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Abstract: Objective: The purpose of this article was to use the Random Forest method and non-
linear mixed-effects method to develop a model for determining tree height–diameter at breast
height (DBH) for a natural coniferous and broad-leaved mixed forest in Jilin Province and to compare
the advantages and disadvantages of the two methods to provide a basis for forest management
practice. Method: Based on the Chinese national forest inventory data, the Random Forest method
and nonlinear mixed-effects method were used to develop a tree height–DBH model for a natural
coniferous and broad-leaved mixed forest in Jilin Province. Results: The Random Forest method
performed well on both the fitting set and validation set, with an R2 of 0.970, MAE of 0.605, and RMSE
of 0.796 for the fitting set and R2 of 0.801, MAE of 1.44 m, and RMSE of 1.881 m for the validation
set. Compared with the nonlinear mixed-effects method, the Random Forest model improved R2

by 33.83%, while the MAE and RMSE decreased by 67.74% and 66.44%, respectively, in the fitting set;
the Random Forest model improved R2 by 9.88%, while the MAE and RMSE decreased by 14.38%
and 12.05%, respectively, in the validation set. Conclusions: The tree height–DBH model constructed
based on the Random Forest method had higher prediction accuracy for a natural coniferous and
broad-leaved mixed forest in Jilin Province and had stronger adaptability for higher-dimensional
data, which can be used for tree height prediction in the study area.

Keywords: tree height–diameter model; Random Forest; nonlinear mixed-effects model; coniferous
and broad-leaved forest

1. Introduction

The tree height–diameter (H-D) model is one of the most useful tools in forest manage-
ment. While measuring tree height in overcrowded and dense forests is time-consuming
and difficult, DBH data can be accurately measured for all trees in a plot. Therefore, a tree
H-D model is usually developed to predict the missing total height measurements for the
remaining trees [1].

One of the most important factors of forest structure is the relationship between tree
DBH and height [2]. As people’s interest in the structure of natural mixed forests was
growing, the demand for determining the relationship between tree height and diameter
in mixed forests also rose. More comprehensive modeling methods were applied to the
research on the H-D relationship. Walter et al. studied the relationship between tree height
and diameter in unevenly aged pure beech forests using the mixed-effects model method
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and introduced the concept of “pseudo-residuals” to test the model [3]. It was found that
the mixed-effects statistical method could fit bivariate normal distribution data very well,
and the fitted model was easy to explain. Especially for forestry data, the NLME (nonlinear
mixed-effects) method often showed a strong predictive ability. However, it must also
be pointed out that the tree-level nonlinear mixed-effects model needs data from several
groups of plots to be capable of random effect calibration when making predictions [4].

Models generated based on more dimensions and a larger amount of data had better
performance. However, the nonlinear mixed-effects model had high requirements for
modeling data. It was necessary to consider whether the data conformed to a normal
distribution and the collinearity of independent variables. When fitting the model, the
selection of initial values was also a major challenge. Machine learning methods did
not have such issues. They had lower requirements for data and could contain more
variables. Machine learning methods were gradually becoming a hot topic in the field
of forest modeling. Chen et al. used an integrated neural network to conduct tree-level
H-D modeling for six main tree species in central Canada [5]. More than 30 potentially
important stand structures, sites, and climate variables were added to the model. The
results showed that the model developed by this method performed excellently. Zhang et al.
used traditional methods, Bayesian methods without prior information, and Bayesian
methods with prior information to compare and analyze the estimation effect of the tree
height–diameter relationship [6]. The results showed that the fitting results of traditional
methods, Bayesian methods without prior information, and Bayesian methods with prior
information were similar. However, the credible interval of Bayesian methods was more
concentrated than that of traditional methods, and the parameter interval with prior
information was more than 59% smaller than that of traditional methods. Shen et al. used a
multilayer neural network to construct a tree height–diameter at breast height model in
Guangdong Province. The research results showed that the neural network model was more
accurate than the mixed-effects model [7]. Ozcelik et al. used a multilayer neural network
and a mixed-effects model to develop a tree height–diameter model for Crimean juniper
trees in southwestern Turkey. The results showed that both the nonlinear mixed-effects
regression and backpropagation neural network modeling methods could produce accurate
results. Compared with traditional nonlinear regression, the root mean square error (RMSE)
of both was reduced by more than 20%. It was also pointed out that the backpropagation
neural network seemed to be the method with the best generalization ability. In addition,
from a practical perspective, compared with the mixed-effects model, its advantage is that
it does not need to calibrate prior information when making predictions [8].

