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Abstract: Cunninghamia lanceolata (Lamb.) Hook accounts for 12% of the total forest area in southern
China, second only to Masson pine forests, and is an important part of the forest landscape in this
region, which has a significant impact on the overall forest structure in southern China. In this study,
we used kernel density analysis, landscape index calculation, variance test, and Markov prediction to
analyze and forecast the evolution trend of landscape pattern in the central area of C. lanceolata in ten
years. The objective is to investigate the change trend of the spatial pattern of C. lanceolata landscape
in the long time series and its possible impact on zonal vegetation, as well as the macro-succession
trend of C. lanceolata under the current social and economic background, and to make a scientific and
reasonable prediction of its future succession trend. The current and future forecast results show
that the landscape fragmentation degree of C. lanceolata is intensified, the erosion of bamboo forest
is continuously intensified, and the landscape quality is continuously low. These results provide a
reference for the future development direction of C. lanceolata and emphasize the need for targeted
C. lanceolata management strategies in the future development of C. lanceolata, emphasizing the
strengthening of monitoring, controlling harvesting, and managing bamboo competition in order to
balance wood production with landscape quality and ecosystem stability.

Keywords: C. lanceolata; landscape dynamics; spatiotemporal evolution; landscape types; forecasts

1. Introduction

Planted forests are becoming increasingly important in global forestry, natural resource
conservation, and climate change policies [1]. They play a critical role in restoring forest
functionality at the landscape level [2]. While the total forest area decreased from 4.28 billion
hectares to 3.99 billion hectares between 1990 and 2015, with percent global forest cover
dropping from 31.85% to 30.85%, the area of planted forests increased from 167.5 million
hectares to 277.9 million hectares, representing a rise from 4.06% to 6.95% of the total
forest area. This increase was most rapid in the temperate zone, particularly in East Asia,
followed by Europe, North America, and Southern and Southeast Asia [3]. C. lanceolata
is an abbreviation for Cunninghamia lanceolata (Lamb.). Hook is an evergreen conifer that
naturally occurs in the subtropical region of central–southern China, where it has been
cultivated as a timber species for over 1000 years [4]. C. lanceolata is a unique wood species
in China, with a wide distribution range extending from the Qinling Mountains and the
Huaihe River basin in the north to the Nanling Hills in the south. C. lanceolata used to be
the main tree species in the forestry economy of south China. With the diversification of
China’s forestry economy and the replacement of C. lanceolata wood by artificial materials,
the economic status of C. lanceolata is gradually declining [5,6]. It is very important for the
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future development of C. lanceolata to explore the macro-succession trend in this social and
economic background.

C. lanceolata is an evergreen conifer and one of China’s most significant commercial tree
species [7]. It is among the most preferred plantation timber species in China, recognized
for its high wood quality, rapid growth, straight stems, and strong bending resistance [8].
With the rapid expansion of C. lanceolata, the practice of establishing consecutive plantations
on harvested C. lanceolata lands has been adopted [9]. Current research on C. lanceolata
primarily focuses on its carbon sequestration capacity [10–12], site quality [13,14], site
conditions [15,16], nutrient cycling [17–19], and other micro-level aspects. The Ninth
National Forest Inventory indicates that C. lanceolata covers an area of 98.667 million
hectares and has a volume of 755 million cubic meters, accounting for one-fourth and one-
third of China’s total plantation area and volume, respectively. As part of sustainable forest
management, forest managers must incorporate visual landscape management into their
plans [20]. With forest plantations often established on harvested lands, forest harvesting
represents a significant change in land use types worldwide [21]. Understanding the future
changes in land use types of changes and forest landscape patterns of C. lanceolata in the
central production region of southern China is essential for effective policy-making and
management of these plantations.

Landscape dynamics is a scientific field that studies changes in landscape patterns
over time, involving the effects of natural processes and human activities on the spatial
structure and function of landscapes [22]. As the global environment changes and human
activities intensify, understanding landscape dynamics becomes increasingly important
for ecosystem conservation and sustainable land use. C. lanceolata occupies 12% of the
total forest area in southern China, second only to Masson pine forests, and constitutes a
major component of the forest landscape in the region. It is very important to study the
dynamic evolution of the C. lanceolata landscape pattern in the central production area of
South China for the ecology and sustainable development of this area. In recent years, the
research of landscape dynamics mainly focuses on the following aspects: analyzing the
spatial pattern of landscape change through remote sensing technology and GIS [23,24],
establishing simulation models to predict the future trend of change [25–27], and assessing
the impact of human activities on natural ecological processes [28,29]. These studies not
only reveal the complex mechanisms of landscape change but also provide important
references for ecological protection and environmental planning. The in-depth study of
landscape dynamics not only helps to reveal the long-term effects of natural and human
factors on the ecosystem but also provides an important scientific basis for coping with
global environmental changes and formulating regional development plans and ecological
protection policies [30,31]. This paper aims to explore the process of landscape change and
its driving factors in the study area through the comprehensive use of remote sensing data
and simulation models, so as to provide a scientific basis for ecological protection and land
use planning in the region.

Landscape succession is an important concept in ecology, which refers to the natural
evolution of landscape patterns and the structure and function of ecosystems over time.
The succession process can be a primary succession dominated by natural factors, such as
the growth of new vegetation after a volcanic eruption, or a secondary succession, such as
the restoration of ecosystems after deforestation. This process involves the gradual recon-
struction and stabilization of ecosystems and is an important basis for understanding the
dynamic changes in the natural environment [32]. In recent years, the study of landscape
succession has made important progress in forest, grassland, wetland, and other ecosys-
tems [33–35]. The research methods have gradually expanded from the traditional field
survey to the integrated application of remote sensing technology, geographic information
systems (GISs), and ecological models [36–38], which provide support for large-scale and
long-term landscape succession monitoring and analysis [39]. Based on remote sensing
data, the process of landscape succession in the southern central producing area of C. lance-
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olata was analyzed, and the Markov model was used to predict it in order to provide a
reference for ecosystem management in this area.

