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Abstract: The prompt acquisition of precise land cover categorization data is indispensable for the
strategic development of contemporary farming practices, especially within the realm of forestry
oversight and preservation. Forests are complex ecosystems that require precise monitoring to
assess their health, biodiversity, and response to environmental changes. The existing methods
for classifying remotely sensed imagery often encounter challenges due to the intricate spacing of
feature classes, intraclass diversity, and interclass similarity, which can lead to weak perceptual
ability, insufficient feature expression, and a lack of distinction when classifying forested areas
at various scales. In this study, we introduce the DASR-Net algorithm, which integrates a dual
attention network (DAN) in parallel with the Residual Network (ResNet) to enhance land cover
classification, specifically focusing on improving the classification of forested regions. The dual
attention mechanism within DASR-Net is designed to address the complexities inherent in forested
landscapes by effectively capturing multiscale semantic information. This is achieved through
multiscale null attention, which allows for the detailed examination of forest structures across
different scales, and channel attention, which assigns weights to each channel to enhance feature
expression using an improved BSE-ResNet bilinear approach. The two-channel parallel architecture
of DASR-Net is particularly adept at resolving structural differences within forested areas, thereby
avoiding information loss and the excessive fusion of features that can occur with traditional methods.
This results in a more discriminative classification of remote sensing imagery, which is essential for
accurate forest monitoring and management. To assess the efficacy of DASR-Net, we carried out
tests with 10m Sentinel-2 multispectral remote sensing images over the Heshan District, which is
renowned for its varied forestry. The findings reveal that the DASR-Net algorithm attains an accuracy
rate of 96.36%, outperforming classical neural network models and the transformer (ViT) model.
This demonstrates the scientific robustness and promise of the DASR-Net model in assisting with
automatic object recognition for precise forest classification. Furthermore, we emphasize the relevance
of our proposed model to hyperspectral datasets, which are frequently utilized in agricultural and
forest classification tasks. DASR-Net’s enhanced feature extraction and classification capabilities
are particularly advantageous for hyperspectral data, where the rich spectral information can be
effectively harnessed to differentiate between various forest types and conditions. By doing so,
DASR-Net contributes to advancing remote sensing applications in forest monitoring, supporting
sustainable forestry practices and environmental conservation efforts. The findings of this study
have significant practical implications for urban forestry management. The DASR-Net algorithm can
enhance the accuracy of forest cover classification, aiding urban planners in better understanding
and monitoring the status of urban forests. This, in turn, facilitates the development of effective
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forest conservation and restoration strategies, promoting the sustainable development of the urban
ecological environment.

Keywords: multiscale hollow attention; BSE-ResNe; dual-channel parallel architecture; sustainable
forestry

1. Introduction

Modern remote sensing (RS) technology provides an extraordinary volume of Earth
observation information, including a diverse range of satellite imagery and LiDAR datasets.
These essential tools are vital for worldwide environmental oversight and are key in a
variety of uses such as identifying land cover types, tracking alterations in landscapes,
and observing and evaluating the impact of natural calamities [1–4]. The precision of
land cover classification is of particular significance in the context of forest management
and conservation, where detailed and accurate information is essential for a multitude of
forestry-related tasks. Forests are complex and dynamic ecosystems that require meticulous
monitoring to support activities like refined agricultural delineation, earth observation,
regional environmental protection, and urban planning [5–8]. Moreover, the integration of
satellite imagery and LiDAR data provides a comprehensive view of forest structure [9],
which is crucial for understanding the habitat suitability for wildlife, assessing the impact
of climate change on forest ecosystems, and planning sustainable forestry practices. The
precision in land cover classification empowers scholars and decision-makers to make
educated choices about preservation initiatives, afforestation schemes, and the reduction
in biodiversity decline in wooded regions. As a result, progress in remote sensing tech-
niques for categorizing land cover significantly enhances comprehensive environmental
surveillance and is directly relevant to the sustainable administration and conservation of
forest environments.

The classification of remote sensing imagery entails the recognition and grouping of
individual pixels or areas within the image according to their spectral attributes, thereby
allocating them to distinct categories. This procedure includes choosing suitable feature pa-
rameters to sort image components into separate, nonintersecting classification domains. In
land cover classification, expert-deciphered category features, pixel-level category features,
and object-oriented features can be utilized for classification, and these feature types can
complement each other. Conventional approaches predominantly rely on surface attributes
like pixel dimensions, form, hue, and texture for the categorization of images [10–14]. The
raw spectral features of an image can be singleband or multiband images. Since multi-
band images contain richer information, they usually achieve better classification results.
However, it is not the case that the higher the number of bands is, the better the classifi-
cation effect. Having too many bands will not provide richer information but will lead
to data redundancy [15]. A common practice is to obtain a vegetation index by linear or
nonlinear operations, which reflects the image characteristics of two or more bands. Often,
several raw bands and various index bands are combined for classification. Moreover,
machine learning techniques including support vector machines (SVMs) [16], random
forests (RFs) [17], K-means clustering (K-Means) [18], and K-nearest neighbor (KNN) algo-
rithms [19] are applied for the classification of remote sensing imagery. Nonetheless, these
standard methods require enhancement to address more intricate challenges.

Attributed to their ability to engage in hierarchical learning, these techniques are
proficient in depicting complex nonlinear associations [20], which are instrumental in tasks
such as categorization, the integration of data, and the reduction in dimensions [21–23]. In
the domain of land cover classification, deep learning has achieved promising outcomes,
particularly with models like U-Net [24], capable of yielding robust classification outcomes
despite there being a smaller dataset for training. Several investigations have utilized
adjusted loss functions and augmentation strategies to enhance model resilience against
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class imbalance issues in datasets [25]. Moreover, advanced deep learning approaches
have been tailored for specialized imaging tasks, including a refined U-Net model for
medical and brain tumor segmentation purposes [26–28]. When dealing with intricate or
diverse data types, U-Net and its variants might exhibit a tendency towards biased feature
extraction, which can result in significant discrepancies in predictive outcomes [29].