Among the many machine learning algorithms, the Random Forest method (RF) is an
integrated decision tree algorithm. It fits models in a data-driven manner, has relatively
low requirements for variables, is not restricted by statistical assumptions, and can include
more variables. Consequently, in the field of forest modeling, the Random Forest algorithm
is also receiving increasing attention [9]. Ou et al. used four machine learning methods
(Random Forest, Boosted Regression Trees, cubist, and Multivariate Adaptive Regression
Splines) to develop the individual tree basal area increment (BAI) growth model for a mixed
forest in Northeast China. They found that the Random Forest method was an effective
and powerful modeling method for predicting the growth of individual trees’ BAI [10].
Jevšenak et al. used the Random Forest method to develop a BAI growth model based on
the data of the national forest inventory of Slovenia. The results showed that the Random
Forest method can provide similar verification statistical results to those of the previous
traditional methods used in research reports [11].

In the field of forest management in Jilin Province, the main method used is the
traditional regression model. Methods with stronger predictive abilities are currently
in demand. Based on the national forest resources inventory data of natural coniferous
and broad-leaved mixed forests in Jilin Province, this article used a total of 363 plots and
1305 sets of observations. The Random Forest method and the nonlinear mixed-effects
method were used to develop and compare the tree height–diameter model of natural
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mixed forests in Jilin Province in order to identify the model with the best performance
and analyze the advantages and disadvantages of the two methods. Our research results
can provide help for forest management in Jilin Province.

2. Materials and Methods
2.1. Modeling Data

We used the following variables to represent stand density and stand competition
status: rSDI [12], BALj, BALj_interspecies, BALj_intraspecies, and BA_proportion. The
variable descriptions are shown in Table 1.

Table 1. Descriptions of stand density and stand competition variables.

Variable Description

rSDI N( D0
Dg

)1.605
(1)

BALj
1
S ∑n

i=1(1Di≤Dj BAi) (2)

BALj_interspecies
1
S ∑n

i=1(1Di≥Dj&Speciesi ̸=Speciesj BAi) (3)

BALj_intraspecies
1
S ∑n

i=1(1Di≥Dj&Speciesi=Speciesj BAi) (4)

BA_proportion
∑n

i=1 BAi,i∈species

∑N
j=1 BAj,j∈stand (5)

Note: D represents the diameter at breast height (DBH) of an individual tree in the stand; D0 represents the standard
DBH, which is equal to the number of trees in fully stocked stands with an average diameter of 10 cm in China [13];
Dg is the average stand diameter (by basal area); BA is the basal area of an individual tree in the stand.

The tree-level data for developing the tree height–diameter model came from the
sample plot data of the national forest resources inventory (NFI) of natural coniferous and
broad-leaved mixed forests in Jilin Province for 2014. In each plot, the tree heights of 2 to
5 individual trees representing the average tree height level of the plot were accurately mea-
sured. After removing outliers, there were 363 sample plots and 1305 sets of individual tree
height–diameter observations. The data were divided into a fitting set (1044 observations)
and a validation set (261 observations). The statistical data are shown in Table 2.

Table 2. Statistics of tree height (m) and DBH (cm).