The central production regions of C. lanceolata include Zhejiang, Fujian, Jiangxi, Hunan,
Guizhou, and the Guangxi Zhuang Autonomous Region. The spatiotemporal evolution
trends of landscape types and landscape patterns associated with C. lanceolata in these six
provinces (and autonomous regions) merit further exploration and study. Previous research
has predominantly concentrated on the conversion of natural forests to plantations [40–42],
with limited investigation into the transitions of landscape types between C. lanceolata and
the surrounding landscapes.

The purpose of this study was to explore the change trend of the landscape spatial
pattern of C. lanceolata in long time series and its possible impact on zonal vegetation, and
to explore the macro-succession trend of C. lanceolata under the current socio-economic
background. In this research, ArcGIS, IDRISI CA-Markov, Fragstats, and other analysis
tools were employed to analyze and predict the spatio-temporal evolution of landscape
pattern change in the central region of C. lanceolata. These results provide a scientific basis
for the sustainable management and landscape management of C. lanceolata in the future.

2. Materials and Methods
2.1. Data and Processing
2.1.1. C. lanceolata Database

The primary data for this study are derived from the Forest Second Type Inventory,
which is conducted by the China National Forestry and Grassland Administration. This
inventory aims to assess the distribution, quantity, quality, and ownership of forests,
providing an objective representation of forest conditions across China. Our research
primarily utilizes the attribute named “dominant tree species” and the spatial information
of the subcompartment. The database includes data from the years 2010, 2015, and 2020,
covering all 31 provinces of China, excluding Hong Kong, Macao, and Taiwan.

For this study, the central production regions of Cunninghamia lanceolata (Lamb.). Hook
were selected, including six provinces: Zhejiang, Fujian, Jiangxi, Hunan, Guizhou, and
Guangxi. According to the data of the ninth national forest resources inventory, the area
of C. lanceolata in the six provinces was 104,475.64 km2, and the area of C. lanceolata in the
country was 127,331.68 km2. The C. lanceolata in the study area accounts for 82.05% of the
C. lanceolata in China, which is widely representative. Using the forest resources database,
vector data of C. lanceolata in these six provinces were extracted based on the condition
“dominant species = 310,000” (310,000 being the species code for C. lanceolata in the forest
resources database) for the years 2010, 2015, and 2020. The vector data for C. lanceolata in
these six provinces for the years 2010 to 2020 were then merged to obtain the distribution
data for the central production regions of C. lanceolata. The study area is mainly distributed
from 21◦ N to 31◦ N latitude and 27◦ E to 30◦ E longitude. (see Figure 1).

1 
 

 
Figure 1. The study area of Cunninghamia lanceolata (Lamb.). Hook distribution.
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2.1.2. Forest Structure Index Selection

Tree chest diameter, referred to as DBH (Diameter at Breast Height), refers to the
diameter of the trunk from the ground surface of the chest height, one of the most basic
factors in the determination of standing trees. Standing tree volume in forested areas,
quantified as HOST (Hectare Of Standing Tree) per unit area, serves as an indicator of local
wood productivity under the ecological conditions of the forest. Trees are crucial both
economically and ecologically. As trees age, the growth of all forests follows predictable
overall trends [43].

DBH is an important index to evaluate forest health and tree growth status, which
can reflect the age structure and growth process of the stand. In general, as the stand ages,
the DBH of the trees gradually increases. In economic forest management, DBH is the key
index to predict wood yield. A higher DBH means a larger wood size and higher economic
value for forestry operators and decision makers, helping to make sound harvesting
plans. In forest management, HOST is an important reference index for making cutting
plans, regeneration plans, and evaluating the effect of forest restoration. The sustainable
utilization of forest resources can be ensured by controlling cutting intensity reasonably
and maintaining a certain amount of HOST. AG (Age Group) refers to the classification of
trees into different groups according to their age, which helps to understand the structural
characteristics and dynamic changes in forests. The three indexes of DBH, HOST, and
AG were selected to comprehensively understand the growth state, productivity, and
structural characteristics of C. lanceolata. These indicators provide a key reference for
scientific management, optimization of management strategies, and sustainable utilization
of C. lanceolata in the study area and are also an important means to maintain the ecosystem
function of C. lanceolata.

2.2. Research Methods
2.2.1. ArcGIS Kernel Density Analysis

Kernel density analysis is a spatial statistical method that can effectively reveal the
spatial distribution characteristics of forest indicators, such as tree species density, tree
diameter distribution, biomass, etc. Through kernel density analysis, the discrete forest plot
data can be transformed into a continuous density distribution map so as to visually show
the distribution of indicators in different regions. Kernel density analysis can help identify
“hot spot” areas of certain forest indicators, that is, areas with higher or more concentrated
indicator values. For forest resource managers, this helps to identify areas of focus for
conservation or management. Kernel density analysis has the advantages of revealing
spatial distribution characteristics, identifying hot spots, eliminating spatial inhomogeneity,
applying multiple indicators, providing decision support, and simple operation in forest
index research. It has been widely used in spatial ecology and forest management and is an
important tool to analyze the spatial structure and dynamic changes in forest ecosystems.

Let f be its probability density function. The kernel density estimation [44] is as follows:

f̂h(x) = 1/n∑n
i=1 Kh(x − xi) = 1/nh∑n

i=1 K(
x − xi

h
) (1)

Here, K represents the kernel function (which satisfies the properties: non-negative,
integrates to 1, conforms to the properties of probability density, and has a mean of 0);
h > 0 is a smoothing parameter.

In this study, kernel density analysis was used to visualize the southern C. lanceolata
so that the distribution and aggregation degree of each selected index (DBH, HOST, AG) in
the study area could be seen more intuitively.

