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Abstract: Leaf chlorophyll content (LCC) is a key indicator in representing the photosynthetic capacity
of Populus deltoides (Populus deltoides Marshall). Unmanned aerial vehicle (UAV) hyperspectral
imagery provides an effective approach for LCC estimation, but the issue of band redundancy
significantly impacts model accuracy and computational efficiency. Commonly used single feature
selection algorithms not only fail to balance computational efficiency with optimal set search but
also struggle to combine different regression algorithms under dynamic set conditions. This study
proposes an ensemble feature selection framework to enhance LCC estimation accuracy using UAV
hyperspectral data. Firstly, the embedded algorithm was improved by introducing the SHapley
Additive exPlanations (SHAP) algorithm into the ranking system. A dynamic ranking strategy was
then employed to remove bands in steps of 10, with LCC models developed at each step to identify
the initial band subset based on estimation accuracy. Finally, the wrapper algorithm was applied
using the initial band subset to search for the optimal band subset and develop the corresponding
model. Three regression algorithms including gradient boosting regression trees (GBRT), support
vector regression (SVR), and gaussian process regression (GPR) were combined with this framework
for LCC estimation. The results indicated that the GBRT-Optimal model developed using 28 bands
achieved the best performance with R2 of 0.848, RMSE of 1.454 µg/cm2 and MAE of 1.121 µg/cm2.
Compared with a model performance that used all bands as inputs, this optimal model reduced
the RMSE value by 24.37%. In addition to estimating biophysical and biochemical parameters, this
method is also applicable to other hyperspectral imaging tasks.

Keywords: leaf chlorophyll content estimation; hyperspectral data; unmanned aerial vehicle; feature
selection; Populus deltoides Marshall

1. Introduction

Populus deltoides (Populus deltoides Marshall) is an important fast-growing timber
species extensively cultivated across the temperate plain regions of China [1]. Renowned
for its rapid growth, early maturation, high productivity, and easy regeneration, Populus del-
toides has extensive applications in both ecological protection forestry and industrial timber
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plantations [2]. There are abundant germplasm resources of Populus deltoides with various
phenotypic traits. Understanding these traits not only provides a solid foundation for
biological breeding but also offers valuable insights for developing improved varieties [3].
Therefore, investigating these phenotypic traits is essential for selecting superior genotypes
that can adapt to various environmental conditions and management practices.

Leaf chlorophyll content (LCC) is a critical phenotypic trait that reflects photosynthetic
capacity and the nitrogen status of plants. Monitoring LCC levels and their changes is
essential for identifying Populus deltoides genotypes with strong resistance to drought and
saline-alkali conditions [4]. Traditional LCC determination methods rely on laboratory-
based chemical analyses, which are destructive, time-consuming, and unsuitable for ac-
curately estimating large areas. In contrast, remote sensing technology offers a rapid and
cost-effective approach to LCC estimation [5]. Previous studies have demonstrated that the
green (G), red (R), and red-edge (RE) spectral regions exhibit significant absorption and
reflection characteristics associated with LCC [6–8]. These distinctive spectral responses
provide a theoretical foundation for LCC inversion using remote sensing data. Currently,
data from satellites such as Landsat-8 and Sentinel-2 have been successfully used in LCC
estimation across a wide range of crops [9,10]. However, compared to multispectral data,
hyperspectral data offers hundreds of narrow bands that enable more precise detection of
subtle variations in canopy reflectance [11]. Despite these advantages, the limited number
of hyperspectral satellites in orbit and their low spatial resolution restrict their capability
for fine-scale LCC monitoring. In recent years, unmanned aerial vehicle (UAV) remote
sensing has rapidly advanced due to its high spatial resolution (at the centimeter level),
low cost, and flexibility to meet specific flight requirements [12]. Supported by the UAV
systems, hyperspectral data have been easily acquired and applied for precision agriculture
and forestry LCC estimation [13,14]. In addition to using only optical sensors, recent
studies have also employed LiDAR for LCC estimation. Some researchers have explored
the potential of integrating optical sensors and LiDAR to improve the accuracy of LCC
estimation [15,16]. In these studies, LiDAR data were used for leaf area index extraction
to mitigate the influence of canopy structure when developing LCC estimation models.
Other studies have attempted to integrate optical and LiDAR data to generate the three-
dimensional distribution of LCC [17,18]. These methods provide a more comprehensive
understanding of biochemical pigment distribution within canopies. Moreover, some
studies have demonstrated that LiDAR-derived intensity images can serve as substitutes
for infrared bands [19,20]. Therefore, LiDAR data can be integrated with RGB imagery to
enhance spectral information, providing a more cost-effective approach for LCC estimation.

Although hyperspectral remote sensing has advantages in LCC estimation, its high
dimensionality complicates model construction by increasing computational complexity
and the risk of overfitting [21]. Therefore, the original hyperspectral data are often processed
using dimensionality reduction algorithms. To ensure the interpretability of the estimation
model, algorithms that perform mapping and transformation within the same feature
space are preferred. These algorithms are referred to as feature selection methods. From
a strategic perspective, feature selection algorithms can be categorized into three types:
filter, wrapper, and embedded, each with its advantages and disadvantages [22]. Filter
algorithms independently evaluate and rank features based on their statistical significance
or relevance to the target variable. However, they have a limited capability to account for
interactions and dependencies among features during the selection process. In contrast,
wrapper algorithms consider feature interactions with a predefined learning algorithm and
are capable of searching for an optimal subset of features. Nonetheless, these algorithms
are more time-consuming due to the large search space, making them unsuitable for high-
dimensional data. Embedded algorithms combine the strengths of both filter and wrapper
methods by efficiently evaluating feature relevance during model training. Among these
three types, embedded methods are commonly used for processing hyperspectral data. For
instance, Zhang et al. [23] employed the least absolute shrinkage and selection operator
(LASSO) algorithm to select important hyperspectral bands for apple tree LCC estimation.
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Zhao et al. [24] used the random forest (RF) algorithm to select sensitive wavelengths for in
situ LCC estimation. However, although embedded algorithms are preferred in relative
studies, the feature ranking provided is often constrained by the predefined regression
algorithm, which limits its adaptability. For example, previous study has demonstrated
that features selected using RF algorithm achieve lower accuracy when applied with other
regression algorithms such as support vector regression (SVR) [25]. More importantly, the
importance of features changes as the number of features in the model varies, but embedded
algorithms fail to account for the impact of dynamic feature sets on ranking. Additionally, a
single-type feature selection algorithm often fails to balance computational efficiency with
the search for an optimal subset. Therefore, it is crucial to develop a multitype integrated
feature selection algorithm framework to enhance applicability across different scenarios.

