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Abstract: Urbanization has significantly altered urban landscape patterns, leading to a continuous
reduction in the proportion of green spaces. As critical carbon sinks in urban carbon cycles, urban
green spaces play an indispensable role in mitigating climate change. This study aims to evaluate the
carbon capture and storage potential of urban green spaces in Luohe, China, and identify the land-
scape factors influencing carbon sequestration. The research combines on-site data collection with
high-resolution remote sensing, utilizing the i-Tree Eco model to estimate carbon sequestration rates
across areas with varying levels of greenery. The study reveals that the carbon sequestration capacity
of urban green spaces in Luohe City is 1.30 t·C·ha−1·yr−1. Among various vegetation indices, the
Enhanced Vegetation Index (EVI) explains urban green space carbon sequestration most effectively
through an exponential model (R2 = 0.65, AIC = 136.5). At the city-wide scale, areas with higher
greening rates, better connectivity, and more complex edge morphology exhibit superior carbon
sequestration efficiency. The explanatory power of key landscape indices on carbon sequestration
is 78% across the study area, with variations of 71.5%, 62%, and 84.9% for low, medium, and high
greening rate areas, respectively. Moreover, when greening rates reach a certain threshold, maintain-
ing and optimizing the quality of existing green spaces becomes more critical than simply expanding
the green area. These insights provide valuable guidance for urban planners and policymakers on
enhancing the ecological functions of urban green spaces during urban development.

Keywords: carbon sequestration; urban greenspace; high spatial resolution; Luohe

1. Introduction

Since the policy of reform and opening up, the process of urbanization in China has
accelerated at a remarkable pace [1–3]. Increasing energy consumption and rapid economic
growth resulted in a nearly fourfold increase in CO2 emissions in China between 1980 and
2006. As a consequence, by 2006, China had overtaken the United States in CO2 emissions,
making it the world’s leading CO2 emitter [4]. In recent years, the Chinese government
has implemented various CO2 emission reduction strategies, while significantly expanding
urban green spaces due to their numerous environmental benefits and positive impact
on human well-being [5,6]. The concept of “forest cities” was introduced as part of this
initiative, referring to urban areas that incorporate large-scale afforestation and ecological
greening throughout the city to create a holistic urban ecosystem. Statistics show that
the number of forest cities in China increased from 22 between 2004 and 2010 to 219 by
2024 [7]. China’s National Forest City Development Plan (2018–2025) outlines the goal of
establishing national forest cities across six clusters, aiming to reach 200 cities by 2020 and
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expand to 300 by 2025 [8]. This initiative provides a valuable opportunity to explore how
Chinese urban areas can contribute to addressing future climate change challenges.

Numerous studies indicate that green spaces within cities can sequester substantial
amounts of carbon [9–11], making them an effective strategy for offsetting CO2 emis-
sions [12–14]. The higher carbon sequestration efficiency in urban areas can be attributed
to several mechanisms. First, urban green spaces often receive higher levels of nitrogen
deposition and CO2 concentration compared to rural areas, which can stimulate plant
growth and enhance photosynthesis [15,16], leading to increased carbon uptake. Addition-
ally, urban heat island effects can extend the growing season for plants in cities, further
boosting their carbon sequestration potential [17]. Moreover, urban landscaping practices,
such as regular irrigation and fertilization, can maintain healthy vegetation growth, which
supports continuous carbon absorption [18]. These factors collectively contribute to a
higher rate of carbon sequestration in urban environments compared to non-urban areas.
Heath et al. (2011) discovered that although urban forests occupy merely 3% of U.S. land,
they are responsible for storing 14% of the carbon from all terrestrial forests [19]. Car-
bon stored in urban and suburban areas shared about 10% of that in the entire terrestrial
ecosystems in the USA [20]. There is a significantly higher carbon density in above-ground
biomass in Seattle (USA) than in forests across the country [21]. As compared to natural
grasslands, residential grasslands in Baltimore (Baltimore) and Denver (Denver) have a
carbon density that is nearly twice as high as that of natural grasslands in the United
States [22]. Leicester’s above-ground vegetation stored a lot of organic carbon and had a
carbon density seven times higher than the national average in Germany [23]. However,
previous research concerning the ability of urban green spaces to sequester carbon has pri-
marily focused on measuring the total amount of carbon stored at a given time [24,25], with
relatively fewer studies addressing the dynamic process of carbon sequestration [26–28].
In particular, research on how carbon sequestration rates vary across different levels of
urban greening remains limited. While some studies have explored the influence of ur-
ban characteristics, such as heat island effects or nitrogen deposition, on carbon storage,
systematic evaluations of how landscape features—such as greening rate, connectivity,
and edge morphology—affect carbon sequestration efficiency are still relatively scarce.
Carbon sequestration offers a more accurate and precise measure of the ability of urban
vegetation to capture and stabilize atmospheric CO2, as opposed to simply quantifying the
total carbon present at a specific point in time.

