
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Table 9 shows the CII values obtained by each intelligent algorithm for the canopy
image. Owing to the limitations of the shooting method for forest canopy images, regardless
of the illumination level under which the canopy image is acquired, there will be low
brightness and hidden details in the tree trunks. Simultaneously, strong light makes sky
areas susceptible to losing more information. Therefore, enhancing the image contrast is
particularly important so that details can be highlighted. As shown in Table 9, the MIPOA
algorithm has clear advantages. In particular, when dealing with normal-illumination
canopy images, all optimal CII values were obtained. The MIPOA algorithm outperformed
the comparison algorithm by 75% on low-light canopy images and was inferior to the
ChOA only for L2. On strong-light canopy images, the MIPOA algorithm performed
mediocrely and outperformed the comparison algorithm only on S1 and S3. It was inferior
to PSO for S2 and to ChOA for S4. The MIPOA algorithm obtained nine optimal CII values
and three suboptimal values for 12 canopy images. This shows that the enhanced images
based on the MIPOA algorithm have better contrast enhancement and stronger stability.
In contrast, PSO and the ChOA are not sufficiently stable. The PSO algorithm has a CII
value of 0.81039 on S2, which is better than the other algorithms, but the CII values of
0.13413, 0.18988, and 0.13844 for L1, N3, and S4, respectively, are lower than those of the
other algorithms. ChOA achieved the worst value at S3. FAG, HWOA, and POA performed
poorly in obtaining CII values and did not obtain optimal values.

Table 9. The CII value obtained by each intelligent algorithm.

Image PSO ChOA FAG HWOA POA MIPOA

L1 0.13413 0.36543 0.35405 0.35655 0.35253 0.75717
L2 0.8621 0.87318 0.83681 0.83871 0.83548 0.87162
L3 0.23288 0.23288 0.23288 0.23288 0.23288 0.7.552
L4 0.52004 0.53058 0.50119 0.53536 0.36867 0.56017
N1 0.27333 0.27333 0.27333 0.27333 0.27333 0.32986
N2 0.24185 0.24149 0.35872 0.35621 0.36104 0.46825
N3 0.18988 0.42405 0.43598 0.45027 0.43841 0.72213
N4 0.25192 0.25148 0.37194 0.35515 0.38255 0.49493
S1 0.55991 0.54769 0.53967 0.54102 0.54045 0.58361
S2 0.81039 0.66821 0.69807 0.70201 0.72416 0.73274
S3 0.70063 0.61153 0.70229 0.82281 0.74441 0.82672
S4 0.13844 0.52775 0.48658 0.50391 0.48261 0.48858

In general, through the above analysis, the performance indexes obtained by each
algorithm in the process of optimization of IBF parameters appear to have many equal
data, which is because the image is a forest canopy image, the trees are intricate and
complex, the branches and leaves are crisscrossed, and the light has a great impact on the
image quality. For intelligent algorithms, the challenge is very difficult. If the intelligent
algorithms seek optimization with low accuracy, it is very easy to fall into the local optimum,
and the enhancement fails. L3 is the best example. Only the MIPOA algorithm breaks
through the constraints of the local optimal solution and finds the optimal parameters of
the IBF. The MIPOA algorithm performs well; out of 36 data sets, the MIPOA algorithm
obtains the optimal value of 25, and 11 is located in second place. It shows strong stability.
In addition, MIPOA is inferior to POA only on L2 images, and is 91.67% better than POA
across all other images, which proves the necessity of improving the POA algorithm.

5.3. Experimental Results and Analysis of Low-Illumination Forest Canopy Images

In this test, the segmented gamma function is added to the IBF to enhance the image
brightness, constituting a complete low-illumination forest canopy image enhancement
method based on the MIPOA algorithm. To verify the accuracy and effectiveness of
the proposed method in low-illumination forest canopy image enhancement, traditional
enhancement methods such as SSR, MSRCR, HE, AHE, ESIHE, AGCWD, and POA were
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used as comparison algorithms. Subjective and objective evaluation metrics were used to
assess the enhanced image improvement effect.