Tree Variable

Fitting Data Validation Data

Max Min Mean Standard
Deviation Max Min Mean Standard

Deviation

D/cm 79.50 7.40 22.92 10.84 71.80 7.80 23.27 11.37
rSDI 344.14 25.03 154.80 49.00 289.45 25.03 158.15 46.10

BA_proportion 0.65 0.01 0.34 0.16 0.64 0.01 0.34 0.16
BAL/m2 59.93 0.00 13.98 8.76 45.57 0.00 14.12 7.51

BAL_interspecies/m2 55.41 0.00 9.51 7.21 30.77 0.00 9.53 6.52
BAL_intraspecies/m2 25.67 0.00 4.48 4.05 25.45 0.00 4.58 4.05

Altitude/m 1860.00 175.00 811.66 290.97 1860.00 220.00 807.19 288.46
Soil thickness/cm 70.00 10.00 42.92 10.83 70.00 10.00 42.00 11.59

H/m 32.50 4.50 16.38 4.60 32.20 5.20 16.52 4.22

Climate data were sourced from ClimateAP (V3.00). ClimateAP is an application
for dynamic local downscaling of historical and future climate data in the Asia–Pacific
region [14]. Based on the latitude, longitude coordinates, and altitude information of the
sample plots, the ClimateAP software could be used to extract seasonal and annual climate
variables for each sample plot (the time interval extracted in this study was the average
value from 1980 to 2010). The candidate climate factors are shown in Table 3.
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Table 3. Descriptions of the candidate climatic variables.

Variable Description

AHM The humiture index
CMD The Hargreaves moisture deficit index
DD_0 The number of days below 0 ◦C
DD_18 The number of days below 18 ◦C
DD18 The number of days above 18 ◦C
DD5 The number of days above 5 ◦C

EMT/◦C The extreme low temperature in the past 30 years
EXT/◦C The extreme high temperature in the past 30 years

EREF The Hargreaves precipitation index
MAP/mm The mean annual precipitation
MAT/◦C The mean annual temperature

MCMT/◦C The mean coldest month temperature
MWMT/◦C The mean warmest month temperature

NFFD The number of frost days
PAS/mm The snowfall from August of the previous year to July of the current year
TD/◦C The temperature difference between MWMT and MCMT

2.2. Tree Height–Diameter Model Based on Nonlinear Mixed-Effects Method
2.2.1. Selection of Climate Variables

Due to the large number of climate variables and their tendency to exhibit collinearity,
a separate screening analysis of the climate variables was carried out. Principal component
analysis (PCA) can be used as an exploratory method for assessing climate variability and
is robust and reliable as an auxiliary technique when combined with other statistical tech-
niques [15,16]. We first used the PCA method to analyze the data for all climate variables.
Since the units of the climate variables were different, all variables were standardized
before the PCA. The principal components that explained more than 80% of the variance
were retained. For each principal component, variables with large loads were selected
for further analysis. The variables that had a strong correlation with H and had the least
multicollinearity among them were used as candidate options for modeling.

For competing relevant indicators (density index (rSDI), basal area proportion of the
corresponding tree species of the sample tree in the sample plot (BA_proportion), BAL,
BAL_interspecies, BAL_intraspecies), and the two aspects of indicators representing the
site conditions of the sample tree (Altitude, Soil thickness), the stepwise regression method
was used for screening.

2.2.2. Base Model

The basic model was based on the research of Zang [17]. The Richard model was
selected. The Richard model always performed well in simulating the relationship between
tree height and diameter at breast height. The formula is as follows:

H = 1.3 + (a0 × (1 − exp(−b0 × D))c + ε (6)

where H represents the tree height; D represents the diameter at breast height; a0, b0 and
c represent the parameter, ε represents the error term.

Due to the research object being a natural mixed forest, indicators related to the competition
of sample trees, namely rSDI, BA_proportion, BAL, BAL_interspecies, BAL_intraspecies, and
two indicators representing the site conditions of the sample trees (Altitude and Soil thickness)
were selected for stepwise regression screening and then entered into the model. Therefore,
the model could be written as follows:

H = f (β, D, Competition status, Site condition) + ε (7)

where β is a vector of the fixed effect parameters, Competition status is a variable group of
the competition status of individual trees, and Site condition is a variable group representing
the site condition of individual trees. Other variables are as defined before.
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2.2.3. Tree Species Data and Dummy Variable