Besides choosing appropriate features, another way to improve model performance
is to find a suitable regression algorithm. According to previous studies, LCC estima-
tion can be conducted using physical models, parametric models, and non-parametric
models [26,27]. Physical models, such as the radiative transfer model, are grounded in
physical laws and are less affected by sample characteristics or environmental background.
However, they are typically highly complex and require a large number of input parameters
for the accurate simulation of surface conditions. The number of these input parameters
often exceeds the available remote sensing observations, making parameter inversion
particularly challenging [28]. Parametric algorithms are used to estimate the parameters
of a statistical model or probability distribution based on observed data. They assume
that the data come from a known form of distribution and employ statistical techniques to
determine the parameters. Due to the specific distributional assumption of data, parametric
models have limited flexibility and generalization ability. In contrast, non-parametric
algorithms rely solely on observed data to define the model structure. They are more
flexible and better suited to handling complex data distributions. Machine learning (ML) is
a non-parametric method that is often used as the predefined algorithm in the wrapper
and embedded feature selection algorithm. By capturing complex nonlinear relationships
between canopy reflectance and LCC, ML models often achieve more accurate estimations
than traditional linear regression algorithms [29,30]. However, the performance of different
ML algorithms varies depending on the data characteristics and specific tasks. Therefore,
to improve the accuracy of LCC estimation models for Populus deltoides, it is still necessary
to evaluate different ML algorithms.

This study aims to develop an accurate LCC estimation algorithm for Populus deltoides
based on UAV hyperspectral data. The objectives of this study are outlined as follows:
(1) improving embedded feature selection algorithm to be applicable to different regression
algorithms and adaptable to dynamic feature set conditions; (2) developing an ensembled
feature selection framework by integrating the advantages of various algorithms; (3) evalu-
ating different ML regression algorithms in the LCC estimation model for Populus deltoides
based on the ensembled feature selection framework.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the geographic location of the study area for data collection. It is
located within the National Superior Populus Seed Base in Shishou county, Hubei province,
China. This county lies in the southern part of Hubei, along the middle reaches of the
Yangtze River. The region is predominantly flat, with some low hills in the southwest.
Shishou exhibits a subtropical monsoon climate with distinct seasonal variations. The
average annual temperature ranges from 16 ◦C to 18 ◦C, with hot, rainy summers and mild
winters. The county receives abundant rainfall, averaging between 1200 mm and 1400 mm
annually, mostly concentrated during the summer. Rich in natural resources, especially
water and wetland ecosystems, the area plays a crucial role in supporting agriculture and
biodiversity. In Figure 1, the planting area of Populus deltoides is approximately 83,600 m2.
It contains over 3000 Populus deltoides trees with different genotypes.
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Figure 1. The location of study area.

2.2. Data
2.2.1. UAV Hyperspectral Data Acquisition and Preprocessing

As shown in Figure 2, hyperspectral imagery was acquired using a 300TC hyper-
spectral camera (Beijing IRIS Remote Sensing Technology Limited, Inc., Beijing, China)
loaded on a DJI M350 four-rotator UAV (Shenzhen Dajiang Innovation Technology Co.,
Ltd., Shenzhen, China). This camera has 308 spectral channels ranging from 393 to 1007 nm,
with a spectral resolution of 2 nm. The UAV flight mission was conducted on May 14th
between 10:00 and 15:00 under clear sky and low wind conditions. The spatial resolution of
the hyperspectral imagery is 20 cm per pixel. Before the flight, radiation calibration was per-
formed using a target cloth covered with Lambertian coating. The radiometric, geometric,
and orthorectification processes were all conducted using the Mega Cube software (version
11.0.13), which developed independently by IRIS Corporation. After preprocessing, the
hyperspectral reflectance data were acquired. Based on previous studies and the result of
reflectance checks, bands above 891 nm were excluded due to spectral noise and distor-
tions [31]. The remaining bands were then smoothed using the Savitzky–Golay filter [32].
To reduce the impact of localization errors on modeling, the average reflectance within a
3 × 3 pixels window centered on the leaf sampling point was used as the final reflectance
in this study.
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2.2.2. LCC Measurement

From 16 May to 22 May 2024, leaf samples were collected from 240 Populus deltoides
trees. The samples were obtained from the south-facing side of each tree at a height of 15
to 17 m. The locations of samples were recorded using the real time kinematic GPS. The
collected leaves were immediately transported to the laboratory and stored in a refrigerator
at 4 ◦C to preserve freshness for subsequent analysis. Each day after leaf collection, LCC
was determined using the spectrophotometric method. For each sample, twelve circular
leaf discs (0.5 cm in diameter) were excised using a hole punch and placed in test tubes
containing ethanol (Figure 3). After a 24 h incubation in darkness, the absorbance of the
extraction solution was measured at 665 nm for chlorophyll-a and 649 nm for chlorophyll-
b using a spectrophotometer. Chlorophyll concentrations were then calculated using
Equations (1) and (2) based on the absorbance values [33]. Finally, LCC was converted
from a per-unit weight basis (mg/g) to a per-unit area basis (µg/cm2) using Equation (3).

