
Citation: Lu, F.; Wang, B.; Li, J.; Li, D.;

Liu, S.; Guo, Y.; Huang, F.; Xiang, W.;

Li, X. Both Biotic and Abiotic Factors

Shape the Spatial Distribution of

Aboveground Biomass in a Tropical

Karst Seasonal Rainforest in South

China. Forests 2024, 15, 1904.

https://doi.org/10.3390/f15111904

Academic Editors: Adrian Łukowski

and Andrzej Węgiel
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Abstract: Forest biomass accumulation is fundamental to ecosystem stability, material cycling, and
energy flow, and pit lays a crucial role in the carbon cycle. Understanding the factors influencing
aboveground biomass (AGB) is essential for exploring ecosystem functioning mechanisms, restoring
degraded forests, and estimating carbon balance in forest communities. Tropical karst seasonal
rainforests are species-rich and heterogeneous, yet the impact mechanisms of biotic and abiotic
factors on AGB remain incompletely understood. Based on the survey data of a 15 ha monitoring plot
in a karst seasonal rainforest in Southern China, this study explores the distribution characteristics
of AGB and its intrinsic correlation with different influencing factors. The results show that the
average AGB of the plot is 125.7 Mg/ha, with notable variations among habitats, peaking in hillside
habitats. Trees with medium and large diameters at breast height (DBH ≥ 10 cm) account for 83.94%
of the aboveground biomass (AGB) and are its primary contributors; dominant tree species exhibit
higher AGB values. Both biotic and abiotic elements substantially influence AGB, with biotic factors
exhibiting the largest influence. Among abiotic factors, topographic factors have a strong direct or
indirect influence on AGB, while soil physicochemical properties have the smallest indirect impact.
This research provides a comprehensive understanding of AGB distribution and its influencing factors
in tropical karst forests (KFs), contributing to the management of carbon sinks in these ecosystems.

Keywords: karst; seasonal rainforest; aboveground biomass; biotic factors; abiotic factors

1. Introduction

Biomass plays a crucial role in forest ecosystems and serves as a vital measure for as-
sessing forest productivity. It has substantial consequences for the stability and sustainable
growth of the entire ecosystem [1]. AGB in tropical forests is essential for storing carbon
and nutrients, and it significantly contributes to the global carbon cycle [2]. Therefore, it
is imperative to attain a comprehensive understanding of the storage patterns of forest
biomass to fully comprehend and assess the ecosystem services provided by forests and
their capacity to adjust to climate variability [3]. The variation in AGB, apart from being
influenced by various biotic and abiotic factors [4–6], is also influenced by the biologi-
cal characteristics of trees themselves, which affect individual biomass and its allocation
patterns [7].

AGB in forests may be influenced by the intricate interplay of abiotic and biotic
elements. Topography can affect soil nutrients and tree composition, thus impacting AGB.
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Prior research has indicated that topographic parameters, such as elevation and slope, play
a significant role in shaping the distribution of AGB in forests [4,5], with higher biomass
observed in sloping habitats [4] and a positive correlation with elevation [5]. However, some
researchers have found that lower-elevation areas with more soil and water are better suited
for forest growth, resulting in a significant negative correlation between elevation and
biomass [8]. The distribution of AGB does not show significant differences across different
slopes [9], and areas with flat terrain tend to have higher AGB values [10], indicating
substantial variations in research results across different study regions. Additionally, soil
also directly influences AGB [11], especially the nitrogen content, organic carbon content,
and pH value of the soil, significantly impacting biomass distribution [12].

Biotic factors are important in influencing AGB. The distribution of AGB in forests can
be influenced by both the community organization [6,13] as well as species composition [14].
Large-diameter trees have a considerable impact on community biomass [7], and the more
complex the community structure, the stronger the impact on biomass [6,13]. Furthermore,
AGB in KFs is substantially determined by abundance [5,15]. Species richness may show
a positive or negative correlation with AGB [16,17]. Some researchers have also found
that interspecific competition significantly affects plant size [18], and plant individuals
can improve the surrounding environmental conditions through interactions, enabling
neighboring species to survive in previously inhospitable environments. This enhances
species diversity in the community [19], which may further affect the accumulation of
AGB. Overall, biotic and abiotic factors may exhibit different patterns and mechanisms
of influence in different ecosystems, study areas, and climatic conditions. Additionally,
the relationship between ecological factors and AGB may be altered as a result of the
intensification of global climate change [20]. Thus, further research is still needed to deepen
our understanding of the interactions between these factors and their specific manifestations
in different ecosystems. However, a comprehensive and in-depth analysis of the combined
effects of biotic and abiotic factors and their interactions on AGB is still lacking.

