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Abstract: More than half of South Korea’s land area is covered by forests, which significantly in‑
creases the potential for extensive damage in the event of a forest fire. The majority of forest fires
in South Korea are caused by humans. Over the past decade, more than half of these types of fires
occurred during the spring season. Although human activities are the primary cause of forest fires,
the fact that they are concentrated in the spring underscores the strong association between forest
fires andmeteorological factors. Whenmeteorological conditions favor the occurrence of forest fires,
certain triggering factors can lead to their ignition more easily. The purpose of this study is to an‑
alyze the meteorological factors influencing forest fires and to develop a machine learning‑based
prediction model for forest fire occurrence, focusing on meteorological data. The study focuses on
four regions within Gangwon province in South Korea, which have experienced substantial damage
from forest fires. To construct the model, historical meteorological data were collected, surrogate
variables were calculated, and a variable selection process was applied to identify relevant meteoro‑
logical factors. Five machine learning models were then used to predict forest fire occurrence and
ensemble techniques were employed to enhance the model’s performance. The performance of the
developed forest fire prediction model was evaluated using evaluation metrics. The results indicate
that the ensemble model outperformed the individual models, with a higher F1‑score and a notable
reduction in false positives compared to the individual models. This suggests that the model devel‑
oped in this study, when combined with meteorological forecast data, can potentially predict forest
fire occurrence and provide insights into the expected severity of fires. This information could sup‑
port decision‑making for forest fire management, aiding in the development of more effective fire
response plans.

Keywords: forest fire; meteorological factor; multi‑model ensemble; machine learning

1. Introduction
More than half (62.6%) of Korea’s land area is covered by forests [1]. When widely

distributed forests extensively cover a significant portion of a country, such as Korea, the
country is highly susceptible to fire hazards. This susceptibility to fire hazards can result
in substantial damage to forests due to forest fires [2]. In addition, in Korea, the percentage
of mountainous terrain is higher than that of flat land, and the forests are also densely dis‑
tributed, increasing the likelihood of large‑scale forest fires [3]. Regions affected by forest
fires suffer a depletion in forest resources, rendering them more vulnerable to disasters,
such as landslides. Such depletion may even lead to a decrease in local biodiversity. The
resultant ecological and scenic damage induce secondary damage, such as lower tourism
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demand [4]. In Korea, forest fires predominantly occur in March–May, with spring forest
fires accounting for 85% of the total affected area [5]. As such, South Korea Forest Service
(KFS) has designated the period between February 1 andMay 15 as the forest fire watch pe‑
riod, implementing measures, including access control to mountains and setting up forest
fire watchhouses at various locations. According to the KFS’s forest fire status, 523 forest
fires occurred in the 2000s, which increased to 575 in the 2020s (2020–2022). The total area
affected by forest fires in the 2000s was 3726 ha, which tripled in the 2020s, reaching 9494
ha. The increase in the area affected by forest fires can be attributed to more frequent dry
days and stronger winds induced by climate change, leading to larger forest fires than in
previous years [6]. Moreover, 84.3% of forest fires in South Korea as of 2018 were caused
by human activities [6]. Of these, 53.5% were the result of the direct handling of fire in
mountainous areas, such as part of rituals and smoking. In contrast, forest fires caused by
weather factors are mainly caused by humidity and wind. Strong winds can carry embers
over long distances and the dry climate accelerates the spread of forest fires. In South Ko‑
rea, 10.5% of forest fires were caused by wind‑blown embers originating from outside the
forest and 18.1%were caused by embers from agricultural activities. Combined, these two
factors account for 28.6% of forest fires and are major contributors to the size and severity
of forest fires. Among the weather factors, lightning as a direct cause accounted for only 61
cases or 0.5% of all forest fires from 1990 to 2018. Given this low frequency of occurrence,
lightning is not considered a major cause of forest fires in South Korea [7].

