Transcriptomic Profiling Analyses Revealed Candidate Genes Under Freezing Stress in Siberian Apricot (Prunus sibirica)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.2. The Extent of the Pistil Damage Under Freezing Stress
2.3. Physiological Analysis
2.4. RNA Extraction, cDNA Library Construction, and Sequencing
2.5. Transcriptome Assembly
2.6. Identification of Differentially Expressed Genes (DEGs)
2.7. GO and KEGG Enrichment Analysis
2.8. Reverse Transcriptase–Quantitative PCR (RT-qPCR)
3. Results
3.1. Morphological of P. sibirica Floral Organ to Freezing Stress
3.2. Physiological Responses of P. sibirica Pistils Under Cold Stress
3.3. RNA Isolation, Library Construction, and Sequencing
3.4. Unigene Annotation and Functional Classification
3.5. Analysis of the Differentially Expressed Genes (DEGs)
3.6. GO Enrichment Analysis of DEGs
3.7. KEGG Pathway Enrichment Analysis of DEGs
3.8. Validation of DEGs by RT-qPCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L. Evaluation of Siberian Apricot (Prunus sibirica L.) Germplasm Variability for Biodiesel Properties. J. Am. Oil Chem. Soc. 2012, 89, 1743–1747. [Google Scholar] [CrossRef]
- Liu, Q.; Wen, J.; Wang, S.; Chen, J.; Sun, Y.; Liu, Q.; Li, X.; Dong, S. Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica. Front. Plant Sci. 2023, 14, 1267107. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gao, W.; Li, X.; Sun, S.; Xu, J.; Shi, X.; Guo, H. Regulatory mechanisms of fatty acids biosynthesis in Armeniaca sibirica seed kernel oil at different developmental stages. PeerJ 2022, 10, e14125. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.L.; Chen, J.H.; Zhang, Y.C.; Wang, P.K.; Kang, Y.; Li, B.; Dong, S.J. Physiological and Biochemical Characteristics of Prunus sibirica during Flowering. Sci. Hortic. 2023, 321, 112358. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Wen, J.; Chen, J.; Sun, Y.; Dong, S. Genome-wide identification and analysis of the WRKY gene family and low-temperature stress response in Prunus sibirica. BMC Genom. 2023, 24, 358. [Google Scholar] [CrossRef]
- Gusain, S.; Joshi, S.; Joshi, R. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. Plant Physiol. Biochem. 2023, 197, 107646. [Google Scholar] [CrossRef]
- Dobhal, S.; Kumar, R.; Bhardwaj, A.K.; Chavan, S.B.; Uthappa, A.R.; Kumar, M.; Singh, A.; Jinger, D.; Rawat, P.; Handa, A.K.; et al. Global assessment of production benefits and risk reduction in agroforestry during extreme weather events under climate change scenarios. Front. For. Glob. Chang. 2024, 7, 1379741. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, Y.; Yang, S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol. 2019, 222, 1690–1704. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Sarwar, R.; Zhang, W.; Geng, R.; Zhu, K.M.; Tan, X.L. Research progress on the physiological response and molecular mechanism of cold response in plants. Front. Plant Sci. 2024, 15, 1334913. [Google Scholar] [CrossRef]
- Yu, D.; Liu, X.; Cui, Y.; Bi, Q.; Zhao, Y.; Li, D.; Yu, H.; Wang, L. Comparative transcriptome combined with morpho-physiological analyses revealed candidate genes potentially for differential cold tolerance in two contrasting apricot (Prunus armeniaca L.) cultivars. Trees 2020, 34, 1205–1217. [Google Scholar] [CrossRef]
- Welling, A.; Palva, E.T. Molecular control of cold acclimation in trees. Physiol. Plant. 2006, 127, 167–181. [Google Scholar] [CrossRef]
- Yin, Q.; Qin, W.; Zhou, Z.; Wu, A.M.; Deng, W.; Li, Z.; Shan, W.; Chen, J.Y.; Kuang, J.F.; Lu, W.J. Banana MaNAC1 activates secondary cell wall cellulose biosynthesis to enhance chilling resistance in fruit. Plant Biotechnol. J. 2024, 22, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Hwarari, D.; Guan, Y.; Ahmad, B.; Movahedi, A.; Min, T.; Hao, Z.; Lu, Y.; Chen, J.; Yang, L. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress. Int. J. Mol. Sci. 2022, 23, 1549. [Google Scholar] [CrossRef] [PubMed]