Karst landscapes cover approximately 15% of the world’s land area [21], particularly in
China, where they account for about one-third of the country’s land area [22]. Consequently,
expansive regions of forests in karst terrains have a highly significant impact on the global
process of carbon cycling and the storage of carbon. However, the steep terrain poses
significant challenges in conducting surveys and sampling, leading to a relatively limited
amount of research on biomass in KFs. Moreover, previous studies have mostly relied on
allometric equations developed for non-karst habitats [23,24]. Karst vegetation is limited
by its habitat and exhibits strong drought tolerance [25], and woody plants generally
have higher wood density [26]. Therefore, using allometric equations developed for other
regions may lead to significant estimation errors in AGB of KFs. Thus, the specific factors
influencing AGB in KFs at a local scale are still unclear.

The karst rainforest in Southern China is considered to be the most exemplary tropical
karst forest worldwide [27,28]. We created a model to estimate the amount of AGB in the
tropical karst seasonal rainforest of South China using data collected from a 15-hectare
plot. The model takes into account the wood density, height, and DBH of different tree
species. We utilized structural equation modeling to undertake a thorough examination
of the intricate relationships between biotic and abiotic factors that influence the spatial
distribution of AGB. This work enhances our understanding of the mechanisms that
drive AGB in tropical KFs at a small scale. This study seeks to investigate the following
scientific inquiries: (1) How does the spatial distribution of AGB vary in the tropical
karst seasonal rainforest? (2) How do biotic and abiotic factors influence the geographical
distribution of AGB in the tropical karst seasonal rainforest? This project aims to enhance
our comprehension of the mechanisms behind biomass generation in KFs and establish a
basis for the creation of precise carbon cycling models for karst forests.
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2. Materials and Methods
2.1. Study Area

This study was located in the Guangxi Nonggang National Nature Reserve (NNNR),
at the border of Longzhou County and Ningming County in the Guangxi Zhuang Au-
tonomous Region. The geographical coordinates are 106◦42′28′′–107◦04′54′′ E and
22◦13′56′′–22◦33′09′′ N, with a long, strip-shaped distribution from northwest to southeast.
Due to its separation by residential areas, the entire reserve consists of three sections: Nong-
gang, Longhu, and Longrui. The main landforms in these areas are karst peak clusters and
deep circular depressions (valleys), composed of multiple mountain peaks and embedded
depression. The Longrui section in the east spans Longzhou and Ningming counties, with
an area of 3645 ha. The Nonggang section in the central area has the largest area of 5425 ha,
and the Longhu section in the west has the smallest area of 1008 ha. The Nonggang section
is mostly characterized by peak–cluster–depression landforms, with a high density of peaks.
The mountain peaks have an elevation of around 400–500 m, and the density of peaks can
reach up to 80 per square kilometer. The depressions exhibit a bottom elevation ranging
from approximately 150 to 200 m, with a peak recorded depth of 114 m and a maximum
width spanning 450 m.

The vegetation in NNNR is a northern tropical native karst seasonal rainforest. The
area is characterized by abundant heat and sufficient rainfall, with an average yearly
temperature of approximately 22.52 ◦C and a yearly mean rainfall of 1329.59 mm. The
majority of the rainfall occurs between the months of May and September. The average
annual wind speed is 2.16 m/s. The climatic conditions are extremely favorable, nurturing
a rich diversity of plant resources and varied vegetation types [29].

2.2. Establishment of Forest Plots and Tree Inventory

According to the CTFS-ForestGEO Forest Biodiversity Monitoring Protocol, a 15 ha
(500 m × 300 m) forest plot was established in NNNR in 2011 (NG plot). The NG plot
is part of the Chinese Forest Biodiversity Monitoring Network (CForBio) and The Forest
Global Earth Observatory (ForestGEO) (https://forestgeo.si.edu/sites/asia/nonggang
(accessed on 1 July 2024)). The plot consists of a relatively intact valley and a small peak,
representing a series of complete “peak-clustered valley” habitat types, ranging from the
valley bottom, hillsides, to the mountain top (Figure 1). The 15 ha plot was divided into
375 quadrats of 20 m × 20 m using a total station [30]. All trees with a DBH ≥ 1 cm within
the plot were measured and recorded, including their species name, DBH, coordinates, and
growth status.
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In 2021, we re-measured the DBH of all trees within the NG plot. In 2022, utilizing
the developed functional trait manual [31], we determined the wood density of the species
within the plot, as well as the height of 20,000 tree individuals.

