Unveiling the Secrets: How Landscape Patterns Shape Habitat Quality in Northeast China Tiger and Leopard National Park
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Habitat Quality Calculation
2.3.2. Landscape Pattern Calculation
2.3.3. Spatial Autocorrelation Analysis
2.3.4. GeoDetector
3. Results
3.1. Variation Analysis of Habitat Quality
3.2. Variation Analysis of Landscape Pattern
3.3. Spatial Autocorrelation Analysis of Habitat Quality
3.4. Geographic Detector Analysis of Habitat Quality and Landscape Pattern
4. Discussion
4.1. Spatiotemporal Changes in Habitat Quality and Landscape Pattern in NCTLNP
4.2. Influence of Landscape Patterns on Habitat Quality
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theodorou, P.; Radzevičiūtė, R.; Lentendu, G.; Kahnt, B.; Husemann, M.; Bleidorn, C.; Settele, J.; Schweiger, O.; Grosse, I.; Wubet, T.; et al. Urban Areas as Hotspots for Bees and Pollination but Not a Panacea for All Insects. Nat. Commun. 2020, 11, 576. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-Third of Global Protected Land Is under Intense Human Pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Diaz, S.; Settele, J.; Brondizio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive Human-Driven Decline of Life on Earth Points to the Need for Transformative Change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Almasieh, K.; Nayeri, D.; Adibi, M.A.; Wan, H.Y. Comparison of Habitat Suitability and Connectivity Modelling for Three Carnivores of Conservation Concern in an Iranian Montane Landscape. Landsc. Ecol. 2022, 37, 411–430. [Google Scholar] [CrossRef]
- Kefalas, G.; Kalogirou, S.; Poirazidis, K.; Lorilla, R.S. Landscape Transition in Mediterranean Islands: The Case of Ionian Islands, Greece 1985-2015. Landsc. Urban Plan. 2019, 191, 103641. [Google Scholar] [CrossRef]
- Moreira, M.; Fonseca, C.; Vergilio, M.; Calado, H.; Gil, A. Spatial Assessment Assessment of Habitat Conservation Status in a Macaronesian Island Based on the InVEST Model: A Case Study of Pico Island (Azores, Portugal). Land. Use Pol. 2018, 78, 637–649. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Wu, H.; Fang, S.; Yang, Y.; Cheng, J. Changes in Habitat Quality of Nature Reserves in Depopulating Areas Due to Anthropogenic Pressure: Evidence from Northeast China, 2000–2018. Ecol. Indic. 2022, 138, 108844. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Liu, X.; Chang, Y.; Wang, H.; Yang, J.; Yang, X.; Wei, Y. The Multi-Dimensional Perspective of Ecological Security Evaluation and Drive Mechanism for Baishuijiang National Nature Reserve, China. Ecol. Indic. 2021, 132, 108295. [Google Scholar] [CrossRef]
- Zhao, W. Beginning: China’s National Park System. Natl. Sci. Rev. 2022, 9, nwac150. [Google Scholar] [CrossRef]
- Ning, Y.; Kostyria, A.V.; Ma, J.; Chayka, M.I.; Guskov, V.Y.; Qi, J.; Sheremetyeva, I.N.; Wang, M.; Jiang, G. Dispersal of Amur Tiger from Spatial Distribution and Genetics within the Eastern Changbai Mountain of China. Ecol. Evol. 2019, 9, 2415–2424. [Google Scholar] [CrossRef] [PubMed]
- Song, T. The Exploration of China’s National Park System Pilot Project: Taking Northeast China Tiger and Leopard National Park System Pilot Area as an Example. Int. J. Geoheritage Parks 2020, 8, 203–209. [Google Scholar] [CrossRef]