To overcome the hurdles associated with the intricate and high-definition nature of
remote sensing imagery, both convolutional neural networks (CNNs) [30] and recurrent
neural networks (RNNs) [31] have become prevalent tools in the realm of remote sensing
image analysis. Research by Y. LeCun et al. [32] highlights that CNNs are particularly
sensitive to variations in the rotation and scale of input images. Moreover, CNNs are not
adept at capturing extended spatial relationships, leading to the integration of RNNs for
tasks that demand long-term dependency management. A. Graves [33] has pointed out that
RNNs grapple with issues like gradient disappearance and explosion during the processing
of long-duration dependencies. The challenge of efficiently transmitting information across
longer sequences can hinder the RNN’s ability to learn these dependencies.

In addition, the absence of parallel processing in RNNs is a notable constraint. How-
ever, when performing deep neural network training, the gradient vanishing/exploding
problem and network degradation problem are often encountered, which can negatively
affect the network’s training effectiveness and generalization ability. To address these prob-
lems, the residual neural network (ResNet) [34] introduces residual connectivity, which
allows the network to learn a deeper level of feature representation. ResNet is able to
train deeper networks and achieve higher accuracy after solving the problems of gradient
vanishing and information loss. However, traditional ResNet does not fully consider the
correlation and importance between feature channels, which may lead to the model’s poor
utilization of all feature channels [35]. To address this issue, the squeeze-and-excitation
residual neural network (SE-ResNet) has been introduced to enhance the efficacy of remote
sensing image processing. It incorporates the squeeze-and-excitation module, which allows
for the dynamic refinement and prioritization of various channels within the feature map.
This module can fine-tune the significance of each channel in the feature map, taking into
account the overall channel content. It adaptively allocates weights by considering the
global context of each channel, enabling the network to focus more on the channels that are
crucial for the task at hand and to diminish the reliance on less relevant channels [36]. This
ResNet-derived strategy has advanced the progress of semantic segmentation in remote
sensing imagery. Rather than discarding ResNet, our aim is to devise a novel architecture
that retains its benefits.

For the field of remote sensing imagery analysis, the adoption of the transformer
architecture, particularly the Vision Transformer (ViT), has seen a surge in interest among
scholars [37]. The transformer’s self-attention mechanism allows it to effectively encode
contextual relationships across the data, making it adept at handling the sequential nature
of remote sensing images. The inclusion of positional encodings in the transformer design
addresses the need to maintain the spatial order of pixels. The ViT model, pioneered by
Google [38], has demonstrated the potential of transformer-based approaches for image
classification tasks. In a related development, the work by Hong et al. [39] introduced the
SpectralFormal network, which capitalizes on the spectral information within hyperspectral
images to generate discriminative spectral embeddings, leading to improved classification
results. Additionally, recent studies [40,41] have proposed ViT variants that employ weight-
sharing strategies, allowing for consistent feature extraction across different parts of the
image, thereby optimizing the use of available data. The advantage of this processing is that
it enables the transformer to utilize the data more fully. Inspired by these excellent works,
we use the DASR-Net algorithm that fuses the attention mechanism of the dual attention
network (DAN) in parallel to the transformer to improve the DASR-Net algorithm of the
ResNet network. The DASR-Net framework is applied to multispectral remote sensing
data for land cover classification.
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To address the problems of insufficient U-Net feature expression capability and the
inconspicuous CNN differentiation of non-high-resolution images when classifying re-
mote sensing images under different scale targets, a new semantic segmentation network
framework for RS images, DASR-Net, is proposed, where one branch is a VIT network that
uses the DAN attention mechanism for VIT networks, and the other strand is a modified
version of ResNet that forms a parallel dual encoder structure. The DAN module, a pivotal
part of our VIT network, is crafted to extract features with enhanced segmentation powers.
Utilizing this module, we integrate features derived from a refined ResNet architecture in
a parallel branch. This fusion strategy allows for a more comprehensive grasp of diverse
image characteristics, enabling precise pixel-level classification in remote sensing imagery.

The primary advancements presented in this study are summarized as follows:

(1) The attention mechanism of DAN is constructed to focus on fully utilizing the correla-
tion between features and the importance of channels, thus alleviating the problem
of insufficient feature expressiveness when classifying remote sensing images under
different scale targets. In addition, DAN compensates for the problem of excessive
computational cost of VIT due to its global modeling capability.

(2) A BSE-ResNet network is constructed to allow information to propagate more freely
through the network. This architecture enables BSE-ResNet to adeptly capture
the nuanced features within the original image, concurrently reducing the loss of
fine details.

(3) The dual-channel parallel architecture is implemented to address structural discrep-
ancies, aiming to prevent information loss and an overabundance of feature fusion.
This architecture is particularly effective in recognizing feature types that exhibit high
similarity, ensuring that subtle differences are preserved and accurately identified
during the classification process.

2. Materials and Methods
2.1. Study Area Overview

Heshan District, nestled in the northern-central part of Hunan Province, lies at the
western bank of Dongting Lake and the lower reaches of the Zishui River. It spans a
geographical range from approximately 28◦16′ N to 28◦53′ N in latitude and from 112◦11′ E
to 112◦43′ E in longitude. The research area is illustrated in Figure 1.

Legend

Heshan District

Hunan province

(a) Heshan District Cartography

(b) Sentinel-2 Remote Sensing Imagery of Heshan District

Figure 1. Sentinel-2 remote sensing image of the study area. (a) Heshan District cartography: displays
the geographical layout of Heshan District in Hunan Province. (b) Sentinel-2 remote sensing imagery
of Heshan District: Shows the different land cover types and their spatial distribution.
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2.2. Preliminary Processing of Remote Sensing Imagery

On-site land cover data are vital for generating robust training and validation samples
for remote sensing image analysis. The reliability of these data is key to the accuracy of
classification results. During October 2021, we conducted field research to examine various
land use categories. We targeted aquaculture and agricultural plots over 100 square meters
for sampling, aiming to enhance the quality of training and validation samples.