2.3. Variables and Statistical Analysis Methods
2.3.1. Calculation of Aboveground Biomass

We estimated AGB using a model proposed by Chave [7]. The AGB of the forest was
then determined by incorporating the DBH (cm), wood density ρ (g cm−3), and height H
(m) of the trees in the plot, utilizing the following formula:

ln(AGB) = α + β ln(ρ × DBH2 × H) + ε (1)

The model coefficients, denoted as α and β, are obtained through least squares re-
gression, whereas ε denotes the error term, which is presumed to adhere to a normal
distribution with a mean of zero and a standard deviation of σ, implying that the random
variables are identically and independently distributed according to N(0, σ2). In the context
of a model like Model (1), which possesses ρ parameters, the determination of σ is defined
as follows:

σ =

√
1

N p

N

∑
i=1

ε2
i (2)

where the sample size is denoted by N. In the field of statistics, the symbol σ represents
the residual standard error, which is commonly referred to in the literature. The formula
provided above serves as the maximum likelihood estimate for σ and is theoretically proven
to be unbiased. When the parameter β is set to 1, an isometric relationship exists between
the AGB and ρDBH2H. To test the hypothesis of β equaling 1 within a likelihood-based
framework, one can compare the Akaike Information Criterion (AIC) values between
Model (1) and the nested model ln(AGB) = α + ln (ρ × DBH2 × H) + ε. The AIC serves
as a measure of the model’s goodness-of-fit, penalizing complex models in line with the
principle of parsimony [7].

2.3.2. The Classification of Diameter Classes and Habitat Types

Referring to Liu [5] and based on the characteristics of tree diameter distribution in
the study area, the diameter classes were classified into the following categories: small-
diameter class (1–5 cm, 5–10 cm); medium-diameter class (10–15 cm, 15–20 cm, 20–25 cm,
25–30 cm); and large-diameter class (30–35 cm, 35–40 cm, 40–45 cm, 45–50 cm, ≥50 cm).

Based on the relative elevation, slope, aspect, convexity, and species importance values
of each quadrat in the 15 ha, the plots were divided into different habitat types (Table 1,
Figure 1) [32]. The formula for calculating species importance values (IV) is as follows [33]:

IV = (Relative abundance + Relative f requency + Relative dominance)/3 (3)

Relative abundance = (Number o f individuals o f a species/
Total number o f individuals in the community)× 100

(4)

Relative f requency = (Number o f quadrat swhere a species occurs/
Total number o f quadrats sampled)× 100

(5)

Relative dominance = (Total basal area o f a species/
Total basal area o f all species in the community)× 100

(6)
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Table 1. Dominant tree species and their habitat conditions in different habitat types.

Habitat Type Dominant Tree Species Habitat Conditions

Valley Saraca dive, Sterculia monosperma, Ficus hispida,
Albizia odoratissima, Erythrina stricta

The humidity in both the soil and air is
relatively high, with some areas experiencing
seasonal waterlogging.

Hillside
Vitex kwangsiensis, Excentrodendron tonkinense,
Cephalomappa sinensis, Diplodiscus trichosperma,
Cleistanthus sumatranus, Sterculia monosperma

Most regions have moderately dry soil
moisture and relatively steep slopes.

Mountain top
Boniodendron minius, Memecylon scutellatum,
Sinosideroxylon pedunculatum var. Pubifolium,
Pistacia weinmanniifolia

These areas are subjected to the longest
duration of direct sunlight, maximum
exposure of bare rocks, dry air temperatures,
and severe soil moisture deficits.

2.3.3. Biotic Factors

In terms of biotic factors, we considered species diversity, structural diversity, and
individual interactions. Based on plot survey data, we calculated species richness and
abundance for 375 quadrats measuring 20 m × 20 m to reflect species diversity. Additionally,
we used the Gini coefficient (GC), coefficient of variation (CV), and standard deviation (SD)
as three common indices to measure the structural diversity of the community using DBH
and H. The coefficient of variation of DBH is a commonly used indicator to describe the
distribution frequency of the forest stand, where a higher value indicates a greater degree of
size differentiation among trees. The Gini coefficient serves as a measure of the dispersion
of individual tree DBH or H from perfect uniformity. When there is no difference between
individuals, the value is 0, and when the difference is maximized, the value approaches
1 [34]. The calculation formulas are as follows [35]:

CVba = 100 × SDba
xba

; CVh = 100 × SDh
xh

(7)

GCba =
∑n

j=1 (2 × j−n − 1)× baj

∑n
j=1 (n − 1)× baj

(8)

GCh =
∑n

j=1 (2 × j − n − 1)× hj

∑n
j=1 (n − 1)× hj

(9)

In the equation, baj represents the DBH of the j-th tree in the quadrat, ordered in
ascending order by size, while hj represents the H of the j-th tree in the quadrat (m). xba
refers to the average basal area of all individuals in the quadrat, and xh refers to the average
H of all trees in the quadrat. j represents the rank of the tree, ranging from 1 to n.

The Hegyi individual competition index was employed to characterize the individuals’
interactions [36]. Based on the formula proposed by Hegyi [36], we calculated the individual
interaction index for 375 quadrats measuring 20 m × 20 m:

Ci = ∑
j

DBH j
2/DBHi

Rij
(10)

Here, DBHi denotes the DBH of the focal tree, DBHj denotes the DBH of rival j, and
Rij denotes the distance between trees i and j. The total is taken over the “competitors” j of
tree i. Hegyi’s index defines rivals as any trees located within a certain distance Rmax from
the target tree.