Forest fires tend to surge in spring and autumn due to rising temperatures and pro‑
longed dry periods [8]. The purpose of this study is to develop an advanced prediction
model that accurately forecasts the monthly occurrence of forest fires, by incorporating
region‑specific seasonal meteorological conditions. As meteorological factors are critical
determinants of forest fire occurrence, this study focuses on enhancing the model’s pre‑
diction accuracy through the application of machine learning techniques combined with
these key variables. To mitigate the potential shortcomings of single‑model approaches,
which may lead to prediction failures in certain cases, a multi‑model ensemble framework
is proposed. By employing ensemble methods to integrate multiple models, this research
seeks to substantially improve the model’s prediction performance and establish a more
reliable and robust forecasting model.

The organization of this paper is as follows: Section 2 introduces various studies con‑
ducted on forest fire prediction and discusses their implications. Section 3 outlines the
methodology in this study, including the machine learning techniques employed.
Section 4 details the data processing steps taken to prepare the training dataset for use
in the machine learning model. In Section 5, we present a comparative analysis of the pre‑
diction results from the MME‑based model proposed in this study and the results from a
single model, using graphs and evaluation metrics. Section 6 discusses the findings pre‑
sented in Section 5 and, finally, Section 7 provides a summary of the study and suggests
possible directions for future research.

2. Literature Review
Numerous studies have been conducted in order to findways tomitigate the consider‑

able damage caused by forest fires. Classical methods for predicting forest fire risk include
the development of formula‑based forest fire risk indices. The oldest record found in re‑
gard to this area of study is the Munger Index from 1916 [9] and it is assumed that similar
attempts have beenmade steadily over the years, in various parts of theworld. Many schol‑
ars have emphasized that weather is a critical factor in regard to forest fire occurrence [10].
For this reason, a variety of forest fire risk indices, up to the present day, use climatic or
weather conditions to predict fire occurrence, often incorporating topographical elements.
Fuel indices typically consider the fuel layer of the land, heavily factoring in the duffmois‑
ture and land cover, with fuel dryness regarded as the greatest threat [11]. Second, indices
reflecting the risk of fire occurrence and the conditions that could contribute to fire sever‑
ity are incorporated. Triggers for forest fires can be anthropogenic, but they can also occur
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without any human involvement, such as through lightning strikes [12–14]. Both socio‑
environmental and natural factors, such as weather, can be considered. However, from
a community perspective, human activity tends to follow patterns that can be quantified
using specific coefficients. These indices can exhibit different characteristics, depending
on the cultural and climatic conditions of each region. Consequently, each country has
developed its own unique forest fire risk index. While the core elements of these indices
may be similar, the specific coefficients often reflect the characteristics of each nation [15].