- Ritonga, F.N.; Ngatia, J.N.; Wang, Y.; Khoso, M.A.; Farooq, U.; Chen, S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiol. Mol. Biol. Plants 2021, 27, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, P.; Si, T.; Hsu, C.C.; Wang, L.; Zayed, O.; Yu, Z.; Zhu, Y.; Dong, J.; Tao, W.A.; et al. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev. Cell 2017, 43, 618–629. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Jia, Y.X.; Ding, Y.L.; Shi, Y.T.; Li, Z.; Guo, Y.; Gong, Z.Z.; Yang, S.H. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol. Cell 2017, 66, 117–128. [Google Scholar] [CrossRef]
- Kidokoro, S.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci. 2022, 27, 922–935. [Google Scholar] [CrossRef]
- Chen, Z.A.; Gao, H.D.; Wu, H.Q.; Xue, X.M.; Ren, J.H. Comparative Transcriptome Analysis Reveals the Molecular Mechanism of Salt Combined with Flooding Tolerance in Hybrid Willow (Salix matsudana × alba). Forests 2023, 14, 1858. [Google Scholar] [CrossRef]
- Lin, S.; Li, Y.T.; Zhao, J.X.; Guo, W.Z.; Jiang, M.; Li, X.M.; Liu, W.P.; Zhang, J.; Yang, M.S. Transcriptome analysis of biochemistry responses to low-temperature stress in the flower organs of five pear varieties. Forests 2023, 14, 490. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Ban, Q.Y.; Mao, J.L.; Lin, M.L.; Zhu, X.X.; Xia, Y.H.; Cao, X.J.; Zhang, X.C.; Li, Y.Y. Integrated metabolomic and transcriptomic analysis reveals that amino acid biosynthesis may determine differences in cold-tolerant and cold-sensitive tea cultivars. Int. J. Mol. Sci. 2023, 24, 1907. [Google Scholar] [CrossRef]
- Kong, Y.; Hou, X.B.; Liu, Z.L.; Li, Y.F. Cold-stress induced metabolomic and transcriptomic changes in leaves of three mango varieties with different cold tolerance. BMC Plant Biol. 2024, 24, 266. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.L.; Yang, S.H. Surviving and thriving: How plants perceive and respond to temperature stress. Dev. Cell 2022, 57, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, B.; Sepahvand, S.; Kamali Aliabad, K.; Bakhtiarizadeh, M.; Imani, A.; Assareh, R.; Salami, S.A. Transcriptome profiling of fully open flowers in a frost-tolerant almond genotype in response to freezing stress. Mol. Genet. Genom. 2018, 293, 151–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, W.; Di, H.; Yang, S.; Tian, Y.; Tong, Y.; Huang, H.; Escalona, V.H.; Tang, Y.; Li, H.; et al. Variation in nutritional components and antioxidant capacity of different cultivars and organs of Basella alba. Plants 2024, 13, 892. [Google Scholar] [CrossRef]
- Kong, X.; Huang, Z.; Zhang, C.; Hua, Y.; Chen, Y.; Li, X. Phenolic compounds in walnut pellicle improve walnut (Juglans regia L.) protein solubility under pH-shifting condition. Food Res. Int. 2023, 163, 112156. [Google Scholar] [CrossRef]
- Jiang, F.C.; Zhang, J.H.; Wang, S.; Yang, L.; Luo, Y.; Gao, S.H.; Zhang, M.L.; Wu, S.Y.; Hu, S.N.; Sun, H.Y.; et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic. Res. 2019, 6, 128. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Quandt, A.; Neufeldt, H.; Gorman, K. Climate change adaptation through agroforestry: Opportunities and gaps. Curr. Opin. Env. Sust. 2023, 60, 101244. [Google Scholar] [CrossRef]
- Baumgarten, F.; Gessler, A.; Vitasse, Y. No risk-no fun: Penalty and recovery from spring frost damage in deciduous temperate trees. Funct. Ecol. 2023, 37, 648–663. [Google Scholar] [CrossRef]
- Chen, D.; Liu, B.C.; Lei, T.J.; Yang, X.J.; Liu, Y.; Bai, W.; Han, R.; Bai, H.Q.; Chang, N.J. Monitoring and mapping winter wheat spring frost damage with MODIS data and statistical data. Plants 2023, 12, 3954. [Google Scholar] [CrossRef]