Chla

(
mg
g

)
=

[(13.95A665 − 6.88A649)× VT(ml)]
[FW(g)× 1000]

(1)

Chlb

(
mg
g

)
=

[(24.96A649 − 7.32A665)× VT(ml)]
[FW(g)× 1000]

(2)

Chla+b

( µg
cm2

)
=

[(Chla(mg/g) + Chlb(mg/g))× FW(g)× 1000]
LA(cm2)

(3)

where Chla and Chlb represent the concentrations of chlorophyll a and chlorophyll b, respec-
tively. A665 and A649 correspond to the absorbance of the extracted pigments at wavelengths
of 665 nm and 649 nm, respectively. Chla+b denotes the combined concentration of Chla
and Chlb, commonly referred to as the LCC. VT , FW, and LA refer to the volume of the
extraction solution, fresh weight of the sample, and leaf area, respectively.
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2.3. Ensembled Feature Selection Framework
2.3.1. Embedded Algorithm Improvements

Before developing the ensembled feature selection framework, the embedded algo-
rithm was improved. To allow integration with various regression algorithms rather than
relying on a predefined regression algorithm, the SHapley Additive exPlanations (SHAP)
algorithm was used for feature ranking. The core principle of SHAP is based on the Shapley
value from cooperative game theory, which ensures the fair distribution of a total gain
among the features based on their contributions [34]. SHAP values are calculated by con-
sidering all possible combinations of features and measuring the marginal contribution of
each feature to every possible coalition [35]. This ensures a consistent and fair allocation
of contributions among features. The SHAP value ∅i for a feature i is computed using
the formula:

∅i = ∑S⊆N{i}
|S|!(|N| − |S| − 1)!

|N|! [ f (S ∪ {i})− f (S)] (4)

where N is the set of all features; S is a subset of N that does not include feature i; f (S) is the
model prediction based on the subset of features S; |S| is the number of features in subset S;
|N| is the total number of features.

During the feature selection process, removing certain features alters the composition
of the feature set. This change subsequently affects the importance of the remaining features.
As a result, the feature ranking obtained from the original feature set may not be reliable
for subsequent rounds of feature selection. To address these dynamic changes, the LCC
estimation model is reconstructed after each band-removal step in this study, where the
10 lowest-ranked bands are removed. The newly updated feature ranking is then used for
the next round of dimensionality reduction. The flowchart of this improved embedded
algorithm is shown in the ensembled framework (Figure 4).
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2.3.2. Wrapper Algorithm

Although the improved embedded feature selection methods are more robust and
efficient, they still have limitations in identifying the optimal feature subset. Therefore,
this study proposes an ensembled framework that uses the improved embedded method
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to determine the initial band subset and then applies the wrapper algorithm for optimal
subset search. Particle swarm optimization (PSO) is a typical wrapper feature selection
algorithm used in related studies [36]. It is a global optimization algorithm that efficiently
searches the feature space to identify the optimal subset by integrating the regression
model. In PSO, each particle represents a potential solution (a subset of bands) encoded as
a binary vector [37]. The algorithm begins by initializing a swarm of particles with random
positions and velocities. Each particle’s fitness is evaluated by training a regression model
on the selected bands and calculating an evaluation index. The particles then update their
positions and velocities based on their own best positions and the global best position
found by the swarm. The PSO algorithm demonstrates strong local search capabilities and
faster convergence rates. However, it is susceptible to becoming trapped in local optima. To
address this limitation, a genetic algorithm (GA) is introduced to perform a global search
and identify individuals with the highest fitness levels [38]. These selected individuals are
then used as the initial population for the PSO algorithm. This hybrid approach enhances
the efficiency of PSO by improving its convergence behavior and effectively avoiding
entrapment in local optima [39]. Therefore, the framework of this ensembled feature
selection algorithm is shown in Figure 4.

2.4. Regression Algorithm
2.4.1. GBRT

GBRT is a machine learning algorithm based on boosting principles. It improves model
performance by combining the predictions of multiple weak learners into a single, robust
model. The fundamental concept behind GBRT is to iteratively construct an ensemble of
decision trees, where each subsequent tree is trained to correct the errors of the preceding
ensemble [40]. This approach uses gradient descent to optimize a predefined loss function
while incorporating regularization techniques to prevent overfitting, thereby achieving
both accuracy and robustness. The performance of GBRT is highly dependent on several
hyperparameters, including the number of trees, tree depth, and learning rate. In this study,
these hyperparameters were optimized through grid search combined with cross-validation
to enhance the estimation accuracy.

2.4.2. SVR

SVR is another ML algorithm based on the principles of Support Vector Machines.
This algorithm aims to find a hyperplane in a high-dimensional space that best fits the
data within a specified margin, denoted as ε [41]. This margin defines the tolerance for
prediction errors. The fundamental concept of SVR is to minimize a regularized loss
function, which balances model complexity with prediction accuracy. Specifically, SVR
solves the optimization problem by minimizing the norm of the coefficient vector while
constraining the prediction errors to fall within the ε margin. To handle both linear and
nonlinear relationships, SVR employs kernel functions that map the input data into a
higher-dimensional space. Common kernel functions include linear, polynomial, and
radial basis function (RBF) kernels. In this study, the RBF kernel was chosen due to its
effectiveness in capturing complex, nonlinear patterns. The hyperparameters, including
the regularization parameter (C) and ε, were optimized using grid search combined with
cross-validation.

2.4.3. GPR

Gaussian Process Regression (GPR) is a non-parametric Bayesian approach used for
regression analysis. It provides a flexible and probabilistic framework for modeling complex
relationships between target and features. In this algorithm, the underlying function is
treated as a realization of a Gaussian process, which is a collection of random variables
where any finite subset follows a joint Gaussian distribution [42]. The Gaussian process
is characterized by its mean function and covariance function. The choice of covariance
function, such as the Radial Basis Function (RBF) kernel, determines the smoothness and
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flexibility of the model. During the regression process, GPR updates the prior Gaussian
process using observed data to derive a posterior distribution. This posterior distribution
provides predictions in terms of both the mean and the associated uncertainty (variance)
at new data points. In this study, the RBF kernel is utilized as the covariance function.
Additionally, other hyperparameters, including the length scale and signal variance, are
optimized using maximum likelihood estimation to improve model performance.

2.5. Comparative Experiments

To demonstrate the effectiveness of the proposed feature selection framework, three
comparative experiments were designed. The first two experiments were based on a single
feature selection algorithm: filter and embedded. They were used to demonstrate the
superiority of the ensembled feature selection algorithm. The third experiment was based
on an ensembled framework and aimed to demonstrate the effectiveness of the improved
embedded algorithm. As in the proposed method, the GBRT, SVR, and GPR algorithms
were used in each comparative experiment.

The methods for each comparative experiment are as follows:

(1) The first experiment was conducted using a simpler filter method based on the abso-
lute value of the Pearson correlation coefficient (APCC). The bands with APCC values
greater than 0.6, which are considered linearly correlated, were used to construct the
LCC estimation model.

(2) The second experiment was conducted using the ensemble algorithm. A fixed GBRT
ranking and the stepwise band reduction process were used to identify the bands for
LCC estimation.