This research explored the potential of urban green spaces in Luohe City, China, to se-
quester carbon. Utilizing on-site surveys, the i-Tree Eco model, and high-resolution imagery,
we analyzed how urban green spaces sequester carbon and identified the landscape factors
influencing this process. Our aims were threefold: to develop a spatial quantification model
for assessing carbon capture in urban green spaces; to identify and assess the contributions
of landscape drivers to the carbon sequestration; and to explore strategies for enhancing
carbon sequestration through landscape structural adjustments under varying greening
rates. By focusing on the dynamic carbon sequestration process and examining various
landscape characteristics, this research addresses the relative scarcity of studies in these
areas and provides new insights into how different urban landscape features influence
carbon sequestration efficiency.

2. Materials and Methods
2.1. Study Area

Luohe City (113◦27′–114◦16′ E, 33◦24′–33◦59′ N), located in the central-southern
part of Henan Province, was selected as the study area (Figure 1). The city covers over
2617 km2 and consists of three districts (Yancheng, Yuanhui, and Shaoling) and two coun-
ties (Wuyang and Linying) [29]. With a population of approximately 2.37 million in 2021,
Luohe is a typical mid-sized Chinese city. Situated in a subtropical-to-temperate transitional
zone, the city experiences a humid subtropical climate, characterized by an average annual
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rainfall of 786 mm and a mean temperature of 14.6 ◦C, which support a diverse range of
native and non-native plant species.

Forests 2024, 15, x FOR PEER REVIEW 3 of 18 
 

 

Luohe is a typical mid-sized Chinese city. Situated in a subtropical-to-temperate transi-
tional zone, the city experiences a humid subtropical climate, characterized by an average 
annual rainfall of 786 mm and a mean temperature of 14.6 °C, which support a diverse 
range of native and non-native plant species. 

 
Figure 1. Study area and sample plot distribution across four green space types. (Image captured 
by Trimble UX5 UAV using RGB bands). 

The majority of the rainfall occurs from July to September, accounting for over 80% 
of the annual precipitation. The city’s topography is relatively flat, with an elevation dif-
ference of less than 4 m across the entire area. Over the past 30 years, Luohe has undergone 
rapid population growth and urbanization, similar to many other cities in China [30]. The 
built-up area is characterized by numerous fragmented and disconnected green spaces 
scattered throughout the urban districts, which are essential for improving quality of life 
and addressing ecological challenges associated with urban expansion. Currently, green 
space and green coverage account for 38.12% and 42.91% of the built-up area, respectively, 
with per capita public green space reaching approximately 18.1 square meters. These fac-
tors contribute to Luohe’s reputation as one of the most livable cities in China. 

2.2. Remote Sensing Data and Data Processing 
This study utilized two types of remote sensing data, including seasonal unmanned 

aerial vehicle (UAV) images with a high resolution of 9 cm, to analyze land use and the 
specifics of urban green spaces in the study area. Urban green spaces are categorized into 
four primary types based on their ecological functions: public parks, protective green 
spaces, square green spaces, and attached green spaces, as defined by the Standard for 
Classification of Urban Green Space (CJJ/T85-2017) from the Ministry of Housing and Ur-
ban-Rural Development of China. Using leaf-off seasonal UAV images and the Present 
Land Use Map of Luohe City, the different types of urban green spaces in this study area 
were analyzed and mapped to determine their spatial distribution. GaoFen-2 (GF-2) data, 
used for algorithm verification, come from China’s first civil optical satellite with sub-
meter resolution, launched in 2014. It features both panchromatic and multispectral 

Figure 1. Study area and sample plot distribution across four green space types. (Image captured by
Trimble UX5 UAV using RGB bands).

The majority of the rainfall occurs from July to September, accounting for over 80% of
the annual precipitation. The city’s topography is relatively flat, with an elevation difference
of less than 4 m across the entire area. Over the past 30 years, Luohe has undergone rapid
population growth and urbanization, similar to many other cities in China [30]. The
built-up area is characterized by numerous fragmented and disconnected green spaces
scattered throughout the urban districts, which are essential for improving quality of life
and addressing ecological challenges associated with urban expansion. Currently, green
space and green coverage account for 38.12% and 42.91% of the built-up area, respectively,
with per capita public green space reaching approximately 18.1 square meters. These factors
contribute to Luohe’s reputation as one of the most livable cities in China.