The divided groups of Pinus koraiensis Sieb et Zucc., Picea koraiensis Nakai, Larix
gmelinii (Rupr.) Kuzen., Pinus sylvestris var. sylvestriformis (Takenouchi) Cheng et C. D. Chu,
and other coniferous tree species groups Quercus mongolica Fisch. ex Ledeb. group, Betula
platyphylla Sukaczev group, Fraxinus mandshurica Rupr., Juglans mandshurica Maxim. and
Phellodendron amurense Rupr. group, Ulmus pumila L. group, Acer mono Maxim. group, Tilia
tuan Szyszyl. group, and Populus L. group and miscellaneous tree group, constituting a
total of 14 tree species groups, were used to construct tree species dummy variables. After
adding the tree species dummy variables, the model could be written as follows:

H = f (β, D, Competition status, Site condition, Sm ) + ε (8)

where Sm is the dummy variable of the tree species group. Among them, S1 = S2 = . . . = S13 = 0
represents the Pinus koraiensis group, S1 = 1 represents the Picea koraiensis group, and
0 represents other tree species groups, while S2 = 1 represents the Larix gmelinii group.
They were defined in turn according to the order introduced above. Other variables are as
defined before.

2.2.4. Nonlinear Mixed-Effects Climate-Sensitive Model

In order to quantify the impact of the climate on H-D allometry, by reparameterizing
the parameters in the basic H-D model and adding the selected climate variables to the
model, the model could be written as follows:

H = f (β, D, Competition status, Site condition, Climate , Sm) + ε (9)

where Climate represents the vector of climate variables screened by PCA and correlation
analysis. Other variables are as introduced previously.

Mixed-effects models have been proven to perform excellently in the field of forestry
modeling. We chose to develop a mixed-effects model with the sample plot as a random
effect. The new H-D mixed-effects model can be written as follows:

Hij = f
(

β, Dij, Competition status, Site condition, Climate, Sm + ui
)
+ εij (10)

ui ∼ N(0, σ2
plot)

where Hij and Dij are the tree height and DBH of the jth individual tree of the ith tree
species, repectively. ui is the random effect representing the sample plot. εij is the random
term. Other variables are as defined before.

When making model predictions, the corresponding parameter values of the random
effect were calculated using the Empirical Best Linear Unbiased Prediction method (EBLUP).
The formula is as follows:

ûi = Ψ̂ẐT
i (ẐiΨ̂ẐT

i + R̂i)
−1ei (11)

where ûi is the estimated value of the random effect. Ψ̂ is the q × q variance–covariance
matrix representing the variation between groups. q is the number of random effects. R̂i is
the k × k variance–covariance matrix representing the variation within groups. k is the
number of observations within a group. Ẑi is the partial derivative matrix of the random
effect. ei is the residual vector between the measured value and the estimated value of the
fixed effect model.

The data in this paper were the plot survey data of Jilin natural forest plots in 2014. Therefore,
there was no time autocorrelation problem in the data. The formula of R̂i is as follows:
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Ri = σ2G0.5
i IiG0.5

i (12)

where σ2 is the residual vector of the model. Gi is the design matrix for explaining
heteroscedasticity. In this paper, the power function form was adopted, which was
var(εij) = Ĥ2γ

ij ; Ii is the identity matrix.
The parameter estimation of the nonlinear mixed effect was based on the nlme module of

R (Version 4.3.1) [18]. The algorithm was the default restricted maximum likelihood method.

2.3. Individual Tree H-D Model of Natural Coniferous and Broad-Leaved Mixed Forest Based on
Machine Learning Methods
2.3.1. Random Forest

Random Forest is an ensemble learning algorithm that parallelizes individual decision
trees. The Random Forest algorithm simultaneously adopts the ideas of resampling and
combined prediction. The input variables of each sub-decision tree are randomly sampled
from all the feature variables of the fitting set. There is no strong dependency between each
individual decision tree. Each decision tree independently learns and makes predictions.
Finally, through voting, the final classification result is reached according to the principle of
the minority obeying the majority. Therefore, it is called Random Forest [9]. The Random
Forest algorithm has the advantages of being insensitive to missing values and having
an extremely strong model generalization ability. But at the same time, it also has the
disadvantage of being prone to overfitting in high-dimensional data sets. However, this
can be avoided by adjusting the optimal parameters.