2.3.4. Abiotic Factors

We utilized the techniques employed by Harms and Valencia [37,38] to acquire to-
pographic characteristics, including elevation, convexity, slope, and aspect, for a total of
375 plots measuring 20 m × 20 m. The aspect was converted using a formula to transform
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compass measurements ranging from 0 to 360◦ into values between 0 and 1. The formula is
as stated by Tian [39]:

TRASP = {1 − cos[(π/180)(aspect − 30)]}/2 (11)

In the equation, TRASP denotes the aspect index, and aspect denotes the aspect
direction angle. After the conversion, TRASP values range from 0 to 1, where 0 represents
the north–northeast direction and 1 represents the south–southwest direction. The larger
the TRASP value, the drier and hotter the habitat is.

The equation uses TRASP to represent the aspect index, whereas aspect represents the
angle of the aspect direction. Following the conversion, TRASP values span from 0 to 1,
with 0 denoting the north–northeast route and 1 denoting the south–southwest route. A
greater TRASP number signifies a more arid and warmer ecosystem.

Surface soil samples (0–20 cm) were collected from the 375 quadrats (20 m × 20 m)
in 2022. A total of nine soil physicochemical properties were analyzed, including soil
water content (SWC), soil organic carbon content (SOC), total carbon (C), total nitrogen (N),
total phosphorus (P), total potassium (K), calcium (Ca), magnesium (Mg), and pH. The
dehydrating method was employed to ascertain the soil’s water content (SWC) [40]. The
vario MACRO cube elemental analyzer was employed to analyze the total nitrogen (N) and
total carbon (C) content, while the potentiometric method was employed to measure the
soil’s pH. Using molybdenum–antimony anti-colorimetry, the total phosphorus (P) content
was ascertained using the NaOH fusion method. Flame photometry was implemented to
quantify the total potassium (K) content. Hydrochloric–nitric–perchloric acid digestion
was employed to ascertain the calcium (Ca) and magnesium (Mg) contents. The potassium
dichromate–sulfuric acid heating method was employed to ascertain the soil organic carbon
content (SOC) [41].

2.3.5. Statistical Analysis

The AGB data underwent a log transformation in order to satisfy the requirement of a
normal distribution. A one-way analysis of variance (ANOVA) was used to examine the
variations in AGB among various environments. The “LSD Test” function in the “agricolae”
package of R version 4.3.1 was used to perform multiple comparisons.

A variation partitioning analysis (VPA) was performed to quantitatively assess the
impacts of biotic and abiotic variables on AGB. VPA can quantify the proportion of shared
or individual explanatory power of multiple variables or variable sets in the response
variable. In the case of multivariate analysis, redundancy analysis (RDA) can be combined
to partition the variation in the response variable [42]. However, in specific analysis
scenarios, collinearity among factors and the overlap of explanatory power pose significant
challenges in assessing the importance of different factors. To address this issue, the
R package ‘’rdacca.hp” introduces the concept of hierarchical partitioning (HP), which
assigns separate effects to each explanatory variable (or set of explanatory variables) in all
possible model subsets. This provides a new quantitative measure for assessing the relative
importance of collinear explanatory variables in the analysis [43].

Our research incorporated species diversity, structural diversity, and individuals’ in-
teractions as biotic factors. Additionally, we considered topographic characteristics such as
elevation, slope, aspect, and convexity, as well as soil physicochemical properties including
SOC, SWC, C, N, P, K, pH, Ca, and Mg as abiotic factors. Principal component analysis
(PCA) was employed to decrease the dimensionality of structural diversity indices and
soil physicochemical characteristics in order to mitigate the impact of collinearity across
variables. When analyzing structural diversity indices, the first principal component (PC1)
explained 69.98% of the variance and included GCh, CVh, SDba, and GCba as the main char-
acteristic vectors. These vectors contained most of the information and were representative;
thus, PC1 was selected to represent structural diversity (Figure A1a). Similarly, in the PCA
analysis of soil physicochemical properties, PC1 explained 43% of the variance and was
predominantly distributed in the mountaintop habitat. PC2 explained 25% of the variance
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and was mainly distributed in the valley habitat. Together, they accounted for 68% of
the variance and encompassed most of the information in the measured data. Thus, PC1
and PC2 were selected to represent the soil physicochemical properties (Figure A1b). The
variation partitioning analysis was executed utilizing the “rdacca.hp” package in R version
4.3.1, while the PCA analysis was carried out using the “vegan” package.