2.2. Remote Sensing Data and Data Processing

This study utilized two types of remote sensing data, including seasonal unmanned
aerial vehicle (UAV) images with a high resolution of 9 cm, to analyze land use and the
specifics of urban green spaces in the study area. Urban green spaces are categorized into
four primary types based on their ecological functions: public parks, protective green
spaces, square green spaces, and attached green spaces, as defined by the Standard for
Classification of Urban Green Space (CJJ/T85-2017) from the Ministry of Housing and
Urban-Rural Development of China. Using leaf-off seasonal UAV images and the Present
Land Use Map of Luohe City, the different types of urban green spaces in this study area
were analyzed and mapped to determine their spatial distribution. GaoFen-2 (GF-2) data,
used for algorithm verification, come from China’s first civil optical satellite with sub-meter
resolution, launched in 2014. It features both panchromatic and multispectral cameras. The
width of each GF-2 image is 45 km. For this study, a GF-2 satellite image from 5 September
2018 was retrieved from http://www.gscloud.cn (accessed on 3 June 2024). It was then

http://www.gscloud.cn
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processed with ENVI software (version 5.3.1, Harris Corporation, Melbourne, FL, USA),
including steps such as radiometric calibration, orthorectification, atmospheric correction,
geometrical registration, and image fusion, to produce a multispectral image with four
channels (green, blue, red, and NIR) and a spatial resolution of 0.8 m. Seven vegetation
indices were employed to analyze vegetation and estimate carbon sequestration within the
study area’s green spaces, as detailed in the following equation:

DVI = NIR − R, (1)

GNDVI = (NIR − G)/(NIR + G), (2)

MASVI = 0.5 (2NIR + 1 −
√
(2NIR + 1)2 − 8(NIR − R) ), (3)

NDVI = (NIR − R)/(NIR + R), (4)

RDVI = (NIR − R)/
√
(NIR − R), (5)

RVI = NIR/R, (6)

EVI = 2.5(NIR − R)/(NIR + 6R − 7.5B + 1), (7)

where NIR, R, G, and B represent the reflectivity of the near-infrared (770–890 nm), red
(630–690 nm), green (520–590 nm), and blue bands (450–520 nm), respectively.
Equations (1)–(7) represent various vegetation indices used to estimate vegetation density,
health, and productivity by analyzing different spectral band combinations. The Differ-
ence Vegetation Index (DVI) and Normalized Difference Vegetation Index (NDVI) assess
vegetation density and health by comparing near-infrared (NIR) and red reflectance. The
Green Normalized Difference Vegetation Index (GNDVI) uses green and NIR bands to
evaluate chlorophyll concentration. The Modified Atmospherically Resistant Vegetation
Index (MASVI) mitigates atmospheric effects on vegetation measurements, while the Renor-
malized Difference Vegetation Index (RDVI) enhances sensitivity to dense vegetation. The
Ratio Vegetation Index (RVI) monitors plant growth through the NIR to red ratio, and the
Enhanced Vegetation Index (EVI) improves sensitivity in high biomass areas and reduces
atmospheric influence by incorporating the blue band. To minimize bias brought by the
non-vegetation part in the sample plot, the average vegetation indices of vegetation space
only in each sample plot were extracted.

2.3. Field Survey and Carbon Sequestration Estimation

The i-Tree Eco workbook from the US Forest Service outlines three methods for
establishing sample plots in field investigations: layering, random, and grid. The pro-
tocol also noted that land stratification could help reveal differences between various
land uses [31].

We employed a modified sampling approach using a pre-stratification scheme for
different types of urban green spaces. This method provided more accurate samples and
vegetation data compared to traditional techniques. ESRI ArcGIS software (version 10.8)
was used to generate stratified random sample points exclusively within these green spaces.
The corresponding quadrat boundaries were generated by the buffer tool with a radius
of about 11.3 m. The following green space strata and sample plots were deployed in
this study:

(1) Public parks: These are accessible to the public and include a variety of parks
such as comprehensive, community, theme, botanical gardens, belt, and forest parks.
(2) Protective green spaces: These areas are generally inaccessible and serve purposes such
as ecological isolation and protection. Examples include green belts along highways and
railways, power line corridors, and industrial plant buffers. (3) Square green spaces: These
publicly accessible areas are used for recreation, events, and disaster prevention, and have
a green cover ratio exceeding 35%. (4) Attached green spaces: These are integrated with
various land uses, such as residential, commercial, industrial, and public facilities.
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A total of 120 circular sample plots, each 404.7 m2 as recommended by Nowak [32],
were distributed across public parks (35 plots), protective green spaces (25 plots), square
green spaces (25 plots), and attached green spaces (35 plots). The number of plots for each
green space type was allocated proportionally based on its area and complexity. For each
plot, the photos showing the surrounding environment and vegetation inside were taken
during field investigation, and we used a modified table for field survey created based
on the recommended sample plot data collection sheet. Specifically, data were collected
on plot characteristics such as tree and shrub coverage, planted space ratio, and ground
cover beneath the canopy. Tree metrics included species, height, DBH, canopy missing
percentage, crown size, dieback percentage, and light exposure. For shrubs, information on
species, average height, proportion, and mass missing percentage was recorded. Adhering
to the i-Tree Eco protocol, field investigations were carried out during the leaf-on season
(May to August 2018) to accurately collect sample plot and vegetation data, ensuring proper
tree identification and measurement. Plot maps at a 1:500 scale were generated and printed
from UAV images, clearly outlining the survey boundaries. Field data were successfully
collected from 111 plots, including 35 in public parks, 23 in protective green spaces, 23 in
square green spaces, and 33 in attached green spaces, while 9 plots were unachievable and
5 were misclassified. The collected data were then input into i-Tree Eco v6.0 for ecosystem
service analysis and assessment of urban green spaces [11,33,34].