- Zhang, X.; Ning, X.; Wang, H.; Zhang, X.; Liu, Y.; Zhang, W. Quantitative Assessment of the Risk of Human Activities on Landscape Fragmentation: A Case Study of Northeast China Tiger and Leopard National Park. Sci. Total Environ. 2022, 851, 158413. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gu, T.; Xiang, J.; Luo, T.; Zeng, J. Assessing the Conservation Effectiveness of National Nature Reserves in China. Appl. Geogr. 2023, 161, 103125. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-Temporal Changes in Habitat Quality and Linkage with Landscape Characteristics in the Beressa Watershed, Blue Nile Basin of Ethiopian Highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Di Febbraro, M.; Sallustio, L.; Vizzarri, M.; De Rosa, D.; De Lisio, L.; Loy, A.; Eichelberger, B.A.; Marchetti, M. Expert-Based and Correlative Models to Map Habitat Quality: Which Gives Better Support to Conservation Planning? Glob. Ecol. Conserv. 2018, 16, e00513. [Google Scholar] [CrossRef]
- Qiu, T.; Bell, A.J.; Swenson, J.J.; Clark, J.S. Habitat–trait interactions that control response to climate change: North American ground beetles (Carabidae). Glob. Ecol. Biogeogr. 2023, 32, 987–1001. [Google Scholar] [CrossRef]
- Kays, R.; Snider, M.H.; Hess, G.; Cove, M.V.; Jensen, A.; Shamon, H.; McShea, W.J.; Rooney, B.; Allen, M.L.; Pekins, C.E.; et al. Climate, food and humans predict communities of mammals in the United States. Divers. Distrib. 2024, 30, e13900. [Google Scholar] [CrossRef]
- Kija, H.K.; Ogutu, J.O.; Mangewa, L.J.; Bukombe, J.; Verones, F.; Graae, B.J.; Kideghesho, J.R.; Said, M.Y.; Nzunda, E.F. Spatio-Temporal Changes in Wildlife Habitat Quality in the Greater Serengeti Ecosystem. Sustainability 2020, 12, 2440. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Jacobs, B.; Boronyak, L.; Mitchell, P.; Vandenberg, M.; Batten, B. Towards a Climate Change Adaptation Strategy for National Parks: Adaptive Management Pathways under Dynamic Risk. Environ. Sci. Policy 2018, 89, 206–215. [Google Scholar] [CrossRef]
- Voegeli, M.; Serrano, D.; Pacios, F.; Tella, J.L. The Relative Importance of Patch Habitat Quality and Landscape Attributes on a Declining Steppe-Bird Metapopulation. Biol. Conserv. 2010, 143, 1057–1067. [Google Scholar] [CrossRef]
- Marrotte, R.R.; Bowman, J.; Brown, M.G.C.; Cordes, C.; Morris, K.Y.; Prentice, M.B.; Wilson, P.J. Multi-Species Genetic Connectivity in a Terrestrial Habitat Network. Mov. Ecol. 2017, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Whittington, J.; Low, P.; Hunt, B. Temporal Road Closures Improve Habitat Quality for Wildlife. Sci. Rep. 2019, 9, 3772. [Google Scholar] [CrossRef] [PubMed]
- Tischendorf, L. Can Landscape Indices Predict Ecological Processes Consistently? Lands Ecol. 2001, 16, 235–254. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Withey, J.C.; Pidgeon, A.M.; Plantinga, A.J.; Mckerrow, A.J.; Williams, S.G.; Helmers, D.P.; Radeloff, V.C. Future Land-Use Scenarios and the Loss of Wildlife Habitats in the Southeastern United States. Ecol. Appl. 2015, 25, 160–171. [Google Scholar] [CrossRef]
- Gu, L.; Yan, J.; Li, Y.; Gong, Z. Spatial-Temporal Evolution and Correlation Analysis between Habitat Quality and Landscape Patterns Based on Land Use Change in Shaanxi Province, China. Ecol. Evol. 2023, 13, e10657. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wu, F.E.; Zhang, Y.N.; Han, S.; Liu, Y.Q. Spatial and Temporal Changes of Habitat Quality in Jiangsu Yancheng Wetland National Nature Reserve—Rare Birds of China. Appl. Ecol. Environ. Res. 2019, 17, 4807–4821. [Google Scholar] [CrossRef]
- Chu, L.; Sun, T.; Wang, T.; Li, Z.; Cai, C. Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA). Sustainability 2018, 10, 3854. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Wu, M.; Yang, R.; Liu, Z.; Xu, X. Correlation between Spatial-Temporal Changes in Landscape Patterns and Habitat Quality in the Yongding River Floodplain, China. Land. 2023, 12, 807. [Google Scholar] [CrossRef]