In order to assess the direct and indirect impact of different ecological factors on
AGB, we developed a conceptual model (Figure 2) that illustrates the influence of both
biotic factors and abiotic factors on AGB. Biotic factors exhibit structural diversity, species
diversity (in terms of abundance and richness), and interactions among individuals. The
abiotic elements were manifested through the soil and topography attributes. The presence
of various structures, the abundance and variety of species, and the interactions between
neighboring plants have a direct impact on how light and water are distributed and used
in a forest. These factors also play a role in the accumulation and distribution of AGB.
Additionally, the high or low levels of structural and species diversity may influence
the competitive interactions among trees, and species richness may also influence the
distribution of species abundance to some extent. Soil physicochemical properties may
directly affect the distribution of AGB and may also indirectly influence the distribution of
AGB through their effects on biotic factors. Topographic factors may directly influence the
distribution of AGB and may also indirectly affect the accumulation and distribution of
AGB through their effects on soil physicochemical properties and biotic factors (Figure 2).
This study utilized the “piecewiseSEM” package in the R 4.3.1 software to build a SEM
for the purpose of estimating the direct and indirect impacts of various factors on the
spatial variability of AGB. To account for the potential spatial autocorrelation among
ecological components, the “gls” function was employed to handle the problem of spatial
autocorrelation during the fitting of the SEM.
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Figure 2. Initial SEM analysis of the impacts of biotic factors, soil physicochemical properties, and
topographic factors on the amount of biomass above the ground.

3. Results
3.1. Distribution of Aboveground Biomass

The average AGB in the study area was 125.7 Mg/ha, and the distribution of AGB
shows a certain degree of spatial heterogeneity (Figure 3a). Some quadrats (20 m × 20 m)
in the valley reached as high as 21.04 Mg, while some quadrats on the hillsides reached
13.92 Mg. Additionally, there were some quadrats with AGB values below 1.5 Mg (Figure 3a).

The results of one-way analysis of variance and multiple comparisons indicate that the
AGB on hillsides is significantly higher than that in valleys and peaks, while the difference
in AGB between valleys and peaks is not significant (Figure 3b).
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3.2. Distribution of Aboveground Biomass Across Different Diameter Classes and Species

The AGB of trees with DBH in the range of 1–5 cm and 40–45 cm is relatively low,
accounting for only 3.63% and 3.59% of the total AGB, respectively. The AGB of trees in
the diameter class of 10–15 cm reaches its peak at 302.93 Mg. Trees having a DBH ≥ 10 cm
make up a significant share of 83.94%. In general, the data indicate a fast rise in AGB as the
diameter class increases, followed by a slow decline (Figure 4a).
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In the three habitats of the study area, the depression habitat supports 6738 individuals
representing 174 species; the hillside habitat harbors 56,931 individuals of 678 species; and
the peak habitat is home to 11,102 individuals belonging to 141 species.

In terms of overall levels, the AGB of the important species Vitex kwangsiensis (ranked
second in importance value) reaches a maximum of 258.97 Mg. The species Cleistanthus
sumatranus, ranked first in importance value, also has a high AGB of 212.77 Mg. Together,
these two species accounts for 25.02% of the total AGB. The AGB of the top 10 dominant
tree species accounts for 53.20% of the total AGB. The top 15 species in terms of AGB
contribute a combined 56.90% of the total AGB (Figure 4b).

The linear regression analysis showed a statistically significant positive connection
(F = 4.521, p < 0.05) between the important value of species and AGB. This suggests that
species with higher importance levels generally have greater AGB values. These find-
ings indicate that dominating species play a substantial role in the accumulation of AGB
(Figure 5).
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Figure 5. Correlation between importance value (IV) and aboveground biomass (AGB). The darkened
regions indicate a 95% confidence interval for the models that have been fitted.

3.3. The Relative Importance of Individual Ecological Factors in Influencing Aboveground Biomass

The Nonggang plot exhibits complex topography, with marked variations in habitat-
specific topographic characteristics and soil physicochemical properties. Elevation posi-
tively correlates with slope and convexity. C, N, and SOC peak at the summit, while P, K,
Ca, Mg, and SWC maximize in the valley, and pH is highest on slopes (Table A1).

The variance decomposition of individual ecological factors revealed that among the
10 ecological factors, only convexity had no significant impact on AGB, while the remaining
9 factors, including structural diversity, individual interactions, and abundance, had a highly
significant influence on AGB (p < 0.01). Among them, the biotic factors (structural diversity,
richness, abundance, individual interactions) collectively explained 63.53% of the total variation
in AGB, with structural diversity having the highest individual effect of 34.31%. The topographic
factors (elevation, slope, convexity, aspect) accounted for 8.38% of the total variation in AGB,
with convexity having no significant individual effect. The soil physicochemical properties (soil
PC1, soil PC2) only explained 4.24% of the total variation in AGB (Figure 6).
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Figure 6. Matrix displaying the precise significance of each ecological element on aboveground biomass.
Every row in the dot matrix figure on the right is an environmental component. The single black dot
in each column represents the marginal impact of each environmental component. The shared effects
between these corresponding environmental elements are indicated by the lines that connect several dots.
The variation partitioning process yields the percentage of variance explained by each component, which
is shown in the top column graphic. Each environmental element’s individual impact, as determined
via hierarchical partitioning, is displayed in the column diagram on the left. Each factor’s value is
determined by adding its average shared common effect with other factors to its marginal effect. The
notation used for statistical significance is as follows: **, p < 0.01; ***, p < 0.001.
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3.4. Direct and Indirect Effects of Biotic and Abiotic Factors on AGB