The research presented herein utilizes a 10 m resolution multispectral image captured
by the Sentinel-2 satellite on 6 October 2021. To prepare the data, we initiated preprocessing
with atmospheric correction via the Sen2Cor tool to eliminate atmospheric interference
from the imagery. Subsequent steps included image enhancement and the creation of a
mask for feature isolation. In addition, to maintain consistent resolution, we resampled
the bands using SNAP8.0 software to ensure that they had the same 10 m resolution. For
the needs of this study, we selected four standard bands—Band 2, Band 3, Band 4, and
Band 8—for our analysis, utilizing ENVI5.3 software to synthesize these bands. These
bands span the visible and near-infrared spectrum, proving valuable for distinguishing
and classifying features. During the sample data collection phase, we delineated regions
of interest (ROIs) and assembled a corresponding sample library in the Heshan District of
Yiyang City, informed by prior knowledge and field investigations, as depicted in Figure 2.
Through these remote sensing data processing and analytical techniques, we secured high-
caliber training and validation samples, underpinning the classification precision and the
reliability of feature type identification within the study region.

0

100

200

300

400

500

600

700

800

900

Building Tree Water Lotus Pond Vegetable Rapeseed

Example of class labels in the sample library of Heshan District

training testing

training

testing

Heshan District

Figure 2. Dataset training and testing sample ratio.

2.3. DASR-Net Model

Aiming at the problem that the perception ability of the traditional model for targets of
different scales needs to be improved, the expression ability of the features is not strong, and
the differentiation is not obvious, this work presents the DASR-Net, a novel architecture
that merges the DAN attention mechanism with a refined residual neural network, as
shown in Figure 3. The DASR-Net is designed to include NDVI, NDWI, and BSE-ResNet,
and incorporates the DAN attention mechanism within a transformer framework. The
NDVI and NDWI spectral data are fused at the transformer’s input stage. Encoder-derived
features from the transformer are fused with those from the optimized residual network,
and the concatenated features are compressed by a dense layer. Classification is performed
using the RELU activation and a 1 × 1 convolutional layer, facilitating detailed pixel-wise
classification for multispectral imagery.
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Figure 3. Schematic of the DASR-Net architecture for the hyperspectral multispectral image classifi-
cation task.

2.3.1. Groupwise Spectral Embedding (GSE)

The spectral data within the remote sensing imagery, obtained from diverse locations,
indicate the absorption characteristics at various wavelengths. It is vital to detect the subtle
variations in these spectral signatures for effective feature classification. Even though
multispectral images possess a more limited band range than hyperspectral images, there
is still a need for stronger correlation among the available bands.

Suppose that we input a sequence of 1D pixels x = [x1, x2, x3, · · · , xm] ∈ R1×m. The
input of the transformer is obtained by the calculation of Equation (1).

A = wx (1)

where w ∈ Rd×1 represents the linear mapping that is applied across all spectral channels
in the sequence, with A ∈ Rd×m aggregating the resulting feature vectors. The Generalized
Spectral Embedding (GSE) is expressed in Equation (2):

Ȧ = WX (2)

In which W ∈ Rd×nsignifies the linear transformation matrix, X ∈ Rn×m denotes
the matrix of spectral attributes, and n indicates the count of adjacent spectral bands. We
divided the pixel sequence into six 1 × 1 sequences and generated six d × 1 sequences
in the BSE-RseNet branch according to different neighboring band settings. We chose
the optimal value of d = 2, determined by the experimental accuracy and the precision
of the prediction map. Within the transformer branch, we employed half of each pair
of contiguous sequences for fusion, thereby enhancing the interband correlation. For a
comprehensive illustration, see Figure 4.
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d=1/2
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…
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6

Figure 4. Visual representation of the evolution in feature embedding via collective spectral embedding.

2.3.2. Dual Attention Network (DAN)

The dual attention network enhances the feature representation of agricultural remote
sensing images by taking the output of DilateFormer as the input and calculating the
weight of each channel using the channel attention mechanism. The significance of various
channels in feature representation can be modified through the channel attention allocation
mechanism. By conducting weighted multiplication with the initial input, a weighted
feature representation is derived. Such a feature representation has a stronger segmentation
capability and further enhances the performance of the whole model.

First, DilateFormer adopts the “Dilated Spatial Encoding” method to expand the recep-
tive field of the transformer to effectively capture local and global contextual information
in remote sensing images. This approach incorporates multiscale cavity convolution within
the transformer architecture to enlarge the receptive field, thereby enhancing the feature
extraction capabilities for agricultural remote sensing imagery. Additionally, DilateFormer
introduces an adaptive sliding window dilated attention (SWDA) mechanism for adjusting
the attention weights between each pixel according to the surrounding pixels to address
complex background and target situations in agricultural remote sensing images, as shown
in Figure 5.

DilateFormer provides an effective solution to solve the long-range dependence prob-
lem in agricultural remote sensing. At the same time, the model maintains good com-
putational efficiency and adapts to inputs of different scales and resolutions, and the
DilateFormer algorithm improves the ability to recognize the differences between vari-
ous remote sensing feature categories by introducing the channel attention module. The
channel attention module can automatically adjust the importance of different channels to
distinguish specific feature classes more accurately. This is achieved by learning and uti-
lizing the information redundancy between bands in remote sensing images, which helps
to reduce the influence of redundant information and thus improves the robustness and
generalization ability of the model. The DilateFormer model connects the output slices and
then performs feature aggregation through a linear layer. This approach successfully solves
the long-range dependency problem while maintaining good computational efficiency.
Precision and robustness are vital for remote sensing image segmentation. By appending a
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channel attention module following the DilateFormer, the interrelation between the fea-
tures and the significance of the individual channels can be effectively harnessed, thereby
advancing the accuracy and robustness of the remote sensing image segmentation models.

Figure 5. DilateFormer attention mechanism.

Employing the DAN model with its channel attention mechanism significantly en-
hances the precision and consistency of segmentation in agricultural remote sensing images.
This approach provides an advanced technique for the analysis of such imagery and is
poised to further its impact in the agricultural remote sensing as technology progresses.