(3) The third experiment used the results of the second experiment and employed the
same wrapper algorithm used in the framework to identify the optimal bands for
LCC estimation.

To differentiate between the various models, the forms “X-NV model”, “C-X-NV
model”, “X-Optimal model”, and “C-X-Optimal model” were introduced, where “X”
denotes the regression algorithm used in the model, “N” indicates the number of bands
used in the model, and “C” signifies that the model was generated from the comparative
experiment. Models without “C” were produced using the proposed method. The “X-
NV model” and “C-X-NV model” were derived from the initial band subset, while the
“X-Optimal model” and “C-X-Optimal model” were based on the optimal band subset.

2.6. Model Performance Evaluation

In this study, 2/3 of samples were randomly selected as the training dataset, while
the remaining samples were used for model performance evaluation. The coefficients
of determination (R2), root mean square error (RMSE) and mean absolute error (MAE)
were used as evaluation indicators. R2 measures the ability of a model to explain the
variability in the data. RMSE and MAE quantify the differences between estimated and
measured LCC values. RMSE emphasizes the sensitivity to larger errors while MAE offers
a balanced consideration of all errors. To evaluate the changes in model performance
following dimensionality reduction, this paper employs ∆RMSE as a quantitative measure.
The calculation formulas for all the relevant indicators are provided below.

R2 = 1 − ∑n
i=1

(
yi − y′i

)2

∑n
i=1(yi − yi)

2 (5)

RMSE =

√
1
n

n

∑
i=1

(
y′i − yi

)2 (6)

MAE =
1
n∑n

i=1

∣∣yi − y′i
∣∣ (7)
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∆RMSE =
RMSEbasic model − RMSEmodel

RMSEbasic model
× 100% (8)

where yi,y and y′i are measured LCC, mean value of measured LCC and the estimated LCC.
The RMSEmodel refers to the RMSE value of the model after feature selection process, while
the RMSEbasicmodel refers to the RMSE value of the model that used all bands as inputs.

3. Results
3.1. Initial Band Subset Developed Using the Improved Embedded Feature Selection Algorithm

Figure 5 illustrates the changes in RMSE of the LCC estimation model across different
regression algorithms during the stepwise dimensionality reduction process guided by the
improved embedded algorithm. As the number of bands decreased, all three regression
models initially exhibited a reduction in RMSE, followed by an upward trend. The lowest
RMSE for all models occurs when the band count is reduced to 50 V. While the overall trend
is similar across the models, they differ in the magnitude of RMSE changes and the rate
at which these changes occur. When using all bands as inputs, the GBRT model achieved
the best model performance with an RMSE of 1.902 µg/cm2. While the RMSE values of
the SVR and the GPR model are 2.183 µg/cm2 and 2.142 µg/cm2, respectively. When the
number of bands is reduced from 250 V to 50 V, the RMSE of the GBRT model decreases
by only 0.064 µg/cm2. While the RMSE values of the SVR and GPR models decrease by
0.356 µg/cm2 and 0.253 µg/cm2, respectively. Although both the SVR and GPR models
achieved significant improvements in LCC estimation accuracy, the SVR model exhibited
more stable RMSE variations during the stepwise dimensionality reduction process. In
contrast, the RMSE of the GPR model increased several times as the number of bands
was reduced from 250 V to 130 V. For example, the RMSE of the GPR model increased by
0.072 µg/cm2 when the band count decreased from 230 V to 220 V. Finally, as the number
of bands was further reduced from 50 V to 10 V, a decline in accuracy was observed across
all three models. Specifically, the RMSE increased by 0.124 µg/cm2 for the GBRT model,
while the SVR and GPR models showed increases of 0.309 µg/cm2 and 0.567 µg/cm2,
respectively.

Figure 6 shows the LCC estimation results of the GBRT, SVR and GPR models using
50 bands selected by the improved embedded algorithm. The SVR-50V model achieved
the best performance with an R2 of 0.760, an RMSE of 1.827 µg/cm2 and an MAE of
1.531 µg/cm2. The GBRT-50V model followed closely, with an R2 of 0.757, an RMSE of
1.838 µg/cm2 and an MAE of 1.544 µg/cm2. In contrast, the GPR-50V model achieved the
lowest accuracy with an R2 of 0.744, an RMSE of 1.889 µg/cm2 and an MAE of 1.569 µg/cm2.
The GPR-50V model demonstrated a more pronounced underestimation of high LCC values
and overestimation of low LCC values. To provide a more comprehensive assessment of
model performance across different LCC ranges, residual boxplots were generated in this
study (Figure 7). In the range of 20 to 25 µg/cm2, all samples are overestimated by using
the GBRT-50V and GPR-50V models. However, the GBRP-50V model achieved a lower
degree of overestimation compared to the GPR-50V model. In the range of 25–35 µg/cm2,
all three models exhibited relatively large residuals, which were the primary source of
reduced estimation accuracy. Compared to the other two models, the GPR-50V model still
showed significant overestimation within the 25 to 30 µg/cm2 range. In the range of 35 to
40 µg/cm2, both the GBRT-50V and GPR-50V models displayed notable underestimation.
Although the performance of the GBRT-50V model is similar to that of the SVR-50V model,
their residual distributions vary across LCC ranges. Specifically, the SVR-50V model
demonstrates greater residual variability in the 20 to 25 µg/cm2 and 35 to 40 µg/cm2

ranges. This result indicates that some low-value and high-value samples were estimated
more accurately by the SVR-50V model.



Forests 2024, 15, 1971 10 of 20

Forests 2024, 15, x FOR PEER REVIEW 9 of 20 
 

 

RMSE = ඩ1𝑛 (𝑦ᇱ − 𝑦)ଶ
ୀଵ  (6)

MAE = 1𝑛  |𝑦 − 𝑦ᇱ|ୀଵ  (7)

∆RMSE = RMSE௦ ௗ − RMSEௗRMSE௦ ௗ × 100% (8)

where 𝑦, 𝑦ഥ  and 𝑦ᇱ are measured LCC, mean value of measured LCC and the estimated 
LCC. The RMSEௗ refers to the RMSE value of the model after feature selection pro-
cess, while the RMSE௦ ௗ refers to the RMSE value of the model that used all bands 
as inputs. 