2.3.2. Input Variable

Unlike NLME methods, the Random Forest algorithm had good adaptability to
handling high-dimensional and collinear data. Moreover, the selected variable infor-
mation was all effective information that had an impact on the tree height growth. There-
fore, variable screening was not performed, and all variables were selected to develop
a model: competition-related indicators (rSDI, BA_proportion, BAL, BAL_interspecies,
BAL_intraspecies), indicators representing the site conditions of the sample trees (Altitude
and Soil thickness), indicators representing climate conditions (MAT, MWMT, MCMT, TD,
MAP, AHM, DD_0, DD5, DD_18, DD18, NFFD, PAS, EMT, Eref, CMD), and DBH as inde-
pendent variables. The fitting and validation of the model were based on the Scikit-learn
package in Python (Version 3.11.5) [19,20]. In this study, Random Forest algorithms per-
formed one_hot encoding processing on discrete factor variables (tree species). That is,
a factor variable of level N was expanded into N columns of attributes. Among these N
column attributes of each sample observation value, a value of 1 indicated that the sample
observation belonged to this category, and all other extended attributes were 0.

2.3.3. Parameter Tuning

In the process of parameter tuning of Random Forest, we used R2
cv of ten-fold cross-

validation as an observation index to select the optimal parameters in the fitting set. The
formula is as follows:

R2
cv =

1
k

k

∑
j=1

(1 −
∑

nj
i=1(Oij − Pij)

2

∑
nj
i=1(Oij − Oj)

) (13)

where k is the number of folds in cross-validation. In this paper, k was set to 10 folds.
Oij and Pij, respectively, represent the ith observed value and model predicted value of
the jth fold; Oj represents the average value of the observed values of the jth fold. nj repre-
sents the sample number of the jth fold.
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2.4. Model Evaluation

This paper used three indicators for model evaluation and inspection: the coefficient
of determination (R2), mean absolute error (MAE), and root mean square error (RMSE).
The calculation formulas were as shown in Equations (14)–(16).

R2 = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1

(
Oi − O

)2 (14)

MAE =
1
n

n

∑
i=1

|Pi − Oi| (15)

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (16)

where Oi represents the observed value in the input data, Pi represents the predicted value of
the model, and n represents the sample size of the input data. Both the MAE and RMSE were
indicators for measuring the distance between the predicted values and observed values.

The workflow associated with this study is illustrated in Figure 1.
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Random Forest method.

3. Results
3.1. Results of Nonlinear Mixed-Effects Model
3.1.1. Selection of Climate Variables

After standardizing the climate variables, principal component analysis was used. The
results of the principal component analysis showed that the first two principal components
explained 87.83% of the variation in all climate data.

The variable selection process of the principal component analysis was carried out
according to the following principles: (1) Variables with an absolute value of load greater
than 0.32 were selected. (2) If there was no variable with an absolute value of load greater
than 0.32, the top three variables were selected. If there were variables with tied absolute
values of load, all the tied variables were selected.

The results of each component load were shown in Table 4. For principal component 1,
DD5, MAT, MWMT, and DD_18 were selected for the next step. For principal component 2,
MCMT, TD, and EMT were selected for the next step. The seven selected variables were
subjected to Pearson correlation analysis with the dependent variable H. The analysis
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results are shown in Table 5. The results showed that the seven climate variables were
all linearly significant with tree height, H, and there was collinearity among the seven
climate variables. We used the variance inflation factor, VIF, to gradually eliminate variables
with high collinearity. The final results are shown in Table 6. Therefore, finally, three climate
variables, MCMT, TD, and EMT, were selected to represent the climate and added to the model.

Table 4. PCA results for the climate variables.