DAN mechanism represents an innovative network architecture that enhances fea-
ture extraction by integrating two synergistic attention mechanisms: spatial attention and
channel attention. This strategy significantly boosts the model’s proficiency in handling hy-
perspectral and multispectral data. The spatial attention mechanism is aimed at identifying
key regions within the input image that are crucial for classification tasks. It accomplishes
this through an attention map that highlights areas deserving focus while suppressing
irrelevant or noisy regions. By concentrating on areas containing valuable information,
the spatial attention mechanism helps to improve the signal-to-noise ratio in the feature
maps and reduces interference from noise. Once these significant regions are identified, the
spatial attention adjusts their weights to enhance the feature representation, allowing the
network to capture more details of these areas. On the other hand, the channel attention
mechanism adaptively recalibrates feature responses by assigning different weights to
various feature channels. In hyperspectral and multispectral data, each channel represents
a different spectral band, which may contain varying amounts of information. Channel
attention aids in identifying which channels contain more discriminative information. By
amplifying the feature responses of these channels, the accuracy of classification can be
improved. Through channel weighting, the channel attention mechanism can modulate the
intensity of the feature maps, ensuring that the network focuses on channels rich in informa-
tion and overlooks those with less. The DAN, with its dual attention mechanism, performs
feature fusion across both spatial and channel dimensions, more effectively extracting the
useful information from the data.

2.3.3. BSE-ResNet

This study introduces a detailed shallow-structured BSE-ResNet model that excels
in capturing global contextual details across various scales, with an emphasis on channel
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information. Within its deep layers, abundant in semantic content, the model assesses
channel-wise class relationships, aiming to enhance intraclass cohesion and interclass
semantic distinction, thereby boosting the model’s overall generalization capabilities.

The SE module’s concept involves training parameters that can modify and prioritize
channel significance within a feature map. By considering the overall channel data, it
assigns weights in real-time, allowing the network to focus on channels crucial for the
task at hand and to diminish the impact of less relevant channels. Moreover, in the realm
of agricultural remote sensing, the BSE-ResNet model can be applied to the examination
and interpretation of crop imagery. Utilizing the model’s shallow architecture and fine
detail, it can effectively encapsulate the global context about crop health and soil conditions,
emphasizing channel relevance. This enhances the precision of crop growth analysis and
aids in making informed agricultural decisions, as depicted in the Figure 6.

Figure 6. SE module.

The SE module is of great significance in applying remote sensing in agriculture. The
module mainly consists of two phases: the squeeze phase and the excitation phase. In
the squeeze phase, the SE module converts the feature maps of each channel into a single
value through the global average pooling operation to achieve the purpose of integrating
the channel feature information. This method not only concentrates on particular feature
subsets within individual channels but also merges comprehensive contextual information.
During the excitation stage, the SE module acquires the channel weights via two fully
connected layers. The initial fully connected layer serves to downscale the dimensionality,
thereby enhancing the module’s computational efficiency. The second fully connected layer
is used to learn the channel weights by mapping the individual values obtained earlier to
a weight vector equal to the number of input channels. Finally, a weighted summation
operation is performed on the features of each channel based on the learned weight vectors,
and the weighted feature map is obtained as the output of the SE module. SE-ResNet
is a deep learning model that combines the residual network (ResNet) and squeeze-and-
excitation (SE) modules. The model borrows the idea of residual connectivity in ResNet,
which solves the gradient vanishing and exploding problems in deep networks by jump
connectivity and improves the propagation and retention of features.

In agricultural applications, the scale operation is important to adjust the distribution
of the output feature maps of each residual block in the SE-ResNet network. The scale
operation scales and translates the feature maps by learning the learnable parameters
(gamma and beta) to fit the feature distributions of different layers and channels. In
addition, batch normalization can also achieve similar functions as scale operation and can
optimize the stability and convergence of the network through the learned parameters. To
further improve the generalization performance of the model and to increase stability and
accelerate convergence during training, we introduce regularization techniques and use
batch normalization in BSE-ResNet to reduce the risk of overfitting. This BSE-ResNet model
combined with a regularization technique has broad application prospects in agricultural
remote sensing, as shown in Figure 7.



Forests 2024, 15, 1826 10 of 22

Residual
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Figure 7. Schematic diagram of the improved BSE-ResNet structure based on the residual structure.

2.3.4. Assessment System

The three assessment criteria derived from the confusion matrix for the validation of
multispectral pixel classification are as follows: total accuracy (OA), mean precision (AA),
and the Kappa statistic.

(1) The calculation formula of OA is given in Equation (3) below. Give the Formula (3),

OA =
Tq + Tp

Tq + Fq + Tp + Fp
(3)

where Tq is true positive, the number of true examples, Fq is false positive, the number
of false-positive examples, Tp is true negative, the number of true negative examples,
and Fq is false negative, the number of false-negative examples.

(2) AA is the average precision, which is a more accurate evaluation index in agricultural
classification. Its calculation Formula (4) is as follows.

AA =
1
Y

Tq + Tp
Tp + Fq + Tq + Fp

(4)

where Y denotes the number of categories.
(3) The Kappa statistic evaluates the level of agreement between the actual and predicted

classifications of an agricultural model in practical testing scenarios. It is calculated
using the following Formula (5).

Kappa =
Px − Py

1 − Py
(5)

Px denotes the exact match of the observed data, while Py indicates the probability that
the classifier will yield a concordant prediction, aligning the classification outcome
with the actual Ground Truth.

3. Results
3.1. Feature Elimination Analysis

The results from the experimental assessments on the dataset for the research area
confirm the effectiveness of the network design put forth in this manuscript. The findings
are detailed in Table 1. The baseline ViT model achieved an overall accuracy of 94.63%,
indicating its suitability for multispectral image categorization. The integration of the
DAN module with ViT (ViT+ DAN) improved the overall accuracy to 96.76%, validating
the enhancement brought by the DAN mechanism in channel interaction. The SE-ResNet
module’s addition to ViT showed a better OA than the standalone ViT, with concurrent
improvements in the average accuracy and Kappa score, hinting at SE ResNet’s potential
to refine ViT’s categorization for specific classes in multispectral imagery. The combination
of ViT with the DAN module, including GSE band data, led to an average accuracy of
95.19%, underscoring the advantage of this feature fusion for multispectral image pixel
classification. The SE-ResNet model supplemented with the GSE module also saw a
boost in OA. Altering ViT’s attention to DAN’s, in parallel with SE-ResNet, and then
merging the features, resulted in an overall accuracy of 95.27%. Nevertheless, the DASR-
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Net outperformed with an OA of 96.36% when all the proposed modules were combined.
This demonstrates that the modules developed in this study are effective for classifying
agricultural land cover and contribute to refining the classification accuracy.