3. Results 
3.1. Initial Band Subset Developed Using the Improved Embedded Feature Selection Algorithm 

Figure 5 illustrates the changes in RMSE of the LCC estimation model across different 
regression algorithms during the stepwise dimensionality reduction process guided by 
the improved embedded algorithm. As the number of bands decreased, all three regres-
sion models initially exhibited a reduction in RMSE, followed by an upward trend. The 
lowest RMSE for all models occurs when the band count is reduced to 50 V. While the 
overall trend is similar across the models, they differ in the magnitude of RMSE changes 
and the rate at which these changes occur. When using all bands as inputs, the GBRT 
model achieved the best model performance with an RMSE of 1.902 µg/cm2. While the 
RMSE values of the SVR and the GPR model are 2.183 µg/cm2 and 2.142 µg/cm2, respec-
tively. When the number of bands is reduced from 250 V to 50 V, the RMSE of the GBRT 
model decreases by only 0.064 µg/cm2. While the RMSE values of the SVR and GPR mod-
els decrease by 0.356 µg/cm2 and 0.253 µg/cm2, respectively. Although both the SVR and 
GPR models achieved significant improvements in LCC estimation accuracy, the SVR 
model exhibited more stable RMSE variations during the stepwise dimensionality reduc-
tion process. In contrast, the RMSE of the GPR model increased several times as the num-
ber of bands was reduced from 250 V to 130 V. For example, the RMSE of the GPR model 
increased by 0.072 µg/cm2 when the band count decreased from 230 V to 220 V. Finally, as 
the number of bands was further reduced from 50 V to 10 V, a decline in accuracy was 
observed across all three models. Specifically, the RMSE increased by 0.124 µg/cm2 for the 
GBRT model, while the SVR and GPR models showed increases of 0.309 µg/cm2 and 0.567 
µg/cm2, respectively. 

(a) 

Forests 2024, 15, x FOR PEER REVIEW 10 of 20 
 

 

 
(b) 

 
(c) 

Figure 5. (a) RMSE value of the GBRT model during the stepwise dimensionality reduction process; 
(b) RMSE value of the SVR model during the stepwise dimensionality reduction process; (c) RMSE 
value of the GPR model during the stepwise dimensionality reduction process. 

Figure 6 shows the LCC estimation results of the GBRT, SVR and GPR models using 
50 bands selected by the improved embedded algorithm. The SVR-50V model achieved 
the best performance with an R2 of 0.760, an RMSE of 1.827 µg/cm2 and an MAE of 1.531 
µg/cm2. The GBRT-50V model followed closely, with an R2 of 0.757, an RMSE of 1.838 
µg/cm2 and an MAE of 1.544 µg/cm2. In contrast, the GPR-50V model achieved the lowest 
accuracy with an R2 of 0.744, an RMSE of 1.889 µg/cm2 and an MAE of 1.569 µg/cm2. The 
GPR-50V model demonstrated a more pronounced underestimation of high LCC values 
and overestimation of low LCC values. To provide a more comprehensive assessment of 
model performance across different LCC ranges, residual boxplots were generated in this 
study (Figure 7). In the range of 20 to 25 µg/cm2, all samples are overestimated by using 
the GBRT-50V and GPR-50V models. However, the GBRP-50V model achieved a lower 
degree of overestimation compared to the GPR-50V model. In the range of 25–35 µg/cm2, 
all three models exhibited relatively large residuals, which were the primary source of 
reduced estimation accuracy. Compared to the other two models, the GPR-50V model still 
showed significant overestimation within the 25 to 30 µg/cm2 range. In the range of 35 to 
40 µg/cm2, both the GBRT-50V and GPR-50V models displayed notable underestimation. 
Although the performance of the GBRT-50V model is similar to that of the SVR-50V 
model, their residual distributions vary across LCC ranges. Specifically, the SVR-50V 
model demonstrates greater residual variability in the 20 to 25 µg/cm2 and 35 to 40 µg/cm2 
ranges. This result indicates that some low-value and high-value samples were estimated 
more accurately by the SVR-50V model. 

Figure 5. (a) RMSE value of the GBRT model during the stepwise dimensionality reduction process;
(b) RMSE value of the SVR model during the stepwise dimensionality reduction process; (c) RMSE
value of the GPR model during the stepwise dimensionality reduction process.

Forests 2024, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Performances of the GBRT-50V model, SVR-50V model and GRP-50V model. 

 
Figure 7. Residual distribution in different LCC range of the GBRT-50V model, SVR-50V model and 
GPR-50V model. 

3.2. Optimal Models Developed Using the Ensembled Feature Selection Framework 
Figure 8 illustrates the LCC estimation performance of three optimal models. The 

GBRT-Optimal model achieved the highest estimation accuracy with R2 of 0.848, RMSE of 
1.454 µg/cm2 and MAE of 1.121 µg/cm2. The SVR-Optimal model demonstrated lower ac-
curacy with R2 of 0.816, RMSE of 1.600 µg/cm2 and MAE of 1.356 µg/cm2. Compared to 
the results shown in Figure 6, the GBRT model showed significant accuracy improvements 
than the SVR model following the wrapper feature selection process using the PSO algo-
rithm. The GPR-Optimal model also showed significant improvements with R2 increased 
by 0.057, RMSE reduced by 0.227 µg/cm2 and MAE reduced by 0.231 µg/cm2. However, 
despite this enhancement, the GPR-Optimal model is still less accurate than both the 
GBRT-Optimal and SVR-Optimal models. This is because the GPR-Optimal model exhib-
its larger estimation errors for certain specific samples, resulting in a decrease in R2 and 
an increase in RMSE. Nevertheless, since MAE is robust to outliers, the MAE of the GPR-
Optimal model is lower than that of the SVR-Optimal model. In comparison to the models 
of initial band subsets (GBRT-50V, SVR-50V, GPR-50V), the results of optimal models ex-
hibited closer alignment with the 1:1 line (Figure 9). In particular, the GBRT-Optimal 
model demonstrated improved estimation accuracy across both low and high LCC value 
ranges. Compared to using the initial band subsets as inputs (Figure 6), the PSO feature 
selection process improved the LCC estimation accuracy of all models (Table 1). The 
RMSE reductions for the GBRT, SVR, and GPR models were 20.89%, 12.42%, and 12.02%, 
respectively. Overall, the ensemble feature selection framework resulted in RMSE reduc-
tions of 24.37%, 31.91%, and 25.41% for the GBRT, SVR, and GPR models, respectively. 