After excluding the aspect factor and insignificant paths, the final fitted model met the
criteria (F = 29.068, p > 0.05). AGB was impacted directly and indirectly by geographic and
biotic variables. Regarding biotic factors, structural diversity, individual interactions, and
abundance had a strong and favorable impact on AGB. Richness had a highly significant di-
rect negative effect on AGB, but it indirectly influenced AGB through abundance, resulting
in a positive effect. Structural diversity had an indirect effect on AGB through individual
interactions. As for topographic factors, elevation and slope had direct and indirect effects
on AGB, while convexity had an indirect effect. Among them, elevation had a significant
and substantial beneficial impact on AGB (the standardized path coefficient was 0.364). In
addition, the AGB was influenced by both topography and soil physicochemical properties,
which had indirect impacts mediated by biotic variables (Figure 7a). The results indicated
that the relative contributions of different ecological factors to AGB were as follows: biotic
factors (85.52%) > topography (8.73%) > soil physicochemical properties (5.75%) (Figure 7b).
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Figure 7. SEM analysis examining the impact of biotic variables, soil physicochemical parameters,
and topographic factors on aboveground biomass (a), as well as the respective contributions of these
factors on aboveground biomass (b). The significant effects are represented by black solid arrows
(p < 0.05), whereas the non-significant effects are represented by gray solid arrows. The values
adjacent to the arrows indicate the standardized coefficients. Abbreviations: StD, structural diversity;
InI, individual interactions; Abu, abundance; Ric, richness; Ele, elevation; Slo, slope; Con, convexity.
The notation used for statistical significance is as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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4. Discussion
4.1. Aboveground Biomass of Tropical Karst Forests in China

In this study, the AGB of the karst seasonal rainforest was found to be 125.7 Mg/ha.
This value is significantly higher than the average AGB of forests in Guangxi, China
(73.3 Mg/ha) [44] and the average AGB of a 25-ha plot in the Guangxi Mulun National
Nature Reserve in a similar latitude zone (73.92 Mg/ha) [5]. These findings highlight the
previously underestimated ecological value of the karst seasonal rainforest in terms of
carbon storage.

Taking a broader perspective on a global scale, we find that the average AGB of the
karst seasonal rainforest is lower than that of the forest in the Kimbi-Fungom National
Park in Northwest Cameroon (149.2 Mg/ha) [45] and the average AGB of subtropical
forests in South America (246.5 Mg/ha) [24]. Additionally, two surveys of lowland tropical
rainforests in French Guiana showed a much higher AGB range of 356 to 398 Mg/ha [45],
further highlighting the variation in AGB among different study areas.

Moreover, certain researchers have observed that the AGB in karst regions is con-
siderably less than in regions without karst formations [44], and the average AGB of the
tropical karst seasonal rainforest in this study area is indeed significantly lower than that of
non-karst lowland tropical rainforests in French Guiana. The low biomass vegetation, harsh
habitat conditions, shallow soil layers, and limited water availability in karst greatly restrict
plant growth and reduce assimilation efficiency, leading to low biomass accumulation.
However, the AGB in karst regions is significantly higher than the average biomass of
forests in the same region of south China.

These findings highlight that tropical karst forests can also store relatively high above-
ground biomass, contrary to the previous belief that karst forests have lower aboveground
biomass. This has significant implications for future assessments of forest carbon stocks, as
the enormous variability in aboveground biomass across different forest types needs to be
fully considered to obtain relatively accurate assessment results.

4.2. Effects of DBH Classes and Dominant Tree Species on Aboveground Biomass

Our study reveals significant disparities in AGB across DBH classes and species, align-
ing with prior research indicating that enormous trees accrue AGB at much faster rates than
small ones [7,46]. Notably, we emphasize that medium-sized trees (10 cm ≤ DBH < 30 cm)
constitute 56.23% of the total AGB, while trees with DBH ≥ 10 cm account for 83.94%,
highlighting the pivotal role of mature trees in AGB accumulation. This dominance reflects
the mid-to-late successional stages of the study area’s forests, characterized by harsh condi-
tions, slow growth, and low canopy density [47], potentially leading to higher AGB among
medium-sized trees. The high proportion of these trees suggests significant productivity
potential in the karst seasonal rainforest.