Table 1. Results of ablation experiments on the study area dataset using DASR-Net with different
module combinations. (Bold represents the best in the same type).

Different Methods
Different Module Metric

Time (s)
GSE DAN SEReNet OA (%) AA (%) Kappa

ViT × × × 94.63 91.44 0.9303 984.1
DASR -Net ✓ × × 94.89 91.57 0.9336 1173.24
DASR -Net × ✓ × 95.09 91.10 0.9362 1004.17
DASR -Net × × ✓ 95.09 91.17 0.9362 1480.55
DASR -Net × ✓ ✓ 95.19 91.62 0.9375 1442.84
DASR -Net ✓ ✓ × 95.22 92.05 0.9379 1131.63
DASR -Net ✓ × ✓ 95.27 92.43 0.9385 1681.18
DASR -Net ✓ ✓ ✓ 96.36 94.47 0.9527 1109.14

To assess the influence of training sample size on experimental outcomes, we randomly
drew samples ranging from 10% to 90% from the Heshan District dataset for training and
validation, with the remainder used for testing. Table 2 illustrates the results, indicating
that a higher sample proportion does not necessarily lead to improved accuracy and that
the noise is randomly distributed. Consequently, we opt for a 40% sample size for our
experiment to attain the optimal classification performance.

Table 2. The results of the model proposed in this paper under different proportions. (Bold represents
the best in the same type).

Ratio of Training
Class No. Metrics

Time (s)
1 2 3 4 5 6 7 OA (%) AA (%) Kappa

10% 84.00 99.27 92.30 95.34 99.26 80.95 97.14 95.82 92.61 0.9457 784.48
20% 86.27 97.45 96.15 94.25 98.90 90.47 97.14 96.19 94.38 0.9506 1013.04
30% 86.84 97.81 87.17 95.41 98.53 88.88 93.33 95.61 92.57 0.9430 1128.57
40% 96.07 99.09 94.23 96.00 98.53 84.52 92.85 96.36 94.47 0.9527 1109.14
50% 84.37 98.69 87.87 91.78 98.38 79.62 90.85 94.24 90.23 0.9249 1207.31
60% 95.31 92.05 93.90 86.92 97.93 87.34 90.07 98.90 89.32 0.9380 1124.42
70% 92.17 98.54 93.47 91.83 98.74 88.13 94.28 96.05 93.89 0.9487 1109.14
80% 87.74 98.45 88.57 90.57 98.90 87.83 95.35 95.59 92.49 0.9426 1078.08
90% 90.43 98.38 89.83 93.90 98.77 86.54 94.60 95.87 93.21 0.9464 826.18

Given that the Sentinel-2 satellite captures the data of Mt. Heshan with 13 spectral
bands while other satellites may not provide as many, despite all of them including RGB
and NIR bands, researchers often select a subset of 4 common bands (RGB + NIR) from the
13 to enhance the dataset’s generalizability for their experimental analysis. To investigate if
utilizing additional Sentinel-2 bands aids in the precise classification of land cover types
within the study area, we initially included the visible and near-infrared (VNIR) bands in
our experiment. Subsequently, we also incorporated the shortwave infrared (SWIR) bands,
along with all the available bands for comparative purposes. The findings are presented
in Table 3.
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Table 3. The results of the two models across different spectral bands. (Bold represents the best in the
same type).

Different Bands (Method)
Class No. Metrics

Time (s)
1 2 3 4 5 6 7 OA (%) AA (%) Kappa

4 bands (ViT) 86.59 97.50 88.04 87.25 98.42 87.11 95.10 94.63 91.44 0.9303 984.10
4 bands (DASR-Net) 92.17 98.54 93.47 91.83 98.74 88.13 94.28 96.36 94.47 0.9527 1109.14

4 bands + VNIR8 (ViT) 87.15 97.92 88.04 95.09 97.06 81.35 93.87 94.50 91.50 0.9286 693.47
4 bands + VNIR8 (DASR-Net) 88.26 98.75 86.95 93.79 98.53 85.42 93.87 95.52 92.23 0.9417 810.30

4 bands + SWIR 7(ViT) 86.03 98.44 86.95 94.44 98.63 79.32 92.65 94.70 90.93 0.9310 986.77
4 bands + SWIR7 (DASR-Net) 91.62 98.54 93.47 95.09 98.53 85.76 93.06 95.95 93.73 0.9306 1122.55

Full bands (ViT) 89.38 98.33 82.60 93.79 98.32 83.38 93.87 95.06 91.39 0.9358 862.45
Full bands (DASR-Net) 86.59 98.54 89.13 90.52 98.53 85.08 91.83 94.89 91.46 0.9336 1003.46

3.2. Multi-Method Comparison
3.2.1. Comparative Analysis of Multispectral Data

The outcomes of the quantitative classification using the three combined metrics—OA,
AA, and Kappa coefficient—along with the category-specific accuracies for the dataset of
the Heshan District study area are presented in Table 4. Among the tested methods, CNN
yielded the poorest overall performance, with lower OA, AA, and Kappa scores compared
to the other models. Specifically, the accuracies for water and rapeseed were notably
low at 8.69% and 8.57%, respectively. This is likely due to the limited number of bands
in multispectral imagery, leading to underfitting when using individual bands, which
hampers the CNN’s ability to extract meaningful features, whereas hyperspectral imagery
provides 200 bands of information. Despite this, CNN excels in classifying hyperspectral
images compared to most other methods. The conventional classifiers, SVM and KNN,
yielded reasonably good results with OAs of 93.95% and 93.72%, respectively, but struggled
with the classification of the building category. RNN, ViT, SF, and DASR-Net are all
deep learning-based spectral sequence classification techniques, and their performances
were closely aligned, highlighting the strength of deep learning in processing sequential
data. DASR-Net outperformed the other comparative models in terms of OA, AA, and
Kappa, and it also demonstrated superior performance across various categories, including
building, tree, and vegetable.

Table 4. The results of various algorithms. (Bold represents the best in the same type).