Comp.1 Comp.2 Comp.3
MAT 0.279 0.107 0.15

MWMT 0.276 0.203
MCMT 0.214 0.447 −0.134

TD 0.203 −0.399 0.352
MAP −0.228 0.212 0.473
AHM 0.258 −0.117 −0.347
DD_0 −0.256 −0.287 −0.102
DD5 0.281 0.175

DD_18 −0.276 −0.136 −0.13
DD18 0.267 0.224
NFFD 0.252 0.266 0.163
PAS −0.256 0.132 0.299
EMT 0.196 0.455 −0.245
EXT 0.272 −0.174
Eref 0.23 −0.261 0.137

CMD 0.232 −0.266 −0.373
Cumulative variation 76.15% 87.83% 95.22%

Table 5. Pearson correlation coefficient matrices between H and climatic variables.

DD5 MAT MWMT DD_18 MCMT TD EMT H

DD5 1.000 - - - - - - -
MAT 0.982 *** 1.000 - - - - - -

MWMT 0.989 *** 0.957 *** 1.000 - - - - -
DD_18 −0.966 *** −0.996 *** −0.935 *** 1.000 - - - -
MCMT 0.690 *** 0.800 *** 0.624 *** −0.830 *** 1.000 - - -

TD 0.780 *** 0.662 *** 0.839 *** −0.613 *** 0.099 *** 1.000 - -
EMT 0.625 *** 0.700 *** 0.552 *** −0.712 *** 0.883 *** 0.089 *** 1.000 -

H −0.273 *** −0.254 *** −0.257 *** 0.238 *** −0.180 *** −0.201 *** −0.232 *** 1.000

Note: *** p < 0.001.

Table 6. The VIFs of the final climatic factors.

Climate Variable MCMT TD EMT

VIF 4.531 1.010 4.522

After stepwise regression to screen the competition indicators and site indicators, the
indicators finally entering the model were diameter (D), stand density index (rSDI), basal
area proportion (BA_proportion), and interspecific BAL (BAL_interspecies). After the PCA
and correlation analysis to screen the climate variables, the climate variables that were
finally entered into the model were MCMT, TD, and EMT. Then, the screened variables
and tree species dummy variables were put into different positions of parameters a, b, and
c of the basic model, respectively. The optimal model with the best coefficient significance
performance was as follows:

Hij = 1.3 +
(

a0 + a1rSDI + a2BAL + a3MCMT + a4EMT +∑13

m=1
fmSm + ui

)
[1 − e−b0Dij ]c0 + εij (17)

where a0 ∼ a6 are the parameters to be estimated. The remaining variables are as previ-
ously described.
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3.1.2. Fitting and Test Results of the Final NLME Model

The model accuracy test results showed that the nonlinear mixed-effects model per-
formed well in both the fitting set and the validation set. The MAE and RMSE of the fitting
set were 1.056 m and 1.446 m, respectively, and the MAE and RMSE of the validation set
were 1.420 m and 1.926 m, respectively (Table 7).

Table 7. The parameter estimation results and model validation results of final H-D NLME model.

Parameters Parameter Definition Equation (17)

Fixed effects parameters a 17.872 (0.000)
b 0.035 (0.000)
c 0.926 (0.000)
a1 rSDI 0.022 (0.000)
a2 BAL −4.493 (0.005)
a3 MCMT 0.686 (0.052)
a4 EMT −0.461 (0.025)
f 1 Picea asperata Mast. 0.211 (0.609)
f 2 Larix gmelinii 2.689 (0.000)
f 3 Pinus koraiensis 0.122 (0.781)
f 4 Pinus sylvestris −2.296 (0.013)
f 5 Other coniferous tree species −3.829 (0.000)
f 6 Quercusmongolica −1.707 (0.002)
f 7 Birch 2.157 (0.000)

f 8

Fraxinus
mandshurica&Juglans

mandshurica&Phellodendron
amurense

0.980 (0.106)

f 9 Elm −0.436 (0.488)

f 10

Acer pictumThunb.&Acer
triflorum&Acer
mandshuricum

−0.103 (0.852)

f 11 linden 0.029 (0.944)
f 12 poplar 0.554 (0.428)
f 13 Miscellaneous wood −1.557 (0.060)