Figure 6. Performances of the GBRT-50V model, SVR-50V model and GRP-50V model.



Forests 2024, 15, 1971 11 of 20

Forests 2024, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Performances of the GBRT-50V model, SVR-50V model and GRP-50V model. 

 
Figure 7. Residual distribution in different LCC range of the GBRT-50V model, SVR-50V model and 
GPR-50V model. 

3.2. Optimal Models Developed Using the Ensembled Feature Selection Framework 
Figure 8 illustrates the LCC estimation performance of three optimal models. The 

GBRT-Optimal model achieved the highest estimation accuracy with R2 of 0.848, RMSE of 
1.454 µg/cm2 and MAE of 1.121 µg/cm2. The SVR-Optimal model demonstrated lower ac-
curacy with R2 of 0.816, RMSE of 1.600 µg/cm2 and MAE of 1.356 µg/cm2. Compared to 
the results shown in Figure 6, the GBRT model showed significant accuracy improvements 
than the SVR model following the wrapper feature selection process using the PSO algo-
rithm. The GPR-Optimal model also showed significant improvements with R2 increased 
by 0.057, RMSE reduced by 0.227 µg/cm2 and MAE reduced by 0.231 µg/cm2. However, 
despite this enhancement, the GPR-Optimal model is still less accurate than both the 
GBRT-Optimal and SVR-Optimal models. This is because the GPR-Optimal model exhib-
its larger estimation errors for certain specific samples, resulting in a decrease in R2 and 
an increase in RMSE. Nevertheless, since MAE is robust to outliers, the MAE of the GPR-
Optimal model is lower than that of the SVR-Optimal model. In comparison to the models 
of initial band subsets (GBRT-50V, SVR-50V, GPR-50V), the results of optimal models ex-
hibited closer alignment with the 1:1 line (Figure 9). In particular, the GBRT-Optimal 
model demonstrated improved estimation accuracy across both low and high LCC value 
ranges. Compared to using the initial band subsets as inputs (Figure 6), the PSO feature 
selection process improved the LCC estimation accuracy of all models (Table 1). The 
RMSE reductions for the GBRT, SVR, and GPR models were 20.89%, 12.42%, and 12.02%, 
respectively. Overall, the ensemble feature selection framework resulted in RMSE reduc-
tions of 24.37%, 31.91%, and 25.41% for the GBRT, SVR, and GPR models, respectively. 

Figure 7. Residual distribution in different LCC range of the GBRT-50V model, SVR-50V model and
GPR-50V model.

3.2. Optimal Models Developed Using the Ensembled Feature Selection Framework

Figure 8 illustrates the LCC estimation performance of three optimal models. The
GBRT-Optimal model achieved the highest estimation accuracy with R2 of 0.848, RMSE of
1.454 µg/cm2 and MAE of 1.121 µg/cm2. The SVR-Optimal model demonstrated lower
accuracy with R2 of 0.816, RMSE of 1.600 µg/cm2 and MAE of 1.356 µg/cm2. Compared to
the results shown in Figure 6, the GBRT model showed significant accuracy improvements
than the SVR model following the wrapper feature selection process using the PSO algo-
rithm. The GPR-Optimal model also showed significant improvements with R2 increased
by 0.057, RMSE reduced by 0.227 µg/cm2 and MAE reduced by 0.231 µg/cm2. However,
despite this enhancement, the GPR-Optimal model is still less accurate than both the GBRT-
Optimal and SVR-Optimal models. This is because the GPR-Optimal model exhibits larger
estimation errors for certain specific samples, resulting in a decrease in R2 and an increase in
RMSE. Nevertheless, since MAE is robust to outliers, the MAE of the GPR-Optimal model
is lower than that of the SVR-Optimal model. In comparison to the models of initial band
subsets (GBRT-50V, SVR-50V, GPR-50V), the results of optimal models exhibited closer
alignment with the 1:1 line (Figure 9). In particular, the GBRT-Optimal model demonstrated
improved estimation accuracy across both low and high LCC value ranges. Compared
to using the initial band subsets as inputs (Figure 6), the PSO feature selection process
improved the LCC estimation accuracy of all models (Table 1). The RMSE reductions for
the GBRT, SVR, and GPR models were 20.89%, 12.42%, and 12.02%, respectively. Overall,
the ensemble feature selection framework resulted in RMSE reductions of 24.37%, 31.91%,
and 25.41% for the GBRT, SVR, and GPR models, respectively.
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Table 1. Model performance improvements of three LCC estimation models.

Regression Algorithm ∆RMSE Achieved Using the
Initial Band Subset

∆RMSE Achieved Using the
Optimal Band Subset

GBRT 20.89% 24.37%
SVR 12.42% 31.91%
GPR 12.02% 25.41%
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model, and GPR-Optimal model.

Figure 9 shows the boxplot of residuals for each optimal model across different LCC
value ranges. Compared to the results shown in Figure 7, the distribution of residuals
for each model has changed. For instance, the median of residuals for samples within
the LCC range of 20 to 25 µg/cm2 is close to zero in the GBRT-Optimal model. This
indicated that the overestimation has been mitigated. Moreover, within the LCC range
of 35 to 40 µg/cm2, the median of residuals is negative for the GBRT-Optimal model,
which indicates that the underestimation phenomenon has also been mitigated. For the
SVR-Optimal model, the residuals have been significantly reduced in the range of 35 to
40 µg/cm2. In the GPR-Optimal model, the overestimation has been mitigated in the range
of 20 to 25 µg/cm2.

Figure 10 and Table 2 present the bands included in the three initial band subsets
and the three optimal band subsets. Although each initial subset comprises 50 bands, the
distribution of these selected bands varies significantly. As shown in Figure 10a, the bands
used in the GBRT model are primarily concentrated in the B bands (420 nm to 460 nm)
and the RE bands (680 nm to 760 nm). In contrast, the bands used in the SVR and GPR
models are more widely distributed across the 400 nm to 900 nm spectrum, with a greater
emphasis on G and R bands. Compared to the initial subsets, some bands with relatively
high correlation were removed in the optimal subsets. For instance, the initial subset of the
GBRT model includes several continuous bands between 660 nm and 760 nm, whereas the
optimal subset shows a reduced number of continuous bands. The number of bands used in
the GBRT-Optimal, SVR-Optimal, and GPR-Optimal models is 28, 36, and 29, respectively.
This reduction demonstrates that the ensemble feature selection framework effectively
decreased the number of bands to 12%–15% of the original set, resulting in improved LCC
estimation accuracy, as evidenced by a 20%–30% reduction in RMSE (Table 1).