C N.
Different Methods

SVM KNN RF CNN RNN ViT SF DASR-Net

1 75.32 70.12 74.02 39.10 87.15 86.59 91.06 92.17
2 98.06 98.06 98.30 98.96 98.33 97.50 98.54 98.54
3 75.00 87.50 87.50 8.69 85.86 88.04 83.69 93.47
4 96.21 94.69 93.18 80.06 91.50 87.25 89.54 91.83
5 98.78 97.07 98.04 95.39 97.38 98.42 99.16 98.74
6 80.31 82.67 84.25 66.44 84.40 87.11 84.06 88.13
7 93.39 95.28 93.39 8.57 94.69 95.10 93.46 94.28

OA (%) 93.95 93.72 94.18 77.13 94.66 94.63 95.12 96.36
AA (%) 88.16 89.35 89.82 51.72 91.34 91.44 91.36 94.47
Kappa 0.9211 0.9184 0.9244 0.6971 0.9308 0.9303 0.9365 0.9527
time (s) 139.65 122.64 38.35 299.07 350.1 984.10 1047.64 1109.14

The classification maps for Heshan District generated by various models are displayed
in Figure 8. The study area within the square box has been annotated based on prior
knowledge and outdoor sampling data. In Figure 8, SVM misclassifies rapeseed entirely as
vegetables, leading to evident confusion. The CNN model exhibits inferior classification
outcomes across the entire study area, struggling to distinguish between categories with
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subtle differences within the dataset. The ViT, SF, and DASR-Net have better overall classi-
fication results, but locally, DASR-Net has better results. DASR-Net can better distinguish
between rapeseed and vegetables with more minor intragroup differences and does not
misclassify vegetables, and there is some improvement in the overall OA, AA, and Kappa,
as well as better graphing than ViT, which is of great value.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Results of different algorithms. (a) Image. (b) SVM. (c) KNN. (d) RF. (e) CNN. (f) RNN.
(g) Transformer (ViT). (h) SF. (i) DASR-Net.

In the right border of the prediction map where the various algorithms are compared,
under the blue category label for “water” in each algorithm, only our proposed algorithm
is able to accurately classify this “water” category, while the other algorithms fail to do so.
This clearly demonstrates the superiority of our algorithm in marginal areas. We speculate
that this is due to the DAN module in our algorithm.

3.2.2. Comparative Analysis of Hyperspectral Data

To evaluate whether the model introduced in this study yields superior qualitative
outcomes in terms of generalizability and applicability for classifying agricultural land
cover in hyperspectral imagery, we employ three agricultural-related hyperspectral datasets:
the WHU-Hi-HanChuan dataset, the HyRANK-Loukia dataset, and the Pavia University
dataset. These are used to benchmark against other contemporary and exemplary models
within the field to ascertain the qualitative outcomes. Presented here are the findings from
the HyRANK-Loukia, Pavia University, and WHU-Hi-HanChuan datasets.

(1) The HyRANK-Loukia dataset includes 176 spectral bands covering a wide range
from visible to near-infrared with an image size of 249 × 945 pixels. It contains
13,503 manually tagged pixels for 14 land cover types. This is shown in Table 5 below.

(2) The Pavia University dataset, captured by the ROSIS sensor(ROSIS (Reflective Optics
System Imaging Spectrometer) is developed and operated by the University Research
Center of Iceland — the Centre for Remote Sensing (CRS) at the University of Reyk-
javik) in 2003 at the University of Pavia, Italy, measures 610 × 340 pixels with a 1.3 m
GSD. It covers a spectral range of 430–860 nm, initially with 115 bands, 22 of which
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are water vapor absorption bands and are excluded, leaving 93 bands; the details are
in Table 6.

(3) The WHU-Hi-HanChuan dataset was gathered on 17 June 2016, between 17:57 and
18:46 in Hanchuan, Hubei, China, using a Leica Aibot X6 drone(The Leica Aibot
X6 is manufactured by Aibotix GmbH, a company founded in 2010 with its head-
quarters located in Kassel, Germany) with a 17 mm Nano-Hyperspec sensor(The
Nano-Hyperspec sensor is manufactured by Headwall Photonics, which is located
in Fitchburg, MA, USA). The session occurred under clear skies, with a temperature
around 30 °C and 70% humidity. The area, a mix of urban and agricultural, featured
buildings, water, and farmlands with seven crop types. The drone flew at 250 m,
capturing 1217 × 303 pixel images across 274 bands (400–1000 nm) with a spatial
resolution of about 0.109 m. The dataset, shown in Table 7, includes many shadowed
areas due to the angle of the low afternoon sun.

Table 5. Detailed division of label samples in the HyRANK-Loukia dataset. (The background color is
the corresponding color for each category during classification).

No. Name Train. Val. Test.
1 Dense Urban Fabric 14 15 259
2 Mineral Extraction Sites 3 4 60
3 Non Irrigated Arable Land 27 27 488
4 Fruit Trees 4 4 71
5 Olive Groves 70 70 1261
6 Broad-leaved Forest 11 11 201
7 Coniferous Forest 25 25 450
8 Mixed Forest 54 53 965
9 Dense Sclerophyllous Vegetation 190 189 3414

10 Sparce Sclerophyllous Vegetation 140 140 2523
11 Sparcely Vegetated Areas 21 20 363
12 Rocks and Sand 24 25 438
13 Water 69 70 1254
14 Coastal Water 23 22 406

Total 675 675 12,153

Table 6. Provides a detailed breakdown of the labeled sample distribution for the Pavia University dataset.
(The background color is the corresponding color for each category during classification).

No. Name Train. Val. Test.
1 Asphalt 331 332 5568
2 Meadows 932 933 16,784
3 Gravel 105 105 1889
4 Trees 153 153 2758
5 Painted metal sheets 67 67 1211
6 Bare Soil 251 252 4526
7 Bitumen 67 66 1197
8 Self-Blocking Bricks 184 184 3314
9 Shadows 48 47 852

Total 2138 2139 38,099
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Table 7. Provides a detailed breakdown of the labeled sample distribution for the WHU-Hi-HanChuan
dataset. (The background color is the corresponding color for each category during classification).