2.2.2. Landscape Pattern Index Selection

C. lanceolata is the main body of the forest landscape in the study area, and the change
in its landscape pattern index will have a great impact on the forest landscape in the study
area. The study of landscape patterns holds significant practical implications for land
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use types of planning [45]. Landscape pattern indices can comprehensively reflect the
ecological system of a region; thus, the selection of landscape pattern indices is a crucial
step in landscape pattern research. Based on the scale of the study area and practical
considerations, our research ultimately selected five landscape pattern indices: patch
density (PD), number of patches (NP), Largest Patch Index (LPI), Landscape Shape Index
(LSI), and Aggregation Index (AI). The calculation formulas and ecological significance of
PD, NP, LPI, LSI, and AI are as follows [46]:

(1) PD represents the density of a certain type of patch in the landscape, reflecting the
overall heterogeneity and fragmentation of the landscape as well as the degree of
fragmentation of a particular type, indicating the heterogeneity per unit area of the
landscape. Its formula is as follows:

PD = NP/A (2)

In the equation, NP represents the number of patches; A represents the total area of
the landscape or patches; PD represents patch density.

(2) NP reflects the spatial pattern of the landscape and is often used to describe the
heterogeneity of the entire landscape. Its value is significantly positively correlated
with the fragmentation of the landscape; generally, a larger NP indicates higher
fragmentation, while a smaller NP indicates lower fragmentation. Its formula is
as follows:

NP = n(NP ≥ 1) (3)

At the class level, NP equals the total number of patches of a specific patch type in
the landscape, while at the landscape level, NP equals the total number of all patches in
the landscape.

(3) LPI helps to identify the modal or dominant types within a landscape. Its magnitude
determines the dominant species in the landscape and ecological characteristics such
as internal abundance. Changes in its value can alter the intensity and frequency of
disturbances, reflecting the direction and strength of human activities. Its formula is
as follows:

LPI = (amax/A)× 100 (0 < LPI ≤ 100) (4)

where LPI represents the proportion of the total landscape area occupied by the largest
patch of a particular patch type.

(4) LSI is a shape index of patches within landscape patterns. It measures the complexity
of shapes by calculating the deviation between the shape of a patch within an area
and that of a circle or square of the same area, with a circle chosen as the reference in
this study. Its formula is as follows:

LSI = E/2
√

πA (5)

where E represents the total length of all patch boundaries in the landscape, and A denotes
the total area of the landscape.

(5) AI examines the connectivity between patches of each landscape type. A smaller
value indicates a more fragmented landscape. Its formula is as follows:

AI = [gii/(max → gii)](100) (6)

where “gii” represents the number of similar adjacent patches for the corresponding
landscape type.

This study conducted a change analysis of five landscape indices, namely patch density
(PD), number of patches (NP), Largest Patch Index (LPI), Landscape Shape Index (LSI), and
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Aggregation Index (AI), for C. lanceolata in the study area from 2010 to 2020, using Fragstats
4.2 and ArcGIS 10.8.2. The change data of its landscape index in ten years were obtained.

2.2.3. One-Way Analysis of Variance

One-way analysis of variance (ANOVA), also referred to as one-dimensional analysis
of variance, is employed to determine whether significant differences exist in the mean
values of dependent variables when a single control factor is examined at various levels.
One-way ANOVA operates under the assumption that the variances of observations are
equal across groups of independent normal samples and different levels of control variables.

This study used one-way analysis of variance to determine whether there were sig-
nificant differences between various indicators in the study area. Finally, all the data in
this study conform to normal distribution. We chose a p-value of 0.05 to test whether there
were significant differences in the indicators.

2.2.4. GM (1,1) Gray Forecasting and IDRISI CA-Markov Forecasting

Many forecasting methods require a large number of samples to generate reliable
predictions. If the sample size is small, it will often lead to significant errors, rendering the
predictive model ineffective. The gray model is suitable for modeling and forecasting in the
case of limited information and has the advantage of high computational efficiency. The
sample size of our study was small, so we adopted a gray prediction model. This approach
allowed our study to make reasonable predictions about DBH and HOST of C. lanceolata in
the study area in 2025 and 2030.

Let X(0) = (x(0)(1), x(0)(2), . . ., x(0)(n)) and X(1) = (x(1)(1), x(1)(2), . . ., x(1)(n)) be termed as
the original form of the GM(1,1) model.

X(0)(K) + ax(1)(k) = b (7)

The original sequence X(0) = (x(0)(1), x(0)(2), . . ., x(0)(n)) must be non-negative, where
x(0)(k) ≥ 0 for k = 1, 2, . . ., n.

The Markov model is a mathematical model that describes the transition probability
of the system between different states, which can reflect the evolution trend of the system
in time [47]. It is very suitable for predicting the trend of forest landscape types over time,
such as the conversion between different forest types. Through the Markov model, we
can quantitatively describe the distribution of landscape types at a certain point in the
future so as to understand the long-term change trend. Forest landscapes are typically
composed of multiple vegetation types that involve complex ecological processes and
human disturbances. Markov prediction model can effectively predict the dynamic changes
in forest landscape in time and space and provide scientific basis for long-term ecological
management and planning. It not only has the advantages of simple model structure and
low data requirement but also reflects the complex transformation relationship between
different landscape types through transition probability, so it is a common forecasting tool
in landscape ecology research [48].

The classification of landscape types in our research adheres to the “Technical Regula-
tions for Forest Resource Planning and Design Survey” (GB/T 26424-2010) [49], integrating
existing classification systems with the specific conditions of the study area. The land
classes in our research area are categorized into seven types: “Coniferous Forest” (CF),
“C. lanceolata” (CL), “Deciduous Broad-leaved Forest” (DBF), “Evergreen Broad-leaved
Forest” (EBF), “Bamboo Forest” (BF), “Non-Wood Forest” (NWF), and “Shrubbery” (S).
Using ArcGIS tools, we overlaid the raster data for land classes from 2010 to 2015 with the
“Raster Calculator” tool. The results of the overlay analysis were processed to generate
the land transfer matrix for the period 2010–2015. The same methodology was applied
to obtain the land transfer matrix for 2015–2020. A landscape types heatmap was created
using Origin. Applying the calculation method of Markov chain to Markov analysis, the
main purpose is to predict the possible changes in some variables in a certain interval in
the future according to the current situation and the trend of change as a basis for some
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decisions. In line with the research on the future change trend of C. lanceolata in our re-
search, it provides a decision-making basis for the future C. lanceolata, guides the planting
of C. lanceolata, optimizes the landscape pattern, and improves the impact of ecological
service systems. The Markov model has been widely used as a mature forecasting method
in past landscape prediction [50].