- Robinson, C.T.; Schuwirth, N.; Baumgartner, S.; Stamm, C. Spatial Relationships between Land-Use, Habitat, Water Quality and Lotic Macroinvertebrates in Two Swiss Catchments. Aquat. Sci. 2014, 76, 375–392. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, J.; Wang, Y.; Xu, L.; Zheng, L.; Zhang, B.; Bi, Y.; Yang, H. Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin. Int. J. Environ. Res. Public Health 2022, 19, 11974. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, J.; Li, Y. Exploring the Spatial and Temporal Driving Mechanisms of Landscape Patterns on Habitat Quality in a City Undergoing Rapid Urbanization Based on GTWR and MGWR: The Case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A Measure of Spatial Stratified Heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Bo, Y.; Xu, C.; Hu, M.; Huang, D. Identification of Health Risks of Hand, Foot and Mouth Disease in China Using the Geographical Detector Technique. Int. J. Environ. Res. Public Health 2014, 11, 3407–3423. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.; Li, R. Investigating Factors Affecting Carbon Emission in China and the USA: A Perspective of Stratified Heterogeneity. J. Clean. Prod. 2018, 199, 85–92. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2022. Earth Syst. Sci. Data 2024, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wang, C.; He, J.; Liu, D.; Yu, X.; Shi, Q. Impact of Land Use Change on Bird Habitat Connectivity: A Case Study in Ezhou City. Acta Ecol. Sin. 2022, 42, 4197–4208. [Google Scholar]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST Habitat Quality Module in Spatially Vulnerability Assessment of Natural Habitats (Case Study: Chaharmahal and Bakhtiari Province, Iran). Environ. Monit. Assess. 2020, 192, 487. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, J.; Feng, X.; Guo, M.; Jin, Y.; Gao, X. Effects of Land Use Change on Habitat Based on InVEST Model in Northeast China. Ecol. Sci. 2018, 37, 139–147. [Google Scholar]
- Chen, Z.; Yang, X.; Chen, J.; Wang, Q.; Liu, T.; Deng, N. InVEST Model Considering Terrain and Biodiversity and Its Application in the Analysis of County Biodiversity Security Pattern: A Case Study of Wengyuan County. J. Environ. Eng. Technol. 2023, 13, 1345–1353. [Google Scholar]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. [Google Scholar]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the Spatial Impact of Landscape Fragmentation on Habitat Quality: A Multi-Temporal Dimensional Comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land. Use Pol. 2023, 125, 106463. [Google Scholar] [CrossRef]
- Moran, P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—Lisa. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, S. Spatiotemporal Variation in Land Use of Northeast China Tiger and Leopard National Park. Int. J. Des. Nat. Ecodynamics 2020, 15, 835–842. [Google Scholar] [CrossRef]
- Liu, Y. Study on the Zoning of Northeast China Tiger and Leopard National Park. Int. J. Geoheritage Parks 2022, 10, 113–123. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, Y.; Jiang, G. Spatial Planning of Ecological Corridors Among the Protected Areas of Amur Tiger in China. Nat. Prot. Area 2021, 1, 1–8. [Google Scholar]
- Hobbs, N.T. Challenges and Opportunities in Integrating Ecological Knowledge across Scales. For. Ecol. Manag. 2003, 181, 223–238. [Google Scholar] [CrossRef]
- Qi, J.; Holyoak, M.; Ning, Y.; Jiang, G. Ecological Thresholds and Large Carnivores Conservation: Implications for the Amur Tiger and Leopard in China. Glob. Ecol. Conserv. 2020, 21, e00837. [Google Scholar] [CrossRef]
Threat | Max Distance | Weight | DECAY |
---|---|---|---|
Impervious | 1 | 0.8 | Exponential |
Cropland | 0.57 | 0.47 | Exponential |