Historically, these unique coefficients were based on empirical formulas derived from
numerical analysis and modeling. Representative techniques include the KBDI (Keetch–
Byram Drought Index) [16], the FWI System (Canadian Forest Fire Weather Index Sys‑
tem) [17], the NFDRS [18], and the Nesterov ignition index [19]. In addition to using sim‑
ple indices to calculate the forest fire risk, studies have also been conducted to predict the
number of forest fire occurrences. However, due to the high level of nonlinearity involved,
research on predicting the number of forest fires has been relatively underdeveloped com‑
pared to studies on forest fire risk indices. Recently, studies on predicting the number of
forest fires have been actively conducted. These studies aim to use artificial intelligence
to establish hidden weights for the socio‑environmental factors related to specific regions
and seasons and to predict forest fire occurrence or probabilities through the use of forest
fire risk indices. Ref. [20] predicted forest fire areas using forest fire data from Portugal’s
Montesinho Natural Park and five components from the Fire Weather Index (FWI) System
and weather factors. The optimal performance was achieved using a support vector ma‑
chine (SVM) andweather factors (temperature, rain, relative humidity, andwind velocity).
In 2018, ref. [21] also predicted forest fire areas in the same target area using the random
forest (RF) method, with an RMSE of 8.37 in regard to the prediction performance, while
the XGBoost algorithm exhibited the highest prediction accuracy (72.3%) for the large for‑
est fire classification. Ref. [22] proposed a sparse autoencoder‑based deep neural network
(DNN) method for large forest fire prediction, coupled with a data balancing method to
address the imbalance issues, reporting the lowest RMSE (0.95–19.3) among the ANNs (ar‑
tificial neural networks), namely SVM and RF methods. Ref. [23] utilized fuzzy inductive
reasoning (FIR) to identify the most relevant features for predicting the forest fire area in
Montesinho Natural Park, finding a strong causal relationship between weather factors
and the Fine Fuel Moisture Code (FFMC). In 2019, ref. [24] used forest fire area, dura‑
tion, and weather factors to predict the size of forest fires in Alberta, Canada. As for the
weather factors, a variance inflation factor (VIF) was applied to remove the minimum tem‑
perature, mean temperature, and total precipitation variables and compared the results of
the back‑propagation neural network (BPNN), recurrent neural network (RNN), and long
short‑term memory (LSTM). In the study, the LSTM network showed the highest predic‑
tion accuracy of 90.9%. Ref. [25] developed a prediction model for forest fire frequency,
utilizing a deep belief network (DBN), with an NSE and an RMSE of 0.87 and 0.07, respec‑
tively. The study used averageweather conditions and forest fire frequency for the Korean
Peninsula. In addition to numerical data, such as meteorological factors, research has also
explored the prediction of forest fires using non‑numerical data. Ref. [26] used various
technologies for forest fire prevention that have been introduced to enable effective preven‑
tion and warning measures. Ref. [27] developed the FlameTransNet, which leverages the
Transformer module and CBAM (Convolutional Block Attention Module) for early warn‑
ings and rapid responses to forest fires. FlameTransNet outperformed the UNet model.
Ref. [28] proposed a system that integrates audio and image data for forest fire detection.
This system employed datasets that included audio and image recordings from both fire
and non‑fire scenarios. Ref. [29] introduced a deep learning‑based fire detection system,
utilizing the YOLO‑v8 algorithm and achieving a high accuracy rate of 97.1%. Ref. [30] in‑
vestigated theDr‑TOBID system,which employs drones anddeep learning to detect smoke
and flames across varying altitudes, at all times of day. Finally, ref. [31] presented the MD‑
CNN (modified deep convolutional neural network) method, based on transfer learning
and a feature fusion algorithm, for rapid forest fire detection, which demonstrated a high
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level of accuracy of 95.8% and a recall rate of 95.4%. There are systems in place that utilize
both numerical and non‑numerical data to prevent forest fires. According to [32], Europe
currently operates the European Forest Fire Information System (EFFIS), which utilizes a
combination of meteorological and satellite data. The EFFIS is a system developed to sup‑
port forest fire prevention and responses in Europe, and it predicts forest fire risk based
on the FWI System and European meteorological data and detects large‑scale forest fires
in real‑time through the use of NASA satellite data (MODIS).

The existing studies on forest fire prediction allow us to make several conclusions.
Weather factors have been pivotal in forest fire prediction and have been given great im‑
portance in the literature, with the Canadian Forest Fire Index (FWI) System being widely
utilized. Techniques, such as the data balancing method, have been applied to solve the
data imbalance in forest fire occurrence data. VIF analysis has been employed to address
data imbalances and multicollinearity issues among independent variables. A lot of re‑
search has been conducted on machine learning‑based forest fire prediction, but such re‑
search is mainly related to predicting the areas affected by forest fires [33–40]. Predicting
the areas likely to be affected by forest fires can help minimize the damage they cause.
However, such research is far from being able to prevent forest fires. Therefore, there is a
need to provide local government forest fire managers with intuitive information on the
likely frequency of forest fires in the future. This will allow them to take early preventative
measures to protect forest resources from forest fires.