2.4. Relationship Between Carbon Sequestration and Landscape Metrics

The landscape index provides highly condensed information about landscape pat-
terns and can be regarded as spatially discontinuous data. Landscape structure compo-
sition, spatial configuration, and heterogeneity are reflected in this quantitative index.
This study investigates landscape structure, specifically the composition and configu-
ration of built-up land, as a driver of carbon sequestration. The landscape pattern in-
dex method is employed to quantitatively assess landscape pattern characteristics using
Fragstats 4.2 software [35–37]. Given that blocks typically measure 400 × 400 m2 (ranging
from 300 × 300 to 500 × 500 m2) and are few, we selected the ¼ block as the smallest
analysis unit, dividing the built-up area into a 200 × 200 m2 grid to verify the relationship
between carbon sequestration and landscape metrics. To assess how landscape structure
affects carbon sequestration in urban green spaces at varying greening rates, the built-
up areas were categorized into high (≥65%), medium (30% < greening rate < 65%), and
low (≤30%) greening areas, following China’s “Specification for Urban Landscaping and
Greening Planning and Design” (GB 50420-2007) standards. Moreover, 11 indicators from
5 classifications were selected and calculated for each grid scale (Table 1).

Table 1. Description of landscape indicators.

Classification Landscape Index Abbr. Description

Fragmentation
indicator

Number of patches NP
Represents the total number of
distinct patches within
a landscape.

Patch density PD

Indicates the frequency
of patches per unit
area, reflecting
landscape fragmentation.

Agglomeration
indicator

Patch cohesion
index COHESION

Indicates the extent to which
similar patches are
clustered together.

Aggregation index AI Reflects the spatial clustering of
patches of the same type.
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Table 1. Cont.

Classification Landscape Index Abbr. Description

Connectivity
indicator

Core area mean CORE_MN
Average size of core areas
within patches, important for
ecological processes.

Proportion of like
adjacencies PLADJ

Proportion of a patch’s perimeter
that is adjacent to the same
patch type.

Dominance
indicator Percentage of landscape PLAND Percentage of the

green spaces.

Shape
complexity
indicator

Landscape shape index LSI
Quantifies the complexity
of patch shapes in
the landscape.

Normalized landscape
shape index NLSI

Normalizes the shape
complexity on a scale from
0 to 1, with higher values
indicating more
complex shapes.

Dispersion
indicator

Landscape
division index DIVISION

Measures the degree to which
the landscape is split into
isolated patches.

Effective mesh size MESH
Assesses the average spacing or
distance between patch centroids
in the landscape.

3. Results
3.1. Spatial Assessment Model for Carbon Sequestration

The plot of carbon sequestration vs. vegetation indices (VIs) for the 120 plots is shown
in Figure 2. The EVI-CS model demonstrated a superior fit with a coefficient of determina-
tion (R2) of 0.65, significantly higher than other models examining the relationship between
VIs and carbon sequestration (Table 2). The model’s Akaike Information Criterion (AIC)
was approximately 136.52, considerably lower than other statistical models, indicating
an optimal balance between model complexity and accuracy. Consequently, this study
employed EVI as an ideal vegetation index for estimating carbon sequestration in urban
green spaces.
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Table 2. Description of VIs-Carbon sequestration models.