No. Name Train. Val. Test.
1 Strawberry 2236 2237 40,262
2 Cowpea 1137 1138 20,478
3 Soybean 514 515 9258
4 Sorghum 268 267 4818
5 Water spinach 60 60 1080
6 Watermelon 227 226 4080
7 Greens 295 295 5313
8 Trees 899 899 16,180
9 Grass 473 473 8522

10 Red roof 526 526 9464
11 Gray roof 845 846 15,220
12 Plastic 184 184 3311
13 Bare soil 456 456 8204
14 Road 928 928 16,704
15 Bright object 57 57 1022
16 Water 3770 3770 67,861

Total 12,875 12,877 231,777

Table 8 presents the classification outcomes for various models on the hyperspectral
dataset, including quantitative metrics such as OA, AA, and Kappa coefficient. The bold
figures in each row indicate the top performance for each category. Overall, the VIT model
yields the least favorable results, with lower OA, AA, and Kappa scores compared to the
other models. Figures 7–9 display the classification maps produced by different models on
the HyRANK-Loukia, Pavia University, and WHU-Hi-HanChuan hyperspectral datasets,
respectively.

Table 8. The performance of different algorithms on the three datasets. (Bold represents the best
performance of this category).

High-Resolution Evaluation
Different Methods

SVM KNN RF CNN RNN ViT SF DASR-Net

HyRANK-Loukia

OA (%) 73.63 79.42 77.59 84.15 78.07 75.82 77.31 85.11
AA (%) 74.42 80.76 80.41 85.53 80.19 78.15 79.56 86.56
Kappa 0.7141 0.7769 0.7625 0.8280 0.7625 0.7383 0.7541 0.8386

inference (ITS) 306.12 322.32 76.45 437.52 196.33 230.18 321.37 221.07

WHU-Hi-HanChuan

OA (%) 55.32 60.56 69.66 71.74 53.27 50.64 75.38 77.99
AA (%) 49.08 71.40 76.77 78.03 53.10 56.12 81.20 85.46
Kappa 0.4916 0.5564 0.6576 0.6787 0.4673 0.4486 0.7192 0.7508

inference (ITS) 180.93 179.65 39.51 240.57 114.84 137.58 201.27 135.16

Pavia University

OA (%) 71.97 70.83 69.28 81.93 78.35 68.83 74.95 84.15
AA (%) 76.65 79.92 80.01 86.21 84.05 77.69 83.30 85.53
Kappa 0.6320 0.6323 0.6196 0.7628 0.7223 0.6018 0.6797 0.7901

inference (ITS) 380.12 506.32 146.61 520.72 330.23 224.08 377.77 231.01

Overall, conventional machine learning algorithms such as SVM, KNN, and RF do
not excel across the three hyperspectral datasets, placing them in the mid- to lower-range
of classification performance based on the OA, AA, and Kappa metrics. In contrast, deep
learning approaches, particularly the traditional RNN, exhibit remarkable performance
in the WHU-Hi-HanChuan and Pavia University datasets. RNN surpasses traditional
classifiers in terms of qualitative metrics, highlighting the advantage of deep learning in
land cover classification tasks. Furthermore, CNNs excel in extracting spatial features from
extensive and continuous spectral data like hyperspectral imagery. Consequently, CNNs
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also achieve strong results on the three datasets, with the WHU-Hi-HanChuan dataset
showcasing the highest accuracy for CNNs, second only to our proposed method.

Among them, inference (ITS) represents the scale of the time-series throughput during
inference, which is a metric used to measure the time required for the model to make a
single prediction, with the unit being seconds. It can be observed that, apart from the RF,
our model is the fastest in terms of inference speed, indicating that our model exhibits
excellent performance in terms of inference time efficiency.

Compared with other methods, its classification accuracy on the three hyperspectral
datasets is undoubtedly optimal, which is also applicable to agricultural growing areas, as
shown in Figures 9–11.

In Figures 9–11, a comparison of the algorithms against the Ground Truth is provided.
In Figure 9, on the left side, algorithms c and d clearly show a confusion between the red
category “Dense Urban Fabric” and the yellow category “Non Irrigated.” In the central
area, only our proposed algorithm is able to accurately distinguish the small red “Dense
Urban Fabric” points without misclassifying them as green “Coniferous Forest” points.
In Figure 10, in the center of the image, on the blue block representing “Painted Metal
Sheets”, there are misclassifications by algorithms c, d, e, h, and i, with varying degrees of
confusion with the orange “Bitumen” small points. In the lower yellow block representing
“Self-Blocking Bricks”, misclassification and confusion are present in algorithms c, d, e, and
f, with some “Meadows” small points incorrectly classified. In Figure 11, apart from our
proposed algorithm, all other algorithms exhibit misclassification where the pink-bordered
category “Soybean” incorrectly includes green “Grass” small points within its edges. This
clearly demonstrates the superiority of our algorithm in terms of classification accuracy.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9. Classification maps of HyRANK-Loukia dataset ((a) Image. (b) Ground Truth. (c) SVM.
(d) KNN. (e) RF. (f) CNN. (g) RNN. (h) Transformer (ViT). (i) SF. (j) DASR-Net).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Classification maps of Pavia University dataset ((a) Image. (b) Ground Truth. (c) SVM.
(d) KNN. (e) RF. (f) CNN. (g) RNN. (h) Transformer (ViT). (i) SF. (j) DASR-Net).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. Classification maps of WHU-Hi-HanChuan dataset ((a) Image. (b) Ground Truth. (c) SVM.
(d) KNN. (e) RF. (f) CNN. (g) RNN. (h) Transformer (ViT). (i) SF. (j) DASR-Net).
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3.3. Analysis of Trees and Forests

Vegetation coverage serves as a pivotal indicator of the health and vitality of forest
ecosystems. In the domain of remote sensing image processing, the analytical examination
of forested areas and individual tree species is of paramount significance. The nuanced
extraction and interpretation of remote sensing imagery afford us a wealth of informa-
tion pertaining to the spatial distribution of forest resources, the physiological status of
tree growth, and the extent of vegetation coverage, all of which are indispensable for
the management of forestry resources, the surveillance of ecological conditions, and the
investigation of climatic variations.

Within multispectral datasets, the delineation of tree populations is discernible, and
the algorithmic approach developed by our research team exhibits superior performance in
the classification of trees, exhibiting a notably reduced incidence of misclassification when
contrasted with other methodologies. This enhanced discriminative accuracy is instrumen-
tal in the delineation of ecological function zones and the evaluation of environmental
quality, providing a robust foundation for ecological planning and conservation strategies.