In this study, a GM model is selected to predict the small sample data (DBH and
HOST), and whether the maximum relative error is less than 0.1 is selected to test whether
the prediction accuracy meets the requirements. The Markov model is used to predict large
sample data (AG). Moreover, select whether the Kappa coefficient is greater than 0.95 to
test whether the prediction accuracy meets the requirements.

3. Results
3.1. Changes from 2010 to 2020

The distribution area of C. lanceolata was calculated to be 104,475.64 km2 in 2010,
114,183.12 km2 in 2015, and 107,393.80 km2 in 2020 (see Table 1). The results showed that
from 2010 to 2015, the area of C. lanceolata trees initially decreased and then increased,
resulting in an overall upward trend. The nuclear density analysis method was used to
obtain Figure 2 (see Figure 2), and the results showed that the C. lanceolata was mainly
distributed in the provincial junction. The analysis of variance showed that the variance
was small, and the data showed a central trend. The ANOVA test showed that the p-value
(see Table 2) < 0.05, indicating significant differences among the data.
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Table 1. Descriptives of Cunninghamia lanceolata (Lamb.). Hook area in the study area.

Time Provinces Sum (km2) Std. Deviation Std. Error

2010

Zhejiang 9219.63 0.0429 0.0001
Fujian 16,250.92 0.0355 0.0001
Jiangxi 24,707.67 0.0864 0.0002
Hunan 28,141.20 0.0412 0.0000

Guizhou 12,130.24 0.0571 0.0001
Guangxi 14,025.98 0.0444 0.0001

2010 Total 104,475.64 0.0529 0.0000

2015

Zhejiang 8907.98 0.0382 0.0001
Fujian 16,953.60 0.0338 0.0000
Jiangxi 26,364.50 0.0692 0.0001
Hunan 31,139.69 0.0269 0.0000

Guizhou 13,275.22 0.0526 0.0001
Guangxi 17,542.13 0.0356 0.0000

2015 Total 114,183.12 0.0417 0.0000

2020

Zhejiang 5120.78 0.0288 0.0001
Fujian 17,835.89 0.0309 0.0000
Jiangxi 20,500.36 0.0591 0.0001
Hunan 30,833.88 0.0254 0.0000

Guizhou 13,918.27 0.0445 0.0001
Guangxi 19,184.61 0.0175 0.0000

2020 Total 107,393.80 0.0323 0.0000

Table 2. ANOVA of C. lanceolata area in the study area.

Time Mean Square F Sig.

2010
Between Groups 222.020 92,606.776 0.000
Within Groups 0.002

2015
Between Groups 116.565 73,016.865 0.000
Within Groups 0.002

2020
Between Groups 106.528 112,542.614 0.000
Within Groups 0.001

The results of variance analysis and descriptive statistics (see Table 3) show that
over the span of a decade, Fujian Province exhibits the highest DBH among C. lanceolata,
followed by Guizhou Province and Zhejiang Province. As shown in Table 3, the DBH
of C. lanceolata in Zhejiang, Jiangxi, Hunan, and Guizhou Provinces decreased from 2010
to 2020. In contrast, the DBH of C. lanceolata increased in Fujian Province and Guangxi
Province. The results obtained using nuclear density analysis show a growing concentration
of C. lanceolata at the junction of Hunan Province, Guizhou Province, and the Guangxi
Zhuang Autonomous Region. Conversely, dispersion tendencies are noted at the boundary
of Hunan Province and Jiangxi Province, while the western regions of Hunan Province
exhibit an increasing clustering of plantations (see Figure 3). The ANOVA test showed that
the p value (see Table 4) < 0.05, indicating significant differences in DBH data.

Table 3. Descriptives of DBH (Diameter at Breast Height) of C. lanceolata from 2010 to 2020.

Time Provinces Mean (cm) Std. Deviation Std. Error

2010

Zhejiang 10.9747 7.0826 0.0177
Fujian 10.8885 11.4197 0.0169
Jiangxi 8.6142 5.1496 0.0100
Hunan 8.8383 6.4960 0.0061

Guizhou 11.9981 5.0687 0.0093
Guangxi 8.2638 6.1404 0.0088
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Table 3. Cont.

Time Provinces Mean (cm) Std. Deviation Std. Error

2015

Zhejiang 9.3255 5.5730 0.0099
Fujian 12.9501 7.8988 0.0109
Jiangxi 7.7304 5.2170 0.0078
Hunan 8.2975 6.2981 0.0050

Guizhou 10.0713 6.3404 0.0099
Guangxi 7.0161 6.2784 0.0069

2020

Zhejiang 10.8303 5.3241 0.0117
Fujian 12.3165 6.2370 0.0076
Jiangxi 8.5330 4.9624 0.0073
Hunan 8.7075 6.4787 0.0050

Guizhou 10.6292 6.9666 0.0088
Guangxi 9.1259 5.3860 0.0038
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Table 4. ANOVA of DBH.

Time Mean Square F Sig.

2010
Between Groups 905,849.8115 17,099.8198 0.0000
Within Groups 52.9742

2015
Between Groups 2,660,814.7543 65,654.7089 0.0000
Within Groups 40.5274

2020
Between Groups 1,642,293.9479 45,852.5832 0.0000
Within Groups 35.8168

The results of variance analysis and descriptive statistics (see Table 5) show that there
was an initial decrease in HOST, followed by an overall increase throughout the study
period. Furthermore, the kernel density analysis highlights the highest concentrations of
HOST at the junction of Hunan Province, Guizhou Province, and the Guangxi Zhuang
Autonomous Region, with a notable concentration observed in the western regions of
Hunan Province (see Figure 4). Similarly, the ANOVA test showed that the p value (see
Table 6) < 0.05, indicating significant differences in HOST data.

Table 5. Descriptives of HOST (Hectare of Standing Tree) of C. lanceolata from 2010 to 2020 (m3/ha).