Resident | 2 | 0.7 | Exponential |
Barren | 0.5 | 0.4 | Exponential |
Land Cover | Habitat | Threat Factors | |||
---|---|---|---|---|---|
Impervious | Cropland | Resident | Barren | ||
Cropland | 0.5 | 0.45 | 0 | 0.5 | 0.1 |
Forest | 1 | 0.84 | 0.5 | 0.8 | 0.2 |
Grassland | 0.7 | 0.8 | 0.35 | 0.7 | 0.26 |
Water | 0.8 | 0.85 | 0.4 | 0.75 | 0.2 |
Barren | 0.1 | 0 | 0 | 0 | 0 |
Impervious | 0 | 0 | 0 | 0 | 0 |
Wetland | 1 | 0.86 | 0.4 | 0.75 | 0.33 |
Index | Type | Description |
---|---|---|
CONTAG | Aggregation | Reflects different levels of patch aggregation |
AI | Quantifies patch distribution and spatial aggregation in a landscape | |
SHDI | Diversity | Indicating that the landscape has a high information content and a rich variety of types |
SHEI | Describes the degree of evenness in the distribution of different ecosystems within a landscape | |
LSI | Heterogeneity and Shape | Represents landscape patch shape complexity |
NP | Expresses the heterogeneity of a landscape and is positively correlated with landscape fragmentation | |
PD | Reflects the degree of differentiation of the entire landscape | |
SHAPE | Reflects maximum combination of landscape type areas | |
AREA_MN | Reflects the one of the basic elements of landscape mosaics | |
LPI | Dominance | Reflects the dominance at the patch level |
COHESION | Connectivity | Describes the physical connectivity of various patch types |
SPLIT | Fragmentation | Describes the degree of dispersion between patches of the same type |
Criteria | Interaction Detection Type |
---|---|
q(x1∩x2) < min(q(x1), q(x2)) | Non-linear attenuation |
min(q(x1), q(x2)) < q(x1∩x2) < max(q(x1), q(x2)) | Single-factor non-linear attenuation |
q(x1∩x2) > max(q(x1), q(x2)) | Two-factor interaction enhancement |
q(x1∩x2) = q(x1) + q(x2) | Mutual independence |
q(x1∩x2) > q(x1) + q(x2) | Non-linear enhancement |
Levels | Zone | 2012 | 2017 | 2022 |
---|---|---|---|---|
Area | Area | Area | ||
Worst | CP | 27.07 | 28.85 | 17.85 |
GC | 10.79 | 15.16 | 19.05 | |
PA | 24.09 | 28.55 | 32.33 | |
Total | 61.95 | 72.56 | 69.23 | |
Poor | CP | 0.01 | 0.04 | 0.09 |
GC | 0.30 | 0.99 | 0.21 | |
PA | 0.90 | 1.98 | 0.06 | |
Total | 1.21 | 3.01 | 0.36 | |
Moderate | CP | 170.50 | 162.07 | 143.83 |
GC | 173.74 | 189.15 | 172.59 | |
PA | 331.33 | 333.08 | 322.56 | |
Total | 675.57 | 684.30 | 638.98 | |
Good | CP | 22.23 | 27.11 | 25.00 |
GC | 14.84 | 28.75 | 31.22 | |
PA | 15.51 | 21.22 | 21.45 | |
Total | 52.58 | 77.08 | 77.67 | |
Excellent | CP | 7466.43 | 7468.16 | 7499.47 |
GC | 6011.37 | 5976.99 | 5987.96 | |
PA | 550.53 | 537.52 | 545.94 | |
Total | 14,028.33 | 13,982.67 | 14,033.37 |
Year | 2012 | 2017 | 2022 |
---|---|---|---|
Moran’s I | 0.652 | 0.670 | 0.687 |
z | 638.98 | 651.41 | 648.07 |
p | 0.001 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Chen, Y.; Wang, Z. Unveiling the Secrets: How Landscape Patterns Shape Habitat Quality in Northeast China Tiger and Leopard National Park. Forests 2024, 15, 1889. https://doi.org/10.3390/f15111889
Du X, Chen Y, Wang Z. Unveiling the Secrets: How Landscape Patterns Shape Habitat Quality in Northeast China Tiger and Leopard National Park. Forests. 2024; 15(11):1889. https://doi.org/10.3390/f15111889
Chicago/Turabian StyleDu, Xishihui, Ying Chen, and Zhaoguo Wang. 2024. "Unveiling the Secrets: How Landscape Patterns Shape Habitat Quality in Northeast China Tiger and Leopard National Park" Forests 15, no. 11: 1889. https://doi.org/10.3390/f15111889
APA StyleDu, X., Chen, Y., & Wang, Z. (2024). Unveiling the Secrets: How Landscape Patterns Shape Habitat Quality in Northeast China Tiger and Leopard National Park. Forests, 15(11), 1889. https://doi.org/10.3390/f15111889