Model R2 AIC

Cseq
1 = e0.012DVI−0.126 0.4565 204.6325

Cseq = e7.488GNDVI−0.843 0.3553 221.4447
Cseq = e4.564MASVI−0.361 0.5464 192.7188
Cseq = e7.102NDVI−0.256 0.5456 193.3446
Cseq = e0.299RDVI−0.193 0.5043 198.8507

Cseq = e2.595RVI−2.73 0.5415 194.5988
Cseq = e6.932EVI−1.934 0.6484 136.5168

1 Cseq refers to carbon sequestration.

3.2. Overview of Urban Trees and Carbon Sequestration

This survey examined a total of 1496 individual plants, covering 69 unique species
of urban trees across 41 families and 52 genera. Notable species include Chinese Privet
(Ligustrum lucidum), Golden Rain Tree (Koelreuteria paniculata), Japanese Cherry (Prunus
serrulata), Ginkgo (Ginkgo biloba), Sweet Olive (Osmanthus fragrans), Chinese Photinia
(Photinia serratifolia), and Crepe Myrtle (Lagerstroemia indica) (Figure 3a). The ratio of
evergreen to deciduous trees is roughly 1.9:1, and the ratio of woody shrubs to trees is
about 1.4:1. Of the 47 tree species assessed, 45% are evergreen and 55% are deciduous. The
tree species include 16 flowering varieties and 9 with colored foliage. Among the 26 shrub
species, 65% are evergreen and 35% are deciduous, including 10 ornamental flowering
types and 9 with colored foliage.
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Chinese Privet, Golden Rain Tree, and Chinese Willow (Salix matsudana) are the
dominant tree species for carbon sequestration, accounting for 11.84%, 9.90%, and
7.49% of the annual carbon sequestration of trees in Luoyang, respectively (Figure 3b).
Notably, Salix matsudana, despite being one of the top contributors to carbon sequestra-
tion, has only 32 individual trees. Spatially, the carbon sequestration capacity of green
spaces in Luohe is significantly affected by urbanization, exhibiting notable spatial clus-
tering. The average annual carbon sequestration efficiency per tree for Empress Tree
(Paulownia fortunei), Chinese Willow, Chinese Wingnut (Pterocarya stenoptera), Chinese Tal-
low (Sapium sebiferum), Siberian Elm (Ulmus pumila), and Chinese Hackberry (Celtis sinensis)
exceeds 10 kg per year, with values reaching 21.91, 16.97, 12.65, 11.43, 11.20, and 10.52 kg
per year, respectively.
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In the study area, green space carbon sequestration was highly variable and signifi-
cantly impacted by urban development, showing regional clustering (Figure 4). Carbon
sequestration in green spaces varied from 0.14 to 2.30 t·C·ha−1·yr−1, with an average of
1.30 t·C·ha−1·yr−1. Notably, the majority of carbon sequestration occurred within the
0.14–1.05 t·C·ha−1·yr−1 range. In the city’s outskirts, especially to the southeast, some
green space patches showed higher sequestration rates, peaking at 2.30 t·C·ha−1·yr−1.
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3.3. Relationship Between Carbon Sequestration and Greenery Coverage

In this study, based on UAV and GF-2 estimations, an overall increasing trend in
carbon density is observed with the augmentation of urban green coverage (Figure 5).
The supplementary plot on the right side of Figure 5 and Table 3 further elucidates the
correlation between carbon storage and green coverage, delineated at 95% intervals. The
model accuracy, as denoted by the coefficient of determination (R2), for the maximum and
mean carbon densities in relation to varying green coverage attains values of 0.7331 and
0.7099, respectively. However, the minimum carbon density demonstrates an R2 value
of merely 0.2528, which lacks statistical significance and is consequently omitted from
subsequent considerations. On average, carbon density tends to increase in tandem with
escalating green coverage. Notably, when green coverage surpasses 60%, carbon density
displays a heightened amplitude of fluctuation relative to the increase in green coverage.
The estimation model suggests that, as green coverage exceeds 60%, the growth trend
of maximum and mean carbon densities gradually attenuates and tends toward inverse
growth. Moreover, the zenith of carbon storage for both maximum and mean values
is reached at urban green coverage levels of 88% and 85%, respectively, after which a
descending trajectory becomes evident.
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Table 3. The relationship model between carbon sequestration and percentage of greenery coverage.

Carbon Density Model R2 F-Value p-Value

Maximum carbon density Cseq * = −1.283·10−4·P2 + 0.023·P − 0.110 0.733 17.577 <0.001
Mean carbon density Cseq = −1.046·10−4·P2 + 0.018·P − 1.046 0.710 135.607 <0.001

Minimum carbon density Cseq = 2.171·10−6·P2 + 0.004·P − 0.031 0.253 120.904 <0.001

* Cseq refers to carbon sequestration.

3.4. Relationship Between Carbon Sequestration and Landscape Structure

The heat map reveals significant variations in how carbon stock density correlates
with landscape metrics across different greening rates (p < 0.05) (see Figure 6). Notably,
the link between carbon sequestration and landscape metrics is stronger in areas with
low greening rates compared to those with high greening rates. Across the study area,
carbon sequestration is strongly positively correlated with PLAND, PLADJ, MESH, and AI,
showing correlation coefficients of 0.73, 0.63, and 0.60 (for both MESH and AI). In contrast,
it exhibits significant negative correlations with DIVISION and NLSI, with coefficients of
−0.52 and −0.32, respectively.
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Specifically, PLAND, MESH, and PLADJ exhibit the strongest positive correlations
with carbon stock in low, medium, and high greening rate areas, with correlation coefficients
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of 0.69, 0.50, and 0.31, respectively. Meanwhile, DIVISION shows the strongest negative
correlation with carbon stock in low greening rate areas, whereas PD demonstrates the
most negative correlations in medium and high greening rate areas, with coefficients of
−0.33 and −0.30, respectively.