Time Provinces Mean (m3/ha) Std. Deviation Std. Error

2010

Zhejiang 53.3572 50.9612 0.1273
Fujian 69.1531 88.1475 0.1307
Jiangxi 51.7211 54.6548 0.1061
Hunan 43.5043 48.4025 0.0455

Guizhou 66.5043 56.4866 0.1035
Guangxi 56.1886 61.2703 0.0880

2015

Zhejiang 16.0943 28.0921 0.0497
Fujian 28.7024 31.3702 0.0434
Jiangxi 24.7725 27.8304 0.0415
Hunan 29.0762 30.8306 0.0246

Guizhou 30.3879 26.6103 0.0415
Guangxi 45.5262 27.3487 0.0300

2020

Zhejiang 81.7874 58.6021 0.1292
Fujian 98.2726 72.9156 0.0893
Jiangxi 64.0243 61.1007 0.0898
Hunan 44.0280 43.3374 0.0333

Guizhou 87.2493 82.0854 0.1038
Guangxi 77.8488 68.5524 0.0483

Table 6. ANOVA of HOST.

Time Mean Square F Sig.

2010
Between Groups 55,878,087.8300 15,368.1212 0.0000
Within Groups 3635.9739

2015
Between Groups 26,222,084.5636 30,572.9058 0.0000
Within Groups 857.6903

2020
Between Groups 461,796,762.5213 114,641.2038 0.0000
Within Groups 4028.1918
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From 2010 to 2020, the proportion of AG, in descending order, was middle-age,
young, mature, near-mature, and overly mature. Middle-age forests represented the largest
proportion, which decreased annually, while overly mature forests constituted a very small
proportion, which increased annually. (see Table 7) The kernel density analysis indicates
that the concentration of AG at the junction of Hunan Province, Guizhou Province, and the
Guangxi Zhuang Autonomous Region is steadily increasing. In contrast, the concentration
at the boundaries of Hunan Province and Jiangxi Province, as well as between Jiangxi
Province and Zhejiang Province, is consistently decreasing (see Figure 5).

Table 7. Area change of C. lanceolata AG (Age Group) from 2010 to 2020 (km2).

Time 2010 2015 2020

Young forests 23,395.05 29,511.20 27,199.76
Middle-aged forests 36,234.15 33,494.16 30,942.68
Near-mature forests 18,146.54 16,704.48 16,019.92

Mature forests 16,182.93 20,268.36 19,183.04
Overly mature forests 2858.58 5595.96 6565.92
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3.2. Landscape Pattern Analysis

The results of the landscape index calculation show that the patch density (PD) in
the Zhejiang and Jiangxi Provinces exhibited significant variations, whereas the patch
density in Guizhou, Fujian, Hunan, and the Guangxi Zhuang Autonomous Region showed
minimal changes. The number of patches (NP) varied considerably in the Guangxi Zhuang
Autonomous Region and Jiangxi Province but experienced little change in Hunan, Fujian,
Guizhou, and Zhejiang Provinces. The Largest Patch Index (LPI) demonstrated substantial
changes in Guizhou, Hunan, Jiangxi, and Zhejiang Provinces, while Fujian Province and the
Guangxi Zhuang Autonomous Region exhibited only minor changes. Regarding the Land-
scape Shape Index (LSI), the Guangxi Zhuang Autonomous Region experienced significant
changes while the other provinces showed only slight variations. For the Aggregation Index
(AI), the changes in Zhejiang and Jiangxi Provinces were more pronounced, whereas Fujian,
Hunan, Guizhou, and the Guangxi Zhuang Autonomous Region experienced smaller
changes (see Table 8).
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Table 8. Changes in PD, NP, LPI, LSI, and AI indices of C. lanceolata in each province.

PD NP LPI LSI AI

2010

Zhejiang 27,478,845,737 25,330 7.4055 218.0021 54.6594
Fujian 31,811,233,532 51,693 1.0974 329.6525 48.3455
Jiangxi 13,830,726,039 34,229 6.6019 271.6493 65.5297
Hunan 32,375,079,383 91,151 11.2396 412.357 50.9083

Guizhou 32,338,620,289 39,212 19.1478 272.5236 50.5562
Guangxi 33,000,974,703 46,317 12.9958 279.6785 52.8619

2015

Zhejiang 29,144,787,038 25,975 5.9629 217.5481 53.9803
Fujian 30,911,166,626 52,365 1.1617 334.1866 48.7055
Jiangxi 15,467,268,336 40,830 7.7604 294.76 63.7886
Hunan 29,025,755,433 90,397 4.934 416.8057 52.8168

Guizhou 32,293,578,811 42,855 17.6564 283.9271 50.7931
Guangxi 27,329,992,026 47,986 13.7886 309.2127 53.3764

2020

Zhejiang 49,515,257,097 25,353 2.8022 204.4358 42.9447
Fujian 29,642,668,643 52,793 1.22 339.1266 49.2328
Jiangxi 22,431,985,973 45,953 1.7076 301.868 57.8779
Hunan 29,559,731,307 91,214 4.7844 418.6568 52.3838

Guizhou 32,376,130,978 45,087 27.8926 288.873 51.0907
Guangxi 27,839,775,931 53,436 13.7517 330.0671 52.4077

The results showed that the fragmentation of C. lanceolata landscape was intensified,
which led to the deterioration of landscape quality. The landscape heterogeneity was higher
in the west and lower in the east. The landscape stability was stronger in the west, and the
landscape dynamics were stronger in the east.

3.3. Gray Prediction and CA-Markov Prediction
3.3.1. GM Model DBH and HOST Prediction

The maximum relative errors for the forecasted DBH and HOST were 0.06% and 4.68%,
respectively, both of which are less than 0.1. This indicates a high level of model fitting
accuracy. As depicted in Figure 6, from 2020 to 2030, C. lanceolata in the study area is
expected to exhibit an increasing trend in both DBH and HOST.
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Figure 6. Gray prediction.