5.3.1. Subjective Evaluation Analysis

Due to space limitations, this study only showed the enhancement results for canopy
L3. The enhancement results for each algorithm for the L3 image are shown in Figure 12.
From the figure, the brightness of SSR and the saturation of MSRCR are enhanced in the mid-
dle highlighted area. However, the darker trunk portion showed almost no enhancement.
The HE and ESIHE methods effectively improved the brightness of the low-illumination
canopy image, highlighting the details in darker areas. However, the saturation of the
enhanced image was low, and color degradation occurred. The AHE and AGCWD al-
gorithms effectively improved the image contrast, and the difference between the bright
and dark parts of the enhanced image was obvious. The details of the images are clear.
However, this method lacks brightness enhancements. The enhancement results based
on the POA are poor, with serious defects, such as exposure and color distortion. This
stems from the weak optimization accuracy of the POA algorithm, which does not find
the optimal parameters for the contrast enhancement of the image when optimizing the
IBF parameters. The enhancement results based on MIPOA have obvious advantages and
significantly improve the contour details in low-illumination regions. The highlighted areas
in the sky are not overexposed because of the enhancement of dark places, and the details
are preserved. In addition, the overall tone is more realistic and the colors are more vivid,
saturated, and without color distortion.

SSR MSRCR HE AHE

ESIHE AGCWD POA MIPOA

Figure 12. Plot of the enhancement results for each algorithm.

5.3.2. Objective Evaluation Analysis

Table 10 lists the pixel mean values obtained using each enhancement algorithm. It is
clear from the table that the pixel mean values of ESIHE and HE are higher than those of
the other algorithms, are located between [129.6689, 150.8542], and have higher brightness.
However, both ESIHE and HE are global-enhancement algorithms. For forest canopy
images, if no special treatment is applied to the bright areas, the bright regions are bound
to be over enhanced if the pixel mean value after enhancement is too high. This is best
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demonstrated by the enhancement results of ESIHE and HE in Figure 12. The pixel mean
values of AHE and AGCWD were similar and were all in the range of [59.4392, 87.7792].
This indicates that their enhanced images have low brightness and cannot be effectively
enhanced. The pixel mean values of SSR and MSRCR were between [0.11069, 0.25879],
which were much lower than those of the other algorithms. This indicates that the enhanced
image has almost no change and the enhancement fails. Canopy images enhanced based
on the POA algorithm are volatile in terms of pixel mean value, and the pixel mean value
is approximately 110 on L2, L4, and S1–S4, which is visually better for low-illumination
canopy images. However, the pixel average is higher on L3 and N1–N4 and even reaches
188.433 on N1, which is in a severe exposure state. This is due to the poor stability of the
POA algorithm and the failure of the enhancement of individual images. The MIPOA
algorithm, on the other hand, has strong optimization accuracy and good stability. Better
pixel averages were obtained for each test image. There was no excessive fluctuation,
moderate brightness, or good visual effect.

Table 10. The pixel mean values obtained by each enhancement algorithm.

Image SSR MSRCR HE AHE ESIHE AGCWD POA MIPOA

L1 0.1738 0.13045 131.8026 67.8067 146.486 62.3378 136.4606 109.3775
L2 0.1719 0.13563 133.5489 68.4875 146.1617 67.1037 110.8766 111.2707
L3 0.15534 0.12036 134.7179 64.849 148.5695 62.4672 168.6012 120.3972
L4 0.18598 0.22468 131.4676 72.198 146.7958 65.8371 116.2406 101.3712
N1 0.15872 0.1227 135.4125 66.5866 150.6597 61.5617 188.433 102.1638
N2 0.17623 0.12525 133.672 72.8189 150.8542 62.2017 152.6776 99.47
N3 0.18877 0.13811 132.7017 75.5299 150.6192 65.7029 136.6966 122.2561
N4 0.17676 0.11069 133.8923 71.693 150.8456 62.4132 150.3798 97.7514
S1 0.20991 0.13783 130.432 76.9887 144.8233 59.4392 109.4696 116.9768
S2 0.22319 0.15324 129.6689 78.1447 143.5475 64.6676 89.5116 95.4927
S3 0.25879 0.18499 131.1036 87.7792 149.5625 67.4396 105.4981 105.9425
S4 0.18871 0.129 131.9709 69.6043 144.9612 59.1859 97.461 113.904

Table 11 presents the average gradient values obtained using each enhancement
algorithm. As shown in Table 11, the MIPOA-based enhancement algorithm has clear
advantages. This is better than other contrast algorithms, especially in N2 and N4 images,
which are canopy images with complex backgrounds, intricate forest trees, and small
branches and leaves hidden in a dark background that cannot be distinguished. The suc-
cessful improvement in the contrast of the N2 and N4 images illustrates the effectiveness of
MIPOA in contrast enhancement. In addition, the AHE algorithm achieved good results in
terms of contrast improvement, slightly lower than MIPOA, and ranked second. The POA
competes strongly for enhancing the L2, S2, and S3 images; however, its stability needs
to be improved. It outperformed the SSR and MSRCR algorithms only for L3 and N1, re-
spectively. The average gradient values obtained by the SSR and MSRCR algorithms were
between 0.17349 and 0.30519, which were much lower than those obtained by the other
algorithms. This indicates that their enhanced images showed almost no improvement in
contrast, making them unsuitable for enhancing the contrast of the forest canopy images.
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Table 11. The average gradient value obtained by each enhancement algorithm.