Table 2. Bands used in three optimal LCC estimation models.

Model Wavelength of Bands Used in the Model

GBRT-Optimal
393 nm, 395 nm, 397 nm, 431 nm, 437 nm, 439 nm, 441 nm, 449 nm, 461 nm, 519 nm, 555 nm,
669 nm, 679 nm, 681 nm, 683 nm, 691 nm, 695 nm, 697 nm, 701 nm, 703 nm, 715 nm, 723 nm,
731 nm, 741 nm, 747 nm, 751 nm, 887 nm, 891 nm

SVR-Optimal

393 nm, 395 nm, 397 nm, 417 nm, 431 nm, 439 nm, 441 nm, 457 nm, 459 nm, 487 nm, 523 nm,
525 nm, 537 nm, 539 nm, 555 nm, 557 nm, 579 nm, 611 nm, 641 nm, 679 nm, 691 nm, 695 nm,
709 nm, 721 nm, 729 nm, 739 nm, 741 nm, 751 nm, 761 nm, 763 nm, 801 nm, 855 nm, 861 nm,
873 nm, 879 nm, 885 nm

GPR-Optimal
395 nm, 405 nm, 425 nm, 431 nm, 471 nm, 473 nm, 479 nm, 509 nm, 513 nm, 519 nm, 521 nm,
575 nm, 603 nm, 633 nm, 675 nm, 689 nm, 697 nm, 699 nm, 707 nm, 711 nm, 725 nm, 737 nm,
805 nm, 843 nm, 859 nm, 875 nm, 879 nm, 883 nm, 889 nm
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GPR-50V and GPR-Optimal models.

3.3. Model Performances of Comparative Experiments

Figure 11 shows the selected 49 bands that achieved APCC values higher than 0.6. The
bands are primarily concentrated within the ranges of 420 to 460 nm and 620 to 680 nm.
These bands exhibit significant correlation with each other. As shown in Figure 12, the
49 bands were used as an input for developing the LCC estimation model. The C-SVR-49V
model achieved the best performance, with R2 of 0.664, RMSE of 2.164 µg/cm2 and MAE of
1.697 µg/cm2. In contrast, the C-GPR-49V model achieved the lowest accuracy, with R2 of
0.602, RMSE of 2.354 µg/cm2 and MAE of 1.891 µg/cm2. Compared with the results of the
proposed ensemble framework, the RMSE values of the C-GBRT-49V, C-SVR-49V, and C-
GPR-49V models increased by 0.741 µg/cm2, 0.564 µg/cm2, and 0.692 µg/cm2, respectively.
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As shown in Figure 13, this study conducted the stepwise dimensionality reduction
process based on the fixed GBRT ranking and different regression algorithm (second com-
parative performance). When using the GBRT regression algorithm, the RMSE increased
as the number of bands decreased from 250 V to 170 V. As the number of bands further
decreased from 170 V to 50 V, the RMSE stabilized within the range of 1.930 µg/cm2 to
1.960 µg/cm2. A significant increase in RMSE was observed when the number of bands
dropped below 40 V. The lowest RMSE of 1.900 µg/cm2 was achieved at 190 V. For the
SVR models, the RMSE increased as the number of bands decreased from 250 V to 70 V,
followed by irregular fluctuations. In contrast, when using the GPR algorithm, the RMSE
exhibited inconsistent fluctuations as the number of bands decreased from 250 V to 180 V.
The best SVR and GPR models were achieved at 240 V (RMSE = 2.163 µg/cm2) and 70 V
(RMSE = 1.981 µg/cm2), respectively. Compared to the results obtained using the SHAP
ranking (Figure 5), the single feature selection process based on the fixed GBRT ranking not
only resulted in larger errors in LCC estimation but also failed to maintain high estimation
accuracy at lower dimensionalities. When developing the SVR and GPR models with
the fixed GBRT ranking, the RMSE ranged from 1.900 µg/cm2 to 2.700 µg/cm2, which
is significantly higher than the results achieved with the improved embedded algorithm,
where the RMSE ranged from 1.800 µg/cm2 to 2.200 µg/cm2. These findings suggest
that GBRT ranking is not well-suited for developing models when combined with other
regression algorithms.

The third comparative experiment is based on the band subsets that achieved the
highest accuracy for each model, as shown in Figure 13. To reduce computational com-
plexity, the initial band subset dimensions for GBRT, SVR, and GPR were set at 50 V, 60 V,
and 70 V, respectively. Compared to using all bands as inputs, employing the initial band
subset increased the RMSE of the GBRT and SVR models by 1.47% and 10.31%, respectively
(Table 3). Only the GPR model demonstrated an improvement in accuracy, with its RMSE
decreasing by 7.52%. This study utilized the same wrapper algorithm to determine the
optimal band subset for each model. Figure 14 illustrates the performance of the three
optimal LCC estimation models. The C-GPR-Optimal model achieved the highest accu-
racy with R2 of 0.767, RMSE of 1.800 µg/cm2 and MAE of 1.411 µg/cm2. In contrast, the
C-SVR-Optimal model had the lowest accuracy with R2 of 0.740, RMSE of 1.902 µg/cm2

and MAE of 1.577 µg/cm2. Although the accuracy of the C-GBRT-Optimal model was
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lower than that of the C-GPR-Optimal model, its fitted line was closer to the 1:1 line.
Table 3 presents the changes in RMSE across different models. Compared to using 250 V as
input, the RMSEs of the C-GBRT-Optimal, C-SVR-Optimal, and C-GPR-Optimal models
decreased by 1.31%, 12.87%, and 15.97%, respectively. Furthermore, the optimal band sets
for GBRT, SVR, and GPR were determined at 39 V, 41 V, and 58 V, respectively. These results
suggest that the fixed GBRT ranking is inadequate for providing a reasonable ranking for
the dynamic model, resulting in only a modest improvement in the accuracy of the LCC
estimation model.
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Table 3. Model performance improvements of three LCC estimation model using GBRT ranking.