Furthermore, species composition significantly impacts AGB distribution, with domi-
nant tree species exhibiting higher AGB values. Species like Saraca dives, Erythrina stricta,
Excentrodendron tonkinense, and Diplodiscus trichosperma, despite not being abundant, con-
tribute to elevated AGB due to their tall stature and efficient light utilization. Dominant
tree species with high abundances, such as Vitex kwangsiensis, also exhibit higher AGB
values due to widespread occurrence and vigorous growth. This is consistent with the
“biomass ratio hypothesis” proposed by Grime [48], which highlights that the functional
features of dominant tree species are the main drivers of ecosystem function.

In summary, our main discoveries demonstrate the significance of trees with large
to medium diameters and dominating species in the accumulation of biomass and the
functioning of ecosystems. These findings emphasize the need of taking into account the
dimensions and types of trees when evaluating and overseeing forest ecosystems. Our
findings have both theoretical and practical implications, enhancing understanding of
biomass dynamics and informing conservation strategies in karst regions.
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4.3. Influence of Biotic Factors on the Spatial Distribution of Aboveground Biomass

The SEM model results revealed that biological factors account for 85.52% of the
relative contribution to AGB, highlighting their pivotal role in driving the spatial distri-
bution of AGB (Figure 7b). Structural diversity emerged as the primary biological factor
influencing the spatial distribution of forest biomass, demonstrating a robust and positive
direct effect, as evidenced by a significant standardized path coefficient of 0.670. This
underscores the importance of complex structural diversity in favoring biomass accumula-
tion. Previous studies have demonstrated that complex structures enhance tree capture
and make use of light, water, and soil nutrients, hence facilitating the buildup of biomass
in forest ecosystems [6,13]. However, complex community structures may also intensify
competition among neighboring trees for key resources, driving tree optimization and
community succession [6].

Contrary to some previous findings indicating a favorable relationship between rich-
ness and AGB [17], our study discovered a significant direct negative effect of richness on
AGB (standardized path coefficient: −0.157). This unexpected result may be attributed
to habitat fragmentation, where increased fragmentation leads to decreased richness and
subsequently lower AGB values. Our study area, a karst seasonal rainforest in the middle
to late stages of succession, represents a mature forest with well-preserved species. Here,
the negative correlation between richness and AGB could be influenced by canopy gaps,
which reduce AGB when large trees fall [49] but promote species diversity by increasing
environmental heterogeneity [50]. This could ultimately result in an adverse association
between richness and AGB across the forest [16].

Notably, species abundance positively influenced AGB but negatively influenced
individual interactions, which in turn positively influenced AGB. This aligns with previous
studies indicating that species abundance positively affects AGB [15], potentially due
to niche differentiation [51] and differences in resource utilization efficiency [52]. Niche
differentiation minimizes resource competition, enhancing ecosystem stability. In our
study area, long-term natural selection and adaptation have likely led to a stable state of
abundance. Higher abundance at different plot levels may refine resource partitioning
and utilization, with different tree individuals occupying distinct ecological niches and
exhibiting resource utilization strategies to avoid excessive competition. This could reduce
competition among neighboring trees, improving overall resource utilization efficiency
and promoting AGB accumulation. Maintaining relatively stable and high abundance in
the forest environment may further enhance the forest community’s stability in the face of
environmental fluctuations, facilitating AGB accumulation through the cumulative effects
of different species’ environmental adaptability. Our results underscore the significance
of incorporating structural diversity and species interactions into understanding and
managing forest biomass dynamics.

4.4. Impact of Abiotic Factors on the Spatial Distribution of Aboveground Biomass

Our study has yielded valuable insights into the significant impact of topography on
the spatial distribution of forest biomass. Our findings indicate that slope and elevation
both exhibit direct positive influences on AGB, aligning with findings from prior inves-
tigations [4,5,10,53]. The highest AGB was observed in sloping habitats, indicating the
importance of terrain complexity in promoting biomass accumulation. The influence of
elevation on AGB can be due to water availability [54]. Higher elevations may limit photo-
synthesis, respiration, and nutrient use efficiency, resulting in decreased biomass [55,56].
In contrast, hillsides offer diverse microclimatic conditions, creating ecological niches for
plant survival [28,57]. Superior soil layers and moisture on hillsides promote tree growth,
potentially leading to the highest AGB values. These findings emphasize the role of terrain
complexity and water availability in shaping biomass distribution, providing insights for
forest management and conservation.

The indirect effects of topography on AGB distribution are mediated through bi-
otic factors and soil physicochemical properties. Tree density, diameter diversity, and
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abundance are influenced by elevation, slope, and ruggedness, ultimately impacting AGB
distribution [5,58]. Moreover, topography affects soil conditions such as nutrient availabil-
ity, moisture content, and microorganism activity, which directly influence plant growth
and indirectly affect AGB accumulation [53].