- Kaur, A.; Ferguson, L.; Maness, N.; Carroll, B.; Reid, W.; Zhang, L. Spring freeze damage of pecan bloom: A Review. Horticulturae 2020, 6, 82. [Google Scholar] [CrossRef]
- Bozonnet, C.; Saudreau, M.; Badel, E.; Améglio, T.; Charrier, G. Freeze dehydration vs supercooling in tree stems: Physical and physiological modelling. Tree Physiol. 2024, 44, tpad117. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, M.R.; Wang, Q.C. ROS-induced oxidative stress in plant cryopreservation: Occurrence and alleviation. Planta 2021, 254, 124. [Google Scholar] [CrossRef]
- Salih, H.; Bai, W.W.; Liang, Y.Q.; Yang, R.R.; Zhao, M.Q.; Muhammd, S.M.; Zhang, D.Y.; Li, X.S. ROS scavenging enzyme-encoding genes play important roles in the desert moss Syntrichia caninervis response to extreme cold and desiccation stresses. Int. J. Biol. Macromol. 2024, 254, 127778. [Google Scholar] [CrossRef]
- Liang, G.P.; Wang, H.; Gou, H.M.; Li, M.; Cheng, Y.J.; Zeng, B.Z.; Mao, J.; Chen, B.H. Overexpression of VaBAM3 from Vitis amurensis enhances seedling cold tolerance by promoting soluble sugar accumulation and reactive oxygen scavenging. Plant Cell Rep. 2024, 43, 151. [Google Scholar] [CrossRef]
- Yang, H.; Qiao, K.w.; Teng, J.J.; Chen, J.B.; Zhong, Y.L.; Rao, L.Q.; Xiong, X.Y.; Li, H. Protease inhibitor ASP enhances freezing tolerance by inhibiting protein degradation in kumquat. Hortic. Res. 2023, 10, uhad023. [Google Scholar] [CrossRef]
- Guan, Y.L.; Hwarari, D.; Korboe, H.M.; Ahmad, B.; Cao, Y.W.; Movahedi, A.; Yang, L.M. Low temperature stress-induced perception and molecular signaling pathways in plants. Environ. Exp. Bot. 2023, 207, 105190. [Google Scholar] [CrossRef]
- Geng, J.; Liu, J.H. The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene. J. Exp. Bot. 2018, 69, 2677–2692. [Google Scholar] [CrossRef]
- Hemming, M.N.; Peacock, W.J.; Dennis, E.S.; Trevaskis, B. Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol. 2008, 147, 355–366. [Google Scholar] [CrossRef]
- Li, X.L.; Wen, K.; Zhu, L.; Chen, C.Y.; Yin, T.; Yang, X.Y.; Zhao, K.; Zi, Y.Q.; Zhang, H.Y.; Luo, X.P.; et al. Genome-wide identification and expression analysis of the Eriobotrya japonica TIFY gene family reveals its functional diversity under abiotic stress conditions. BMC Genom. 2024, 25, 468. [Google Scholar] [CrossRef]
- Zheng, P.; Cao, L.; Zhang, C.; Fang, X.; Wang, L.; Miao, M.; Tang, X.; Liu, Y.; Cao, S. The transcription factor MYB43 antagonizes with ICE1 to regulate freezing tolerance in Arabidopsis. New Phytol. 2023, 238, 2440–2459. [Google Scholar] [CrossRef] [PubMed]
- Song, C.B.; Yang, Y.Y.; Yang, T.W.; Ba, L.J.; Zhang, H.; Han, Y.C.; Xiao, Y.Y.; Shan, W.; Kuang, J.F.; Chen, J.Y.; et al. MaMYB4 recruits histone deacetylase MaHDA2 and modulates the expression of ω-3 fatty acid desaturase genes during cold stress response in banana fruit. Plant Cell Physiol. 2019, 60, 2410–2422. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gayen, D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. Plant Cell Rep. 2021, 40, 2081–2095. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Khan, Q.; Sun, B.; Tang, L.H.; Yang, L.T.; Zhang, B.Q.; Xiu, X.Y.; Dong, D.F.; Li, Y.R. Overexpression of sugarcane SoTUA gene enhances cold tolerance in transgenic sugarcane. Agron. J. 2021, 113, 4993–5005. [Google Scholar] [CrossRef]
- Miura, K.; Nozawa, R. Overexpression of SIZ1 enhances tolerance to cold and salt stresses and attenuates response to abscisic acid in Arabidopsis thaliana. Plant Biotechnol. 2014, 31, 167–172. [Google Scholar] [CrossRef]
- Chen, C.C.; Liang, C.S.; Kao, A.L.; Yang, C.C. HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in. J. Exp. Bot. 2010, 61, 3305–3320. [Google Scholar] [CrossRef]
- Zhou, L.J.; Li, Y.Y.; Zhang, R.F.; Zhang, C.L.; Xie, X.B.; Zhao, C.; Hao, Y.J. The small ubiquitin-like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under low-temperature conditions in apple. Plant Cell Environ. 2017, 40, 2068–2080. [Google Scholar] [CrossRef]