From 2020 to 2030, the DBH of C. lanceolata increased from 10.00 cm to 11.73 cm,
resulting in a growth rate of 17.30%. Additionally, the HOST volume rose from 75.02 cubic
meters per hectare to 228.81 cubic meters per hectare, demonstrating a growth rate of
205.00% (see Table 9).

Table 9. Predicted values of GM model.

Time 2010 2015 2020 2025 2030

DBH (cm) 8.28 9.23 10.00 10.83 11.73
HOST (m3/ha) 48.73 29.10 75.02 136.66 228.81
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From 2020 to 2030, C. lanceolata in the study area exhibited a slight upward trend
in DBH, while the HOST demonstrated a significant upward trend with a considerable
increase (see Figure 6).

The predicted results showed that the DBH and HOST of C. lanceolata would increase
to different degrees in the future. This indicates that our management of C. lanceolata is
expected to be a process of continuous improvement.

3.3.2. Land Transfer Matrix Analysis and Forecasting

The results showed that the main landscape type of C. lanceolata was the conversion
between C. lanceolata and other coniferous forests, followed by the conversion of evergreen
broad-leaved forests (see Table 10). The invasion degree of bamboo forest to C. lanceolata
was the largest, and the relationship between shrub and C. lanceolata was the weakest (see
Figure 7). More attention should be paid to the intrusion of bamboo forests into C. lanceolata.

Table 10. Landscape types of transfer matrices, 2010–2020 (km2).

2010–2015

CF CL DBF EBF BF NWF S TA

CF 70,385.1 6727.2 1131.36 2600.32 796.24 2500 844.56 84,984.8
CL 4312.24 81,342.48 1344 3109.4 2217.7 2055.9 888.12 95,269.84

DBF 381.92 1240.52 11,276.2 1029.4 91.56 275.2 95.36 14,390.16
EBF 2468.72 5695 2515.44 40,013.64 875.8 927.64 658.92 53,155.16
BF 351.56 1531.68 178.4 470.04 24,633 284.32 127.44 27,576

NWF 656.92 1517.2 87.6 563.76 187.92 14,876 72.96 17,961.88
S 442.84 460.6 190.64 756.32 60.24 266.36 8773.4 10,950.44

TA 78,999.3 98,514.68 16,723.64 48,542.88 28,862 21,185 11,461 304,288.3
2015–2020

CF 57,713.4 6636.12 717.12 5278.04 1142.72 1920.1 519.44 73,927
CL 4282.64 82,257.2 691.72 4296.12 2583.36 1951.5 373 96,435.52

DBF 769.68 1335.56 10,056.04 1900.2 343.28 451.68 160.88 15,017.32
EBF 2272.92 4134.88 912.8 36,268.44 1111.52 788.56 346.6 45,835.72
BF 327.56 1217.44 120.6 769.4 26,353.5 297.96 106.08 29,192.56

NWF 1274.56 2558.92 157.16 903.44 765.04 21,453 311.4 27,423.2
S 1232.6 1044.12 432.36 1412.6 134.76 753.08 7021.6 12,031.12

TA 67,873.4 99,184.24 13,087.8 50,828.24 32,434.2 27,616 8839 299,862.4
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3.3.3. CA-Markov AG Prediction

Kappa coefficient is 0.9803 for the AG prediction in 2025 and 0.9924 for 2030, indicating
a high level of consistency in the CA-Markov model’s simulation results and demonstrating
its feasibility.

Figure 8 (see Figure 8) illustrates a notable shift in the AG distribution of C. lanceolata
within the study area from 2020 to 2025, whereas the changes observed from 2025 to
2030 are less pronounced. The results show that the AG structure changes greatly during
2020–2025, while the AG structure changes little and tends to be stable during 2025–2030.
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The result (see Table 11) shows that during 2020–2030, C. lanceolata in the study area
would undergo a process of replacement. It will be dominated by young and middle-aged
forests, which will lead to its C. lanceolata landscape quality continuing to show a low state.

Table 11. Changes in area of C. lanceolata AG (km2).

Time 2015 2020 2025 2030

Young forests 29,511.20 27,199.76 27,182.76 28,227.36
Middle-aged forests 33,494.16 30,942.68 31,345.84 31,481.76
Near-mature forests 16,704.48 16,019.92 18,386.96 18,198.20

Mature forests 20,268.36 19,183.04 20,201.48 19,238.60
Overly mature forests 5595.96 6565.92 6682.24 6653.36

4. Discussion
4.1. The Distribution of C. lanceolata Tends to Be Concentrated, and the Area, DBH, and
HOST Increase

Our research indicates that C. lanceolata is primarily distributed along the borders
of several provinces. Such as, the border region between Fujian and Jiangxi Provinces is
characterized by the Wuyi Mountain range, while the Luoxiao Mountain range marks the
boundary between Jiangxi and Hunan Provinces. Additionally, the Longji Ravi Mountains
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delineate the border between Hunan, Guizhou, and Guangxi Provinces. These mountain-
ous areas experience a subtropical monsoon climate and are typically situated at altitudes
between 1000 and 2000 m above sea level. This aligns with previous studies suggesting
that the most suitable habitat for C. lanceolata includes subtropical monsoon climates, abun-
dant rainfall, moderate temperatures, and predominantly cultivated vegetation, coniferous
forests, and shrubs [51]. Furthermore, the altitude range of 1000 to 2000 m is consistent with
earlier findings [52]. This distribution pattern is largely influenced by China’s administra-
tive divisions, which are often defined by natural terrain features. In the southern provinces
of China, provincial boundaries are frequently marked by mountainous regions. Conse-
quently, these border areas are predominantly mountainous, underscoring that C. lanceolata
remains a key species for afforestation species in the southern mountainous regions.

From 2010 to 2020, the area of C. lanceolata increased from 104,475.64 km2 to
107,393.80 km2, an increase of 2.79%. The mean DBH increased from 8.28 cm to 10.00 cm by
20.77%. Ha of active wood increased from 48.73 m3/ha to 75.02 m3/ha, with an increase
of 53.95%. The results showed that the area, DBH, and HOST of C. lanceolata increased to
different degrees in the study area. The average DBH and HA of active wood of C. lanceolata
increased obviously when the area increased little. This indicates that the management
level of C. lanceolata has been continuously improved during this period. This trend aligns
with previous proposals advocating for the intensive cultivation of C. lanceolata in future
afforestation efforts [53].