3.5. Relative Importance of Landscape Indices

Figure 7 illustrates the primary landscape indices that influence urban carbon se-
questration across different greening rates. The height of the bars represents the overall
explanatory power of these key landscape indices in explaining changes in carbon seques-
tration for each greening rate category. The explanatory power is 0.78 for the entire study
area and 0.715, 0.62, and 0.849 for low, medium, and high greening rate areas, respectively.
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For the entire study area, MESH has the greatest impact on changes in carbon stock,
with a relative explanatory power of 82%, significantly higher than that of LSI (10.1%)
and PLAND (8.1%). MESH also remains the most influential factor in areas with medium
greening rates, holding a relative explanatory power of 46%. However, in areas with low
and high greening rates, PLAND (66%) and LSI (43%) surpass MESH in relative importance,
becoming the dominant factors affecting carbon sequestration.

3.6. The Partial Dependence Analysis of Landscape Indices

This study conducted partial dependence analysis on key landscape indices
(Figure 8). Across the entire study area, without considering greening rates, carbon se-
questration exhibits a generally monotonic positive relationship with PLAND, MESH, and
LSI. When PLAND reaches 65.5, MESH reaches 1.5, and LSI reaches 8, the marginal effects
of these landscape indices on carbon sequestration diminish, and the growth in carbon
sequestration plateaus.

In low-greening-rate areas, carbon sequestration also shows a monotonic positive
relationship with MESH, COHESION, and PLAND, but with distinct growth rates. When
MESH is below 0.1, carbon sequestration increases sharply with MESH, then stabilizes. At
lower levels of COHESION, carbon sequestration remains stable until COHESION reaches
94, after which it spikes as COHESION increases further. Additionally, the relationship
between carbon sequestration and PLAND follows a fluctuating linear pattern, with carbon
sequestration showing some variability as PLAND increases. In medium-greening-rate
areas, carbon sequestration increases positively with PLAND and MESH. However, as
DIVISION grows, carbon sequestration initially decreases and then sharply increases once
DIVISION reaches 0.9. In high-greening-rate areas, carbon sequestration exhibits a rapid
increase with rising LSI, CORE_MN, and MESH, followed by stabilization. This suggests
that in high-greening-rate areas, carbon sequestration is more sensitive to these landscape
indices, but the growth effect diminishes once certain levels are reached.
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4. Discussion
4.1. Comparison with Other Studies

Our results show that urban green spaces in Luohe sequester carbon at a medium rate
of 1.30 t·C·ha−1·yr−1, which is higher than that of cities such as Xiamen, Dalian, Urumqi,
Yinchuan, Hohhot, Tianjin, Guiyang, Xi’an, Hefei, and Shijiazhuang [38–41], but lower
than that of cities such as Shanghai, Nanjing, Hangzhou, Changsha, Chongqing, Guizhou,
Ningbo, Wuhan, and Zhengzhou [42–45]. When compared internationally, the carbon
sequestration rate in Luohe is higher than the average for certain regions in Canada, which
is reported to be 0.574 ± 0.092 t·C·ha−1·yr−1 [46]. However, it is lower than the average
rate in the United States, where Nowak et al. found that urban areas sequester carbon at
an average rate of 2.77 t·C·ha−1·yr−1, with significant variation from 1.68 t·C·ha−1·yr−1 in
Alaska to 5.81 t·C·ha−1·yr−1 in Hawaii [47]. Additionally, a study in South Korea indicated
that carbon sequestration rates in urban areas range from 1.60 to 3.91 t·C·ha−1·yr−1, which
places Luohe at the lower end of this range [48]. The possible reasons for these differences
are as follows.
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First, these differences are likely due to variations in urban tree cover [11]. Using high-
resolution imagery (SPOT/ALOS), Zhou et al. (2018) studied urban green spaces in nine
cities across China and found that the green coverage rates in Nanjing and Hangzhou were
49.0% and 47.6% [49], respectively, which are higher than those in Tangshan (15.8%) and
Tianjin (26.6%). Correspondingly, the carbon sequestration rates of urban green spaces in
Nanjing and Hangzhou are 2.87 t·C·ha−1·yr−1 and 1.66 t·C·ha−1·yr−1, respectively, which
are higher than those in Tangshan (1.26 t·C·ha−1·yr−1) and Tianjin (1.07 t·C·ha−1·yr−1) [42].