- Li, R.; Ma, J.; Liu, H.M.; Wang, X.; Li, J.; Li, Z.N.; Li, M.Y.; Sui, S.Z.; Liu, D.F. Overexpression of CpSIZ1, a SIZ/PIAS-type SUMO E3 ligase from wintersweet (Chimonanthus praecox), delays flowering, accelerates leaf senescence and enhances cold tolerance in Arabidopsis. Plant Mol. Biol. Rep. 2021, 39, 301–316. [Google Scholar] [CrossRef]
- Huang, X.S.; Li, K.Q.; Jin, C.; Zhang, S.L. ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Sci. Rep. 2015, 5, 17620. [Google Scholar] [CrossRef]
- Shi, X.T.; Bao, J.Y.; Lu, X.; Ma, L.; Zhao, Y.; Lan, S.M.; Cao, J.; Ma, S.Y.; Li, S. The mechanism of Ca2+ signal transduction in plants responding to abiotic stresses. Environ. Exp. Bot. 2023, 216, 105514. [Google Scholar] [CrossRef]
- Xiao, P.X.; Feng, J.W.; Zhu, X.T.; Gao, J.X. Evolution analyses of CAMTA transcription factor in plants and its enhancing effect on cold-tolerance. Front. Plant Sci. 2021, 12, 758187. [Google Scholar] [CrossRef] [PubMed]
- Dubrovina, A.S.; Kiselev, K.V.; Khristenko, V.S.; Aleynova, O.A. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J. Plant Physiol. 2015, 185, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jahed, K.R.; Saini, A.K.; Sherif, S.M. Coping with the cold: Unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front. Plant Sci. 2023, 14, 1246093. [Google Scholar] [CrossRef] [PubMed]
- Angelcheva, L.; Mishra, Y.; Antti, H.; Kjellsen, T.D.; Funk, C.; Strimbeck, R.G.; Schröder, W.P. Metabolomic analysis of extreme freezing tolerance in Siberian spruce (Picea obovata). New Phytol. 2014, 204, 545–555. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, Y.; Liu, C.; Chen, K.; Li, M. Functions and interaction of plant lipid signalling under abiotic stresses. Plant Biol. 2023, 25, 361–378. [Google Scholar] [CrossRef]
- Xu, C.C.; Wang, X.; Wu, Y.; Gao, J.; Zhang, P.; Zhao, Y.T.; Liu, X.L.; Wang, P.; Huang, S.B. Molecular mechanisms underlying low temperature inhibition of grain filling in maize (Zea mays L.): Coordination of growth and cold responses. Plant J. 2024, 119, 982–997. [Google Scholar] [CrossRef]
- Cheng, L.L.; Jiang, H.C.; Xie, G.S.; Wang, J.K.; Peng, W.T.; Zhou, L.J.; An, F. Photosynthesis and latex burst characteristics in different varieties of rubber trees (Hevea brasiliensis) under chilling stress, combing bark tensile property and chemical component analysis. Forests 2024, 15, 1408. [Google Scholar] [CrossRef]
- Wachendorf, M.; Küppers, M. Effects of leaf temperature on initial stomatal opening and their roles in overall and biochemical photosynthetic induction. Trees-Struct. Funct. 2017, 31, 1667–1681. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, W.; Zhao, X.; Zhang, H.; Chen, J.; Liu, Q.; Li, T.; Dong, S. Transcriptomic Profiling Analyses Revealed Candidate Genes Under Freezing Stress in Siberian Apricot (Prunus sibirica). Forests 2024, 15, 1870. https://doi.org/10.3390/f15111870
Liu Q, Li W, Zhao X, Zhang H, Chen J, Liu Q, Li T, Dong S. Transcriptomic Profiling Analyses Revealed Candidate Genes Under Freezing Stress in Siberian Apricot (Prunus sibirica). Forests. 2024; 15(11):1870. https://doi.org/10.3390/f15111870
Chicago/Turabian StyleLiu, Quangang, Wenying Li, Xin Zhao, Hongrui Zhang, Jianhua Chen, Qingbai Liu, Tianlai Li, and Shengjun Dong. 2024. "Transcriptomic Profiling Analyses Revealed Candidate Genes Under Freezing Stress in Siberian Apricot (Prunus sibirica)" Forests 15, no. 11: 1870. https://doi.org/10.3390/f15111870
APA StyleLiu, Q., Li, W., Zhao, X., Zhang, H., Chen, J., Liu, Q., Li, T., & Dong, S. (2024). Transcriptomic Profiling Analyses Revealed Candidate Genes Under Freezing Stress in Siberian Apricot (Prunus sibirica). Forests, 15(11), 1870. https://doi.org/10.3390/f15111870