4.2. Succession of Landscape Pattern of C. lanceolata from 2010 to 2020

From 2010 to 2020, the study area experienced significant landscape fragmentation,
characterized by increased fragmentation, decreased aggregation, and greater landscape
heterogeneity in the western region compared to the east. This indicates a higher degree of
habitat diversity and biological richness in the western landscapes, which contributes to
overall landscape diversity and stability. In contrast, the lower landscape heterogeneity
in the eastern region suggests reduced habitat diversity, relative biological scarcity, and a
more uniform landscape, resulting in increased landscape instability. The intensification
of landscape fragmentation in the study area aligns with previous findings, attributing to
shifts in land use. Specifically, from 2010 to 2015, C. lanceolata transitioned from economic
forests and non-forest land to a predominance of economic forests and non-forest land,
turning into C. lanceolata plantations. Then, from 2015 to 2020, C. lanceolata shifted from
being encroached upon by evergreen broad-leaved forests to encroaching upon them [54].
This cyclical trend in the C. lanceolata area correlates with forestry management practices in
southern China. Following reforms in land tenure systems, land was allocated to individual
households, leading to a decline in large-scale afforestation efforts. Instead, afforestation
became the responsibility of individual households, resulting in a reduction in large-scale
C. lanceolata establishment observed in the 1980s. Overall, the exacerbation of landscape
fragmentation in the study area was anticipated, given the expansion of urban develop-
ment associated with urbanization. Urbanization is expected to expand construction land,
resulting in a more fragmented and irregular landscape [55]. Furthermore, the acceleration
of urbanization in the study area, driven by China’s urbanization strategy, has substantially
increased urbanization levels and rates [56], exacerbating landscape fragmentation. Re-
gional disparities in urbanization and economic development between eastern and western
regions [57] contribute significantly to differences in habitat diversity within the study area.
However, forest fragmentation is not a unique trend in C. lanceolata. Globally, over half
of the temperate broadleaf and mixed forest biome and nearly one quarter of the tropical
rainforest biome have been fragmented or removed by humans, as opposed to only 4% of
the boreal forest. Overall, Europe had the most human-caused fragmentation and South
America the least [58]. Despite many improvements in legislation to better protect biodi-
versity, urban sprawl is still increasing in Europe, and new transport infrastructure is being
constructed at a rapid pace. Fragmentation has significant effects on various ecosystem
services and wildlife populations [59]. The grasslands of southern South America were
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rapidly converted to croplands, starting a fragmentation process that is still ongoing [60].
Whether it is Europe or South America, the landscape fragmentation phenomenon deserves
our research attention in order to put forward relative solutions for the landscape fragmen-
tation phenomenon in order to delay the worsening trend of the landscape fragmentation
phenomenon. The research of the landscape fragmentation trend of C. lanceolata, which is
greatly affected by human activities, can provide guidance for landscape restoration in the
future planting policy.

The AG structure of the forests shows no significant changes, with young and middle-
aged forests comprising approximately 58%, indicating a low landscape quality of C. lance-
olata. Land transfer matrix results reveal that from 2010 to 2020, C. lanceolata interconverted
with other coniferous and evergreen broad-leaved forests, with bamboo forests being the
most invasive. In southern China, C. lanceolata and Masson pine plantations have tra-
ditionally dominated artificial forests, but C. lanceolata has shown greater advantages in
investment, profitability, and timber yield compared to the predominantly Masson pine
plantations [61]. Additionally, the rotational intercropping of C. lanceolata and Masson
pine in common southern artificial forests contributes to soil fertility improvement and
increased forest growth [62]. Thus, despite the ongoing interconversion between C. lance-
olata and other coniferous forests, the overall planting area of C. lanceolata continues to
slowly increase. Economic forests transitioning into C. lanceolata have increased, while
intrusion into C. lanceolata has remained relatively stable. This is largely due to China’s
emphasis on ecological civilization construction and sustainable development, where the
forestry sector has begun to focus on long-term ecological benefits and address conflicts
between short-term economic benefits for farmers and the multifunctional stability of
C. lanceolata [63]. Looking at the results for 2010 and 2020 in Figure 7, C. lanceolata continues
to alternate between other coniferous and evergreen broad-leaved forests, showing a slow
overall upward trend. Bamboo forest areas continue to steadily increase, maintaining stable
intrusion into C. lanceolata, consistent with previous research findings [64,65]. From the
above studies, it can be concluded that the C. lanceolata and the surrounding tree species in
the study area are basically stable, but further attention should be paid to the trend of the
more invasive bamboo forest invading the C. lanceolata.

Our study finally showed that the landscape pattern of C. lanceolata showed a trend of
increasing fragmentation in the long time series. In the surrounding zonal vegetation, the
erosion trend in bamboo forest to C. lanceolata was intensified. All these will have a negative
impact on the C. lanceolata, which is the main body of forest landscape in southern China,
and further affect the overall forest landscape structure in southern China. Therefore, in
the management of C. lanceolata and the formulation of intervention policies, we should
pay attention to the fragmentation of the C. lanceolata landscape and the intensification of
the erosion trend in bamboo forests.

4.3. Predicting Forest Landscape Dynamics for Improved Management Using GM and
CA-Markov Models

The implementation of ecosystem services by plantations largely depends on effective
management [66]. Effective management strategies require better reporting and investi-
gation [67]. With the continuous progress of science and technology, the use of remote
sensing and GIS technology to help understand the spatial distribution and change in forest
land has become a new technical means [68–70]. The survey is a scientific detection of the
current situation of forest resources, and the prediction of forest landscape changes can
understand the dynamic changes in forest pattern and structure and maintain the stability
of ecosystems. The prediction of forest landscape change can provide the future trend
and change direction for forest managers, so as to help formulate scientific management
plans, optimize forest management, and rationally allocate land resources. Forest landscape
dynamic model prediction technology is also constantly developing [71–73].