3. Methodology
3.1. The Study Flowchart

Thedevelopment procedure for the forest fire predictionmodel proposed in this study
is shown in Figure 1, and the model was developed in three steps. The model developed
in this study is a model that predicts the occurrence of forest fires and non‑forest fires
on a daily basis, and then adds up the prediction results to predict the number of forest
fires per month. First, during the data collection and processing stage, the processing of
the collected hourly data into daily data takes place, the proxy variables are calculated us‑
ing meteorological factors, and the data processing using box plots is performed. Second,
during the selection of independent variables stage, variable selection techniques are ap‑
plied to select the variables, multicollinearity among the selected variables is checked, and
the SMOTE algorithm is applied to prepare the training data. Finally, during the multi‑
model ensemble method development stage, the input data preprocessing process and the
machine learning model development process are performed. The concept of the multi‑
model ensemble method is shown in Figure 2. Five models were selected, based on the
preliminary validation results on their predictive performance. During this process, differ‑
ent models, such as the Naive Bayes and CatBoost algorithms, were rigorously evaluated
for their consistency and accuracy. The models that demonstrated reliable and robust per‑
formance were included in the final model selection. After training five different models,
the prediction results from each model are compared. If four or more of the five models
predict a forest fire, it is finally determined that a forest fire has occurred. To reflect the
seasons, a ‘Season’ column is added, which is divided into spring, from March to May,
summer, from June to August, fall, from September to November, and winter, from De‑
cember to February, and one‑hot encoding is applied, as shown in Figure 3.
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3.2. Extreme Gradient Boosting (XGB)
The Extreme Gradient Boosting (XGB) algorithm, proposed by [41] in 2016, is a no‑

table advancement in machine learning, particularly for regression and classification prob‑
lems. For a theoretical understanding and mathematical formulation of XGB, the works
of [41–43] are valuable. The algorithm employs K‑additive functions to predict outcomes
for n training instances, eachwithm features. This approach, encapsulated in Equation (1),



Forests 2024, 15, 1981 6 of 26

leverages the power of ensemble learning, by combining multiple models to significantly
improve the predictive performance of the model.

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (1)

whereF is the function space towhich fk belongs, which is defined asF =
{

f (x) = ωq(x)

}
(
q : Rm → T, ω ∈ RT); q(x) is a tree structure of which the decision rule maps the input
data x to the corresponding leaf index; ωq(x) is the weight of the leaf mapped according
to which the input data x are mapped using decision rule x, with the decision rule q(x)
mapped to the weights of the leaves using decision rule q(x); T is the number of leaves on
the tree, fk is the k‑th classification and regression tree (CART)model, with a tree structure;
ŷi is the predicted value of the i‑th sample; K is the total number of trees; and xi is the i‑th
input data. The objective function of XGB is constructed as shown in Equation (2).

L(ϕ) =
n
∑

i=1
l(yi, ŷi) +

K
∑

k=1
Ω( fk)

where, Ω( f ) = γT + 1
2 λ∑T

j=1 ωj
2

(2)

where l is a differentiable convex loss function that calculates the difference between yi and
ŷi; γ is the complexity of each leaf; λ is the parameter that adjusts the size of the penalty;
ωj is the weight of the j‑th leaf; and Ω is a normalization term that smooths out the final
learned weights to avoid overfitting.

XGBoost offers a variety of hyperparameters that can be adjusted, such as n_estimators,
which controls the number of trees (K) to be generated; learning_rate, which controls how
much the model’s weights are reduced at each learning step; max_depth, which deter‑
mines the maximum depth of the trees; and gamma, which regulates the minimum γ in
terms of the splits. In this study, hyperparameter tuning was conducted to avoid overfit‑
ting and to develop an optimal model.

3.3. Random Forest (RF)
Random forest (RF) is a method used to create and train multiple decision tree mod‑

els, which then combines the predictions from each tree to produce a single, more accurate
prediction [44]. RF applies bootstrap sampling to the training data, to train a decision tree
model based on randomized samples. Generating a single prediction result has the ad‑
vantage of preventing overfitting by reducing the dependence between the trees, because
the average value of the predictions of each tree is used for the regression problem and
the most selected class through majority voting is used for the classification problem [45].
In addition, RF offers high prediction accuracy and tolerance to outliers and noise, which
results in good forest fire prediction performance [46]. When the input data are x, an RF
model’s training and prediction process can be described as detailed below.

Bootstrap samples of size S are extracted from the training data of size N for B trees,
and algorithms (i) through to (iii) below are repeated using the sample data to develop
the random forest tree nmin (b = 1, …, B), until the minimum terminal node size nmin
is obtained.

(i) Randomly select p variables from a total of M variables;
(ii) Select the optimal variable/division point among the p variables;
(iii) Split the node into two child nodes.