Regression Algorithm ∆RMSE Achieved Using the
Initial Band Subset

∆RMSE Achieved Using the
Optimal Band Subset

GBRT −1.47% 1.31%
SVR −10.31% 12.87%
GPR 7.52% 15.97%
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4. Discussion

UAV-based hyperspectral imagery provides fine-scale spectral and spatial resolution
for estimating LCC in Populus deltoides at the individual tree level. However, the strong
correlation between hyperspectral bands significantly affects the accuracy and computa-
tional efficiency of LCC estimation models. Therefore, identifying the sensitive bands for
LCC estimation in Populus deltoides is crucial. This study proposed an ensemble feature
selection framework that identified 28 sensitive bands. Using these bands, the GBRT esti-
mation model achieved accuracy with R2 of 0.848 and, RMSE of 1.454 µg/cm2 and MAE of
1.121 µg/cm2. Compared to traditional embedded algorithms, this framework significantly
improved model accuracy while reducing model complexity. In addition to biophysical
and biochemical parameter estimation, this method is applicable to various hyperspectral
imaging tasks, including classification and object detection.

The ensembled feature selection framework proposed in this study introduces three
critical improvements. First, the SHAP algorithm was integrated into the regression
process. Previous studies have indicated that the feature rankings provided by certain
embedded algorithms reflect only the contribution of each feature within the specific model
used [25,43]. Our findings are consistent with these results. For example, the initial band
subsets for the GBRT, SVR, and GPR models were different (Figure 10). Additionally,
applying the fixed GBRT ranking to the SVR and GPR models resulted in a significant loss
of accuracy (Figure 13). This discrepancy may be due to the specificity of the algorithms and
their differing objective functions. The GBRT algorithm constructs models using tree-based
methods that capture complex interactions and nonlinear relationships, while the SVR
algorithm aims to find a hyperplane that minimizes error [44]. The GPR algorithm uses a
probabilistic approach with kernel functions [45]. Therefore, the GBRT ranking may not
correspond to those prioritized by SVR or GPR. This mismatch affects the transferability
of feature rankings between models. In this study, the SHAP algorithm offers a unified
framework for interpreting model outputs by attributing feature contributions through
cooperative game theory. By allowing integration with various regression algorithms,
this method can generate more robust and reliable feature rankings. Second, dynamic
ranking was introduced into the improved embedded feature selection algorithm. During
feature selection, the number of features influences interactions, modifies redundancy,
and alters the overall model structure. Consequently, the contribution of each feature
shifts as the subset changes. In machine learning models, feature changes can affect the
importance of other features, especially when they are correlated or provide overlapping
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information [46]. Additionally, the internal parameters of the models are impacted by
the number of features, leading to shifts in feature importance. This dynamic variation
is particularly evident in models that capture complex, nonlinear relationships, such as
tree-based models and neural networks [47]. In our study, using the fixed GBRT ranking
during the stepwise dimensionality reduction process led to a continuous increase in RMSE
(Figure 13a), whereas dynamic ranking significantly improved the accuracy of the LCC
estimation model (Figure 5). Lastly, the integration of embedded and wrapper algorithms
provides complementary benefits that enhanced the computational efficiency of optimal
feature subset search. By initially using an embedded algorithm to identify a suitable
feature subset, the number of features is reduced, which leads to decreased computational
complexity. This strategy also reduces the risk of overfitting by focusing on representative
features, improving model accuracy. Furthermore, it enables flexible algorithm selection
tailored to specific datasets. Overall, this combined approach leverages the strengths of
both methods, resulting in a more efficient and robust feature selection process.

In this study, the GBRT estimation model achieved the best performance using 28 nar-
row bands. As shown in Table 2, the optimal band subset includes 12 RE bands ranging
from 680 nm to 760 nm. This finding is consistent with previous studies, which have
demonstrated that RE band reflectance is highly correlated with LCC. For example, Sun
et al. [48] and Chen et al. [49] analyzed the sensitivity of Sentinel-2 bands to LCC using a
radiative transfer model. The results showed that RE2 band with wavelength of 704 nm and
bandwidth of 15 nm exhibited the highest sensitivity. Similarly, Yue et al. [50] employed
UAV-based hyperspectral imagery for soybean LCC estimation and found that reflectance
between 700 nm and 800 nm was highly correlated with LCC. Furthermore, previous
studies have suggested that using RE bands can reduce the underestimation of high values
in LCC estimation models [51,52]. The findings of this study align with this conclusion.
For instance, both the initial and optimal band subsets of the GBRT model contain a larger
number of RE bands. As a result, the GBRT-50V and GBRT-Optimal models exhibit lower
levels of underestimation and overestimation compared to the SVR and GPR models. This
is because RE bands are less prone to saturation in areas with high vegetation coverage or
chlorophyll content [53,54]. In plants with high chlorophyll content, red light absorption
often saturates, while RE bands lie in the transition zone between the R and NIR regions.
In this region, reflectance is highly sensitive to variations in leaf area index and LCC due to
multiple scattering between leaf layers and chlorophyll absorption [55,56]. Consequently,
RE bands are particularly sensitive to variations in LCC.

5. Conclusions

This study developed an ensembled feature selection framework to identify the op-
timal UAV-based hyperspectral band subset for estimating LCC in Populus deltoides. By
using 28 narrow bands and a GBRT model, the proposed framework achieved an accurate
LCC estimation with R2 of 0.848, RMSE of 1.454 µg/cm2 and MAE of 1.121 µg/cm2. Com-
pared with using all bands as inputs, this method reduced the RMSE by 24.37%. The main
conclusions are as follows:

(1) The improved embedded feature selection algorithm produced more robust and
reliable band rankings. By introducing SHAP values and a dynamic ranking strategy,
redundant and low-correlation bands were identified with greater precision across
different regression algorithms.

(2) The ensemble feature selection framework improved the efficiency of optimal subset
selection in hyperspectral data. Although the improved embedded algorithm had a
limited impact on model accuracy, it provided a strong band subset for the wrapper
algorithm. The combination of both feature selection approaches reduced the risk of
converging to a local optimum.

(3) RE bands are critical for developing accurate LCC estimation model for Populus
deltoides. By incorporating several RE bands in the 680–760 nm range, the underesti-
mation problem at high LCC levels was mitigated.
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