In our study, the GM model and the CA-Markov model are used to obtain prediction
results with the required accuracy. The prediction results of the GM model show that,
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based on the data from 2010 to 2020, the DBH and HOST of C. lanceolata will increase
steadily during the decade from 2020 to 2030. The results showed that the C. lanceolata in
the study area was healthy, stable, and productive. Management is effective. This will help
to enhance the ecological service functions of forests, including the provision of wood and
other forest products, the conservation of biodiversity, the maintenance of water and soil,
and the enhancement of carbon sink capacity.

4.4. Limitation and Future Direction

Using a variety of tools, our research is the first to examine the landscape dynamics
and succession of a wide range of C. lanceolata over the past decade and to predict landscape
changes for the next ten years. In terms of data sources, the Chinese Forestry and Grassland
Administration employed a method that combines field investigations with remote sensing
interpretation to ensure the accuracy of the forest inventory. Previous studies primarily
relied on remote sensing data [74], whereas the data in this study are comparatively more
rigorous and accurate. In this study, the most accurate data and a variety of methods
were used to investigate the changes in spatial distribution and landscape pattern of
C. lanceolata from 2010 to 2020, the changes in stand characteristics of C. lanceolata, and the
alternate evolution of C. lanceolata and surrounding tree species. The spatial distribution
and landscape pattern changes in C. lanceolata in the next 10 years were predicted. It
is important to acknowledge the limitations of this study. Due to constraints in data
acquisition, our research is confined to a ten-year timeframe, which is relatively brief.
Subsequent research endeavors could explore longer time series and more precise data
analysis by incorporating high-resolution remote sensing imagery and national forest
inventory data.

Due to extensive data processing and the partial absence of data in certain provinces,
our research prioritizes selecting the most representative central production regions of
C. lanceolata as the focus area. We hope that this study will contribute to the future de-
velopment of C. lanceolata and encourage further research in this field. For the continued
advancement of this research, it is essential to address the data gaps from the missing
provinces and to apply more accurate predictive models.

5. Conclusions

This study analyzed the spatial distribution changes, age structure dynamics, and
interactions with other forest types of C. lanceolata from 2010 to 2030. The main conclusions
are as follows:

(1) 2010–2020: Intensified concentration and fragmentation: Kernel density analysis
was used to analyze the spatial distribution trend of C. lanceolata during this period.
The results showed that the degree of artificial concentration and fragmentation of
C. lanceolata trees intensified during this period. The distribution of C. lanceolata is
more concentrated near the provincial boundary, and the landscape fragmentation is
intensified, resulting in the overall landscape quality decline. Landscape heterogeneity
is high in the west and low in the east, stable in the west and dynamic in the east,
which is influenced by both natural factors and human activities. In the future, it
is necessary to adjust planting structure, improve landscape connectivity, manage
according to local conditions, reasonably control cutting intensity, and strengthen
monitoring and research, which can effectively alleviate the problems of C. lanceolata
distribution concentration and landscape fragmentation and improve the overall
landscape quality and ecosystem stability.

(2) 2020–2030: Stable age structure and low landscape quality: The landscape index
method and Markov prediction method were used to analyze the landscape quality
and age structure of C. lanceolata. The results showed that the landscape quality of
C. lanceolata was low continuously during this period. Due to continuous cutting and
renewal for economic purposes, the age structure of C. lanceolata is still dominated
by young forest and mature forest, which has little change. This practice maintains
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high timber yields but leaves the landscape of very low quality, raising concerns
about the long-term stability of the ecosystem. In the future, the landscape quality
of C. lanceolata can be effectively improved by optimizing harvesting and renewal
strategies, increasing tree species diversity, strengthening ecological monitoring, and
implementing ecological compensation policies so as to achieve long-term stability
and sustainable development of the ecosystem while ensuring wood production.

(3) 2020–2030: Improved intensive management: The variance test method and GM
prediction method were used to analyze the changes in DBH, HOST, and AG forest
structure indexes of C. lanceolata during this period. The results showed that the
artificial intensive management of C. lanceolata was improved continuously. Although
the total area increased slowly, the DBH and HOST of C. lanceolata increased signif-
icantly, indicating improved management measures. These strategies can increase
wood yields and have a positive impact on growth and stand structure. In the future,
through continuous optimization of intensive management measures, increasing the
application of scientific and technological means, and promoting diversified manage-
ment, the wood yield of C. lanceolata can be further improved, and the forest structure
and ecological function can be improved to achieve double improvement of economic
and ecological benefits.

(4) Forest conversion and bamboo invasion: Land transfer matrix and Markov pre-
diction method were used to analyze the transformation trend of C. lanceolata and
surrounding zonal vegetation. The results showed that from 2010 to 2020, C. lanceolata
was mainly converted to other coniferous forests and evergreen broad-leaved forests,
and bamboo forest was the most invasive. From 2020 to 2030, the area of C. lanceolata
will gradually increase, and the area of bamboo forests will continue to expand, main-
taining pressure on C. lanceolata. This indicates that managing bamboo competition is
still a key challenge to improving the landscape quality of C. lanceolata. In the future,
the competitive pressure of bamboo forest on C. lanceolata can be effectively reduced,
and the landscape quality of C. lanceolata can be improved by strengthening the ex-
pansion management of bamboo forest, optimizing the stand structure of C. lanceolata,
scientifically planning land use, and formulating long-term management plans.

These findings provide a scientific basis for the sustainable management of C. lanceolata,
emphasizing the need for monitoring eastern regions, controlling cutting intensity, and
managing bamboo expansion to enhance landscape quality and ecosystem stability. Of
course, there are some limitations in this study. For example, the lack of data in some
provinces led us to select only the most representative central producing areas as study
areas. In the future, a larger and more comprehensive study can be conducted according
to the improvement of subsequent data. According to the evolution trend in landscape
patterns explored in this study, more solutions can be sought to solve the problems of
landscape fragmentation of C. lanceolata and the intrusion of bamboo forest. Of course,
more accurate prediction models are also a research direction.
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