Second, natural factors may also play a role. Lower carbon sequestration rates in green
spaces are typically observed in northern cities of China, while southern cities tend to have
higher rates. For instance, the average annual temperature and precipitation in Nanjing
(15.4 ◦C and 1106.5 mm) and Hangzhou (17.8 ◦C and 1454 mm) are significantly higher
than those in Luohe (14.6 ◦C and 786 mm), Tangshan (12.5 ◦C and 600 mm), and Tianjin
(13.4 ◦C and 571 mm). The study by Hong et al. (2024) indicates that surface temperature
and elevation are key factors influencing the spatial distribution of carbon sequestration in
urban forests.

Third, the differences might be attributed to sampling methods [50]. For example,
Shi Yan et al. (2013) assessed the carbon sequestration of urban trees across major cities
in China using the tree core method, which involved fewer tree species, all of which were
mature trees, potentially leading to an overestimation of carbon sequestration [39]. In
contrast, our study employed the i-Tree Eco model, which integrates field survey data with
modeling techniques, to estimate carbon sequestration across Luohe’s urban green spaces,
potentially enhancing the accuracy of our results.

Fourth, human factors also affect the spatial distribution of carbon sequestration. The
study by Hong et al. (2024) shows that urban area and population density are major factors
influencing the spatial distribution of carbon sequestration, both of which are negatively
correlated with carbon sequestration [50]. Higher GDP in built-up areas allows for greater
investment in improving the ecological environment by the government. Additionally,
human activities can lead to the fragmentation of urban green landscapes, and land use
has a significant impact on carbon sequestration.

Therefore, to more accurately quantify the carbon sequestration capacity of urban
green spaces and to better understand how urbanization drives changes in carbon se-
questration, it is necessary to conduct studies on a smaller scale, such as at the urban
landscape level. This would provide a basis for local governments to formulate effective
urban management strategies and planning.

4.2. Landscape Structure Drivers of Carbon Sequestration

Urban green spaces are crucial components of landscape patterns that significantly
impact carbon sequestration [51,52]. Our study reveals that various landscape structure
indices, including PLAND, LSI, and MESH, have different effects on carbon sequestration
depending on the greening rates of urban areas [53]. Here, we discuss the possible reasons
behind these findings.

First, in areas with low to medium greening rates, a significant positive correlation
was found between carbon sequestration capacity and PLAND. This relationship occurs
because, in less densely vegetated areas, expanding green space directly increases the
amount of vegetation available for carbon sequestration [54,55]. Vegetation in these regions
is often less mature or sparse, so any increase in green space can lead to substantial
gains in carbon storage through photosynthesis and improvements in local microclimates,
which also contribute to increased soil organic carbon. This suggests that in areas with
limited green cover, expanding green space is a highly effective strategy for boosting
carbon sequestration.

Second, as greening rates increase, the influence of PLAND on carbon sequestration
diminishes, and other landscape indices such as LSI [56–58] and CORE_MN become
more significant. In high greening rate areas, the complexity of landscape shapes, as
measured by LSI, becomes more important because complex, irregular edges of green
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patches can enhance edge effects. These edge effects may increase the exposure of plants
to sunlight and air, thereby enhancing photosynthetic activity and, consequently, carbon
sequestration. Similarly, CORE_MN reflects the size of core areas within landscape patches,
where environmental conditions are more stable and disturbances are minimized. Larger
core areas provide better conditions for sustained plant growth, leading to more efficient
carbon storage. This shift in importance from PLAND to LSI and CORE_MN as greening
rates increase likely reflects the saturation of basic carbon sequestration capacity, where
further improvements rely more on optimizing the structure and quality of existing green
spaces rather than simply expanding them [59].

Third, landscape connectivity, as indicated by MESH, consistently plays a crucial role
in enhancing carbon sequestration across all levels of greening rates. The strong positive
correlation between MESH and carbon sequestration can be attributed to the fact that
larger and more connected green patches facilitate the movement of species, nutrients, and
energy across the landscape [60]. This connectivity helps maintain ecological processes
and supports more robust plant growth, which in turn enhances carbon sequestration [61].
Additionally, better-connected green spaces can reduce the fragmentation of habitats, which
is often associated with reduced carbon efficiency [62,63]. Thus, the consistent importance
of MESH across different greening rates underscores the need to design urban landscapes
that promote connectivity to maximize carbon sequestration.