Variance components σplot 0.490
γ 0.445

Model performance
AIC 4837.658

Fitting set R2 0.901
Fitting set MAE (m) 1.056

Fitting set RMSE (m) 1.446
Validation set R2 0.791

Validation set MAE (m) 1.420
Validation set RMSE (m) 1.926

3.2. Results of Random Forest Model

The Random Forest model was developed based on the scikit-learn module in Python [21].
For the three main parameters, n_estimator (the number of trees in the forest), max_depth
(the number of splits that each decision tree was allowed to make) and max_features
(the size of the random subsets of features to consider when splitting a node), the grid
search method was used for parameter tuning. The parameter tuning process was as
follows: iterative fitting with 10-fold cross-validation with the fitting set data as the object,
taking the highest R2

cv as the optimal parameter, and calculating step by step to obtain the
optimal parameter combination. The final optimal parameters were n_sitimators = 370;
max_depth = 17; and max_features = 15. Then, a Random Forest model was developed
based on the optimal parameters.

The tree height–diameter model of the Jilin natural forest was developed by using
Random Forest. The test results of the model on the fitting set and the validation set were
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as follows: The Random Forest method performed excellently on both the fitting set and
the validation set. The R2 of the fitting set was 0.970, the R2 of the validation set was 0.801,
the MAE was 1.44 m, and the RMSE was 1.881 m. Compared with the NLME model, in
the training, the R2 of Random Forest was increased by 33.83%, and the MAE and RMSE
were decreased by 67.74% and 66.44%, respectively; in the performance of the Random
Forest model on the validation set, R2 was increased by 9.88%, and the MAE and RMSE
were decreased by 14.38% and 12.05%, respectively (Table 8).

Table 8. Validation result of H-D model based on 3 machine learning methods and NLME method.

Random Forest NLME Method

Training set R2 0.970 0.901
Training set MAE (m) 0.605 1.056
Fitting set RMSE (m) 0.796 1.446

Validation set R2 0.801 0.791
Validation set MAE (m) 1.440 1.420

Validation set RMSE (m) 1.881 1.926

The residual plots of the finally fitted NLME model and the Random Forest model are
shown in Figure 2. The results showed that the scatter points were randomly distributed on
both sides of the 0-axis. No obvious heteroscedasticity trend was observed for the NLME
model. There was an obvious trend in the lower graph, where the residuals in the Random
Forest model were not uniformed distributed. The Random Forest model had a better
predictive ability, and the scatter points were more closely distributed.
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4. Discussion
4.1. Nonlinear Mixed-Effects Model

The test results of using the nonlinear mixed-effects method to develop the tree
height–diameter model for natural mixed forests in Jilin Province showed that the model
had an excellent extrapolation ability. The nonlinear mixed-effects method had always
performed well while developing the model. Sharma et al. used Czech national forest
survey data to develop a nonlinear mixed-effects HDR (height–diameter ratio) model. The
results showed that the R2 of the HDR model for each tree species ranged from 0.8574
to 0.9605 [4]. Ciceu et al. used the nonlinear mixed-effects method to construct a tree
height–diameter model for an unevenly aged mixed forest of Norway spruce in Romania.
The research results showed that the addition of random effects increased the prediction
accuracy of the tree height by 50 cm [22]. Meng et al. used the nonlinear mixed-effects
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method to construct a tree height–diameter model for the main dominant tree species in
northern Ontario, Canada. After adding random effects, the fitting results and prediction
accuracy of the models for all tree species were improved [23]. In forestry modeling, com-
pared to methods that only used fixed effects, the mixed-effects method could incorporate
more variable information, such as plot location information, into the model. And plot
information contains many useful factors that cannot be included in fixed effects models.
Therefore, compared with traditional regression methods, tree height–diameter models
with random effects usually perform better in terms of model fitting performance and
prediction accuracy.