The significant impact of soil physicochemical parameters on the accumulation and
distribution of AGB has been demonstrated [11,59], and our study confirms these findings.
Soil PC1, representing C, N, and SOC content, was highest in the mountain top habitat
(Figure A1b), indicating potentially greater nutrient availability. However, harsh envi-
ronmental conditions in this habitat may limit nutrient uptake and directly impact plant
growth, resulting in lower AGB values. Conversely, soil PC2, including P, K, and SWC,
was highest in the valley bottom habitat (Figure A1b), suggesting favorable nutrient and
water availability. Nevertheless, waterlogging and shading caused by topography may
hinder nutrient absorption and utilization, leading to lower AGB values. These findings
underscore the significance of soil physicochemical properties in shaping AGB distribution,
highlighting the complex ecological processes involved.

5. Conclusions

The spatial distribution of AGB and its affecting factors in the Nonggang karst seasonal
rainforest in South China were thoroughly explored in this study. Our study reveals a
substantial and heterogeneous distribution of AGB within the tropical karst seasonal rain-
forest, with notably higher AGB in hillside habitats. Biotic factors, particularly structural
diversity, exert a dominant influence on AGB, while abiotic factors such as altitude and
slope contribute both directly and indirectly, highlighting the complex interplay between
biotic and abiotic elements in determining AGB patterns. Studying the distribution of
AGB and its influencing factors in karst seasonal rainforests is crucial for understanding
and conserving the fragile ecosystems in karst regions and assessing their role in global
carbon cycling.

The distribution of AGB and its influencing factors may not only be related to biotic
factors, topography, and soil physicochemical properties but also to woody climbers, soil
microorganisms, and other factors. Moreover, current research has not fully considered
the effects of forest type and age on AGB. Further research should explore these features
in greater detail to obtain a more holistic comprehension of carbon storage and carbon
sequestration capacity in the karst seasonal rainforest environment.
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57. Bátori, Z.; Vojtkó, A.; Maák, I.E.; Lőrinczi, G.; Farkas, T.; Kántor, N.; Tanács, E.; Kiss, P.J.; Juhász, O.; Módra, G.; et al. Karst dolines
provide diverse microhabitats for different functional groups in multiple phyla. Sci. Rep. 2019, 9, 7176. [CrossRef]

58. Kraft, N.J.B.; Valencia, R.; Ackerly, D.D. Functional traits and niche-based tree community assembly in an Amazonian forest.
Science 2008, 322, 580–582. [CrossRef]

59. Wang, Y.; Wang, S.; Jiang, B.; Zhu, Y.; Niu, X.; Li, C.; Wu, Z.; Chen, W. Regulation of Abiotic Factors on Aboveground Biomass
and Biodiversity of Ditch Slope in Coastal Farmland. Water 2022, 14, 3547. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/j.1365-2745.2001.00615.x
https://doi.org/10.1111/j.0022-0477.2004.00876.x
https://doi.org/10.17521/cjpe.2022.0314
https://doi.org/10.1002/ldr.4740
https://doi.org/10.1017/S0266467408005075
https://doi.org/10.1038/nature12914
https://doi.org/10.1046/j.1365-2745.1998.00306.x
https://doi.org/10.1111/geb.12092
https://doi.org/10.1890/0012-9658(2001)082[0913:TGATMO]2.0.CO;2
https://doi.org/10.1111/brv.12499
https://doi.org/10.1146/annurev-ecolsys-110411-160411
https://doi.org/10.1016/j.foreco.2015.08.010
https://doi.org/10.1111/1365-2745.13112
https://doi.org/10.1890/0012-9658(1998)079[0003:CCATMF]2.0.CO;2
https://doi.org/10.1890/05-0023
https://www.ncbi.nlm.nih.gov/pubmed/16634298
https://doi.org/10.1038/s41598-019-43603-x
https://doi.org/10.1126/science.1160662
https://doi.org/10.3390/w14213547

	Introduction 
	Materials and Methods 
	Study Area 
	Establishment of Forest Plots and Tree Inventory 
	Variables and Statistical Analysis Methods 
	Calculation of Aboveground Biomass 
	The Classification of Diameter Classes and Habitat Types 
	Biotic Factors 
	Abiotic Factors 
	Statistical Analysis 


	Results 
	Distribution of Aboveground Biomass 
	Distribution of Aboveground Biomass Across Different Diameter Classes and Species 
	The Relative Importance of Individual Ecological Factors in Influencing Aboveground Biomass 
	Direct and Indirect Effects of Biotic and Abiotic Factors on AGB 

	Discussion 
	Aboveground Biomass of Tropical Karst Forests in China 
	Effects of DBH Classes and Dominant Tree Species on Aboveground Biomass 
	Influence of Biotic Factors on the Spatial Distribution of Aboveground Biomass 
	Impact of Abiotic Factors on the Spatial Distribution of Aboveground Biomass 

	Conclusions 
	Appendix A
	References