Moreover, the analysis of vegetation coverage trends contributes to the revelation of
the temporal dynamics and evolutionary trajectories of regional ecological systems. In the
context of the hyperspectral HyRANK-Loukia dataset, the precise classification of various
species, including Fruit Trees and Mixed Forests exemplify the advanced capabilities of
remote sensing technology in discerning subtle ecological distinctions. The integration of
this classification with ancillary data such as topographical features and soil characteristics
facilitates the advancement of precision forestry practices, thereby enhancing the efficacy
of forest management and sustainability efforts.

Advanced analytical methods used in remote sensing image processing improve our
knowledge of forest ecosystems and provide stakeholders with the essential tools for
making data-driven decisions in forestry conservation and environmental management.

4. Discussion

Topography affects land suitability for crops and is key to forest health and diversity.
Land class distribution correlates with local agriculture and forest structure, often clustering
in specific areas. Our research introduces an efficient land cover classification method
using hyperspectral and multispectral imagery, crucial for forest management. Remote
sensing can face challenges like poor perception and feature expression at different scales,
particularly in complex forests. Our DASR-Net model captures contextual information
in a token-based framework, enriching features for more precise forest feature extraction
through an adaptive attention mechanism.

Conventional classification techniques may not fully account for pixel interdepen-
dencies, resulting in less effective classification in intricate forest scenes. In contrast, deep
learning models and our DASR-Net can effectively grasp the complex spatial and spec-
tral characteristics of forest environments. This study evaluates the pros and cons of
eight approaches—SVM, KNN, RF, CNN, RNN, ViT, SF, and DASR-Net—especially for
multispectral and hyperspectral forest imagery. The findings show that our DASR-Net
outperforms in classification, notably in differentiating forest types, assessing forest health,
and identifying cover changes.

This progress holds significant guidance for the localized application of precision
forestry practices, offering robust data backing for activities like forest inventory, biodiver-
sity evaluation, and the monitoring of unauthorized logging. The improved classification
precision delivered by DASR-Net serves as an invaluable resource for policymakers and
forestry experts.

The reason why DASR-Net outperforms other models is primarily due to the DAN’s
spatial attention component, which focuses on the most relevant spatial areas of the data,
highlighting regions that are crucial for classification while suppressing less important or
noisy areas. This selective focus helps to improve the signal-to-noise ratio and enhances
the network’s ability to extract meaningful features from complex scenes. Additionally, the
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channel attention component of DAN adaptively recalibrates channel feature responses by
assigning different weights to different channels. In hyperspectral and multispectral data,
each channel represents a different spectral band, and this recalibration helps to emphasize
the channels that contain more discriminative information.

The introduction of the DASR-Net algorithm has made significant contributions to
the field of remote sensing and land cover classification, particularly in the realm of forest
management and conservation. Unlike traditional methods that often struggle with the
complex boundaries between feature categories and the similarities among different forest
types, the DASR-Net algorithm is specifically designed with a dual attention mechanism
to address these challenges. This innovation enables the refined analysis of forest areas,
aiding in a clearer understanding of forest structure and condition. Previous studies may
have overlooked the importance of capturing multiscale semantic information. DASR-Net
meticulously examines forest structures at different scales through its multiscale spatial
attention, providing a more comprehensive perspective for monitoring environmental
changes and protecting biodiversity. The channel attention mechanism within DASR-Net
employs an improved BSE-ResNet bilinear method, assigning weights to each channel
to enhance feature representation, which is a departure from traditional methods that
may suffer from insufficient feature expression and, consequently, lower classification
discriminability. The approach of DASR-Net makes the classification of remote sensing
imagery more distinctive. The findings of this study have direct practical significance for
urban forestry management. By improving the accuracy of forest cover classification, DASR-
Net assists urban planners in developing effective conservation and restoration strategies,
which is crucial for the sustainable development of urban ecological environments.

5. Conclusions

In light of this text, we aim to harness global contextual information within remote
sensing images to enhance the recognition of geographical attribute features, with a partic-
ular focus on forested environments. We introduce DASR-Net, a semantic segmentation
framework that integrates ViT with a BSE-ResNet, utilizing a dual-encoder structure
to capture the intricate details of forest landscapes. The attention mechanism module
within our DASR-Net, termed DAN, exploits the intercorrelations between features and
the significance of channels to guide the encoder toward more discriminative feature
extraction. This is especially critical for forest applications where subtle differences be-
tween tree species or forest conditions must be discerned. The meticulously designed
BSE-ResNet network is intended to encapsulate the nuanced features in the original image,
which is essential for accurate forest classification and monitoring. The dual-channel
parallelism of our framework establishes an architecture for feature information exchange
that transcends the limitations of individual network windows. It addresses the issue of
indistinct differentiation between various scales and effectively recognizes feature types
with high similarity, a common challenge in dense forest imagery. This approach plays a
significant role in identifying and distinguishing complex forest structures, such as tree
species, canopy density, and understory vegetation. Despite the numerous advantages
of our DASR-Net, we acknowledge its shortcomings in the precise extraction of feature
boundaries. This deficiency is particularly evident in the segmentation results, where
the contours may not entirely conform to the actual shape of the forest features, and the
boundary lines may lack smoothness. To rectify this, we are committed to further inves-
tigating encoding methods that specifically target boundary features, ensuring a more
accurate delineation of forest boundaries. Regarding dataset utilization, we are dedicated
to capitalizing on high-resolution remote sensing images with complex features and rich
information, which is particularly relevant to forested areas. By expanding the application
scope of our algorithm and enlarging the dataset, we aim to construct a comprehensive
dataset of agriculture and forestry-related features from multi-source remote sensing im-
ages. This will not only enhance the robustness of our DASR-Net but will also contribute
to more effective and precise forest management and conservation efforts. Looking ahead,
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we should optimize algorithms for boundary feature extraction to improve the precision
and smoothness of feature boundaries. We plan to explore the model’s generalization
capabilities across different terrains and seasonal conditions. Furthermore, we aim to
investigate how to apply the model to larger-scale remote sensing data, enabling more
extensive forest monitoring and management. This will address the model’s applicability
to different datasets and larger-scale scenarios, ensuring its utility in a broader range
of contexts.
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