4.2. The Influence of Temperature and Competition on the H-D Relationship

The results of the significance test of the model parameters showed that although the
p-value of MCMT was at the 0.1 level, the rest of the coefficients were all significant at
the 0.05 level. The coefficient of rSDI was positive, indicating that individual trees under
high-density pressure will invest more resources in tree height growth to obtain more
sunlight. Many studies have found that competition will have a significant impact on
the allometric growth of trees. The greater the intensity of competition is, the thinner the
individual trees in the stand will grow [24–28]. The coefficient of MCMT was positive,
which meant that the higher the average temperature in the coldest month is, the faster the
increase in the tree height-to-diameter ratio of individual trees in the study area is. Previous
research results have shown that for the growth of individual trees, there was an optimal
temperature for photosynthesis and growth, and the influence of the temperature on tree
height growth was greater than that on diameter growth [26]. The study areas in this paper
all belong to northern China, and the annual average temperature is relatively cold and has
not reached the turning point of the optimal temperature. Therefore, for individual trees in
the study area, an increase in temperature would make the tree height increase more rapidly.

4.3. Machine Learning Algorithms and Forestry Modeling

Machine learning methods have gradually become a hotspot in the field of forest
modeling in recent years, because they often have better predictive capabilities than tradi-
tional regression methods. These methods can contain more variables. Ogana et al. [29]
used three methods, the DLA (Deep Learning Algorithm), NLS, and NLME, to study the
H-D relationship of complex tropical rainforest trees. It was found that the DLA model
was superior to the NLS and NLME models. Compared with NLS and NLME, the error
of estimating aboveground biomass by tree height predicted by using the DLA model
was reduced by more than 30%. The deep learning network model can be regarded as an
alternative to traditional nonlinear regression techniques. Qin et al. used the DLA method
and the NLME method to construct a natural mixed forest crown model. It was found that
the best DLA model can explain 69% of the crown variation. When all 22 input variables
were used for modeling, the DLA model performed better than the NLME model [30].

However, Dantas et al. employed the ANN (Artificial Neural Network), SVM (Support
Vector Machine), and NLME methods to construct a volume model for eucalyptus planta-
tions in Minas Gerais, Brazil. They found that the nonlinear mixed-effects model performed
the best [31]. A possible reason for this result was that the research object of the article
was eucalyptus plantations, which had a relatively simple structure. The variables affecting
the volume of eucalyptus were more explicit. Therefore, using the nonlinear mixed-effects
method could already accurately express the variations in eucalyptus volume. The two
machine learning methods, ANN and SVM, required more hyperparameters to be adjusted.
It was more difficult to find the optimal parameters in the parameter space to express the
variations in eucalyptus volume. Consequently, in this study, the nonlinear mixed-effects
model showed the best performance.

Our research results showed that compared with the nonlinear mixed-effects method,
in the performance of the fitting set of the Random Forest model, R2 was increased
by 33.83%, and the MAE and RMSE were decreased by 67.74% and 66.44%, respectively; in
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the performance of the validation set, R2 was increased by 9.88%, and the MAE and RMSE
were decreased by 14.38% and 12.05%, respectively. The Random Forest method showed
excellent performance, which was similar to the results of previous studies. Yu Yang et al.
used beta regression and the Random Forest algorithm to develop a crown ratio (CR) model.
Their research results showed that the CR model developed based on the RF algorithm was
superior to the model developed by beta regression. The algorithm idea based on the inte-
grated system can improve the accuracy by itself. Coupled with the interpretation ability
of multiple variables, the Random Forest algorithm has a stronger prediction ability [32].

5. Conclusions

This paper used the nonlinear mixed-effects method and the Random Forest method
to construct a climate-sensitive tree height–diameter model for natural coniferous and
broad-leaved mixed forests in Jilin Province. The parameter estimation and test results of
the nonlinear mixed-effects method showed that temperature and competition were the key
variables affecting the allometric increase in individual tree height–diameter. For individual
trees in natural mixed forests in Jilin Province, an increase in temperature would make the
increase in individual tree height more rapid. The model test results showed that compared
with the mixed-effects method, the model constructed by the Random Forest algorithm had
a higher prediction accuracy. The Random Forest method showed a strong generalization
ability when constructing the tree height–diameter model and had low requirements for
modeling data. In application scenarios with high requirements for prediction accuracy, it
had advantages over traditional models. Our research results can provide decision-making
support for forest management in Jilin Province.
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