Image SSR MSRCR HE AHE ESIHE AGCWD POA MIPOA

L1 0.21476 0.20568 69.1124 89.4665 61.4729 77.6979 79.9959 99.7079
L2 0.19032 0.18063 56.2363 75.94 50.707 67.689 73.2809 73.0566
L3 0.17349 0.1756 57.4847 76.2796 51.3378 68.4572 46.9917 76.4251
L4 0.22796 0.22468 64.5598 91.166 56.9781 79.205 96.3159 103.6209
N1 0.19555 0.1966 59.3725 86.5276 52.35 75.8051 20.6108 90.2516
N2 0.24722 0.22833 77.0218 103.7641 66.945 89.3605 72.1111 122.0603
N3 0.26527 0.24528 80.1178 112.7574 69.2948 95.1207 99.7179 115.1481
N4 0.24952 0.19933 79.3524 106.9948 69.2884 91.052 77.5816 126.5218
S1 0.23557 0.20088 64.1875 85.7273 57.2292 67.9809 90.4239 93.6418
S2 0.22838 0.19447 59.6667 83.6017 53.9296 63.4942 87.7947 87.8751
S3 0.32679 0.30519 77.4858 109.9073 67.0062 94.2225 123.0046 123.2372
S4 0.22359 0.19739 58.668 83.7094 52.9611 69.3839 86.7325 96.788

In summary, each enhancement algorithm’s subjective and objective evaluations show
that the enhancement method based on the MIPOA proposed in this study achieves better
results in enhancing low-illumination forest canopy images. It effectively improves the
image brightness and contrast and the defects of low brightness and unclear image details
in low-illumination forest canopy images. The details of the dark areas in the enhanced
image are prominent, and the details of the bright regions are preserved. The visual colors
are bright and vivid.

6. Conclusions and Outlook

In summary, each enhancement algorithm’s subjective and objective evaluations show
that the enhancement method based on the MIPOA proposed in this study achieves better
results in enhancing low-illumination forest canopy images. It effectively improves the
image brightness and contrast and the defects of low brightness and unclear image details
in low-illumination forest canopy images. The details of the dark areas in the enhanced
image are prominent, and the details of the bright regions are preserved. The visual colors
are bright and vivid.

• The nonlinear decreasing coefficient, Hardy–Weinberg theorem, and diversity variant
operation are incorporated into the POA mathematical model to further enhance the
algorithm’s ability to explore, exploit, and escape local optimal solutions. The exper-
imental results of the benchmarking function demonstrate that the performance of
MIPOA is comprehensively improved and surpasses the five POA variant algorithms
in terms of optimization search accuracy, stability, convergence, and statistical analysis.

• IBF is an effective method for improving the contrast of an image; however, its pa-
rameters require manual configuration, and parameter selection is inefficient. In IBF
parameter optimization, the MIPOA outperforms PSO, ChOA, FAG, HWOA, and POA
in FSIM, entropy, and CII. This indicates that the MIPOA algorithm improves the
optimization accuracy of the IBF parameters such that the enhanced canopy im-
age exhibits less distortion, contains rich information, and demonstrates effectively
enhanced contrast.

• Based on the characteristics of low brightness and uneven distribution of forest canopy
images, a segmented gamma correction function was designed to increase the bright-
ness of dark areas while avoiding over-enhancement of the bright regions. In low-light
forest canopy image enhancement, the MIPOA-based enhancement method achieves
moderate pixel averages and high average gradients, which are superior to those
of six traditional image enhancement methods: SSR, MSRCR, HE, AHE, ESIHE,
and AGCWD.

• Nevertheless, this study has certain limitations. To prevent overexposure of the bright
regions, the segmented gamma correction function does not perform any processing
on the bright areas. This preserved the brightness of the bright regions. In the event



Forests 2024, 15, 1783 27 of 30

that the image is exposed and conceals its details, the processing effect of the proposed
method, although superior to traditional enhancement algorithms, is not as effective
as that of the canopy image with low and normal illumination. Therefore, further
development of the segmented gamma correction function is necessary to expose
the high-brightness areas. Additionally, the MIPOA algorithm demonstrates strong
superiority in the benchmark function, which can be applied to practical engineering
problems, such as structural optimization.
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