Lastly, our study highlights a diminishing marginal effect on carbon sequestration as
green space area, connectivity, and shape complexity increase. This phenomenon suggests
that beyond a certain point, the carbon sequestration capacity of green spaces begins to
stabilize, likely due to ecological saturation. As green spaces become more mature and well
connected, the ecosystem’s capacity to sequester additional carbon may reach its natural
limit, where additional green space or further increases in connectivity or shape complexity
yield only minimal gains. This stabilization could be due to the fact that plant growth
and carbon sequestration processes within the ecosystem have reached their maximum
efficiency. Therefore, in highly vegetated urban areas, the focus should shift from expanding
green spaces to maintaining and enhancing the quality and health of existing green spaces
to sustain their carbon sequestration potential.

4.3. Implications and Outlook for the Future

For low-greening-rate urban patches, the key to enhancing carbon sequestration ca-
pacity lies in increasing green space area and improving connectivity. Urban renewal
projects can convert idle or abandoned land into green spaces, or require green space
construction in new development areas [64]. Additionally, establishing greenways and
ecological corridors to connect existing green patches and reduce fragmentation can ef-
fectively enhance the overall connectivity of the ecological network [65,66]. Meanwhile,
ecological restoration measures, such as soil remediation and replanting native vegetation,
can improve the quality and health of green spaces in low-greening-rate areas [67], thereby
significantly boosting carbon sequestration capacity [68]. These strategies, supported by
government policies and public participation, can improve ecological benefits while enhanc-
ing the overall environmental quality of the city, providing crucial support for sustainable
urban development.

In medium-greening-rate urban patches, carbon sequestration capacity can be sig-
nificantly enhanced by reducing landscape fragmentation and improving connectivity.
Specifically, planning and constructing greenways and ecological corridors can connect dis-
persed green patches, reducing the distance between them and improving overall landscape
connectivity. Additionally, optimizing the internal structure of green spaces by introduc-
ing water bodies, wetlands [69,70], and vegetation buffers [71] can enhance ecological
functions. Further measures include introducing diverse native plant species, particularly
those with strong carbon sequestration capabilities [72]. These actions can be implemented
through local government green infrastructure projects or community greening initiatives,
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thereby strengthening the health of ecosystems and enhancing the carbon sink function of
green spaces [73].

In high-greening-rate urban patches, although the carbon sequestration function of
green spaces is already significant, there is still room for improvement. First, optimizing the
shape of green spaces can effectively enhance edge effects. For example, designing winding
paths and irregular boundaries along green space edges can maximize carbon sequestration
efficiency in edge areas. Moreover, expanding core areas within green spaces, such as
reducing paved surfaces or redesigning the layout, can reduce edge disturbances and pro-
vide a more stable ecological environment, thereby improving overall carbon sequestration.
Furthermore, maintaining and managing the quality and diversity of existing green spaces
is equally essential. Regular soil improvement and plant health monitoring can ensure
biodiversity and healthy growth, further enhancing carbon sequestration capacity [74]. In
practice, these optimization measures can be promoted through urban planning policies,
such as encouraging community involvement in green space maintenance or introducing
more complex green space designs in public projects.

5. Conclusions

This study aimed to evaluate the carbon sequestration potential of urban green spaces
in Luohe, China, and to identify the landscape factors that influence this process. Using
field surveys, the i-Tree Eco model, and high-resolution remote sensing data, we set out
to develop a spatial quantification model for carbon capture and explore strategies for
optimizing urban greening to enhance carbon sequestration. The findings demonstrate that
Luohe’s urban green spaces sequester an average of 1.30 t·C·ha−1·yr−1, with substantial
spatial variability influenced by landscape characteristics such as greening coverage, con-
nectivity, and shape complexity. The Enhanced Vegetation Index (EVI) proved to be the
most reliable predictor of carbon sequestration, underscoring the link between vegetation
health and carbon capture potential.

The analysis revealed that different landscape features had varying degrees of impact
depending on the greening rates. In areas with low to medium greening, patch size and
connectivity (PLAND and MESH) were the strongest predictors, while shape complexity
(LSI) and core area size (CORE_MN) were more significant in high-greening areas. These
results suggest that once a certain greening threshold is reached, improving the structural
quality of green spaces becomes more effective than expanding their area.

Comparatively, Luohe’s sequestration rate is higher than that of many northern Chi-
nese cities but lower than in southern regions. Internationally, it exceeds the average for
some regions in Canada but is below the U.S. average, reflecting differences in climate,
urban tree cover, and methodological approaches.

The study’s goal to provide actionable insights for urban planners is supported by
these findings, which highlight the need to tailor greening strategies based on local con-
ditions. In areas with low greening, expanding green space and enhancing connectivity
should be prioritized, while in high-greening areas, efforts should focus on optimizing
the quality and structural complexity of existing green spaces. Future research should
explore the long-term dynamics of urban carbon sequestration and incorporate additional
factors, such as soil properties and species diversity, to improve the accuracy of estimates.
These insights lay a foundation for targeted strategies to maximize the ecological ben-
efits of urban green spaces, contributing to climate change mitigation and sustainable
urban development.
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