The above process results in an ensemble tree {Tb}b=B
b=1 . As for the classification prob‑

lem, if the class prediction result of the b‑th tree is Ĉb(x), (x) is obtained as a result of the
majority voting in terms of the B trees

{
Ĉb(x)

}B
1 [47].
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3.4. Logistic Regression (LR)
Logistic Regression (LR) is a statistical method for modeling the probability of a bi‑

nary outcome, based on one ormore predictor variables. It is similar to a general regression
model in that a linear combination of independent variables explains the dependent vari‑
able. It differs from linear regression by predicting a probability that ranges between 0 and
1, thusmaking it suitable for binary classification tasks. In addition, in a general regression
model, the dependent variable ranges from negative infinity to positive infinity, whereas
in an LRmodel, the dependent variable is expressed as an S‑shaped function, with a range
from 0 to 1 [48].

In this study, the first‑level forest fire occurrence forecast results fall within a binary
classification, with two classes: forest fire and non‑forest fire. In the LR model, for the
binary classification (y= 1, 0), if Pi represents the probability of y= 1 for the i‑th sample, Pi
is calculated as shown in Equation (4).

logit(Pi) = log
Pi

1 − Pi
= zi (3)

Pi =
1

1 + exp(−zi)
(4)

where, zi = β0 +
k

∑
j=1

β jxij

where logit(Pi) is the logit transformation; exp is a natural constant; k is the number of
independent variables; β0 is bias; β j is the regression coefficient of the j‑th independent
variable; and xij is the j‑th independent variable in the i‑th sample.

3.5. The k‑Nearest Neighbor (k‑NN)
The k‑NN technique is one of the most popular supervised learning‑based machine

learning techniques for classification problems [49] and has been applied in various forest
fire research fields [49–52]. Given an input x, a k‑NNfinds the k‑closest data points to form
a neighborhood with x and classifies x through majority voting [53]. The k‑NN can find
the best model by adjusting the hyperparameters, such as k, and the distance calculation
method, which is used to find the nearest neighbors to x. The k‑NN technique can be
tuned to find the best model. The classification process of the k‑NN technique is shown in
Figure 4.
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3.6. Support Vector Machine (SVM)
Support vector machine (SVM) is a statistical machine learning method proposed

by [54]. Fundamentally, SVM is designed for binary classification tasks, aiming to iden‑
tify an optimal hyperplane in the feature space that maximizes the margin between the
two classes, while allowing for a certain amount of learning error. In this case, the opti‑
mal hyperplane is defined by some of the data points in the training data, called support
vectors [54]. The theoretical understanding and mathematical formulations of a SVM are
elaborated in works such as [55–58]. If the training data were represented by N samples,
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n characteristics, and two classes labeled as −1 and 1, respectively, the calculation would
be as follows:

{(x1, y1), ...(xi, yi), ..., (xN , yN)} where, xi =

xi1
...

xin

, yi ∈ {−1, 1}

When the classes are linearly separable, the optimal hypersurface that separates the
two classes can be shown as Equation (5).

wT
0 ·x+ b0 = 0 (5)

The optimal hyperplane has the maximum margin, and wT
0 and b0 are estimated, so

that the data points closest to the hyperplane satisfy the two constraints in Equation (10).
The data points used become the support vectors. Equation (6) can be expressed as a single
expression, as shown in Equation (7).{

wT ·xi + b ≥ 1, i f yi = 1
wT ·xi + b ≤ −1, i f yi = −1

(6)

yi

(
wT·xi + b

)
− 1 ≥ 0, i = 1, . . . ,N (7)

In this case, the margin is the distance between the two boundaries in Equation (6),
expressed as 2

∥w∥ . This means that the maximum margin is the distance at which 2
∥w∥ is

maximized, which can again be expressed as Equation (8).

min
1
2
∥w∥2 (8)

In this study, hyperparameter tuningwas performed using a grid search, by adjusting
certain parameters, such as C, which controls the regularization strength, and kernel func‑
tions, such as the Radial Basis Function (RBF), Gaussian kernel, and polynomial kernel,
along with γ, which regulates the width of the kernel functions. The optimal combination
of parameters was selected to develop the SVM model with the best performance.

3.7. Performance Evaluation Metrics
The forest fire prediction model proposed in this study predicts the number of for‑

est fires per month by predicting the occurrence of forest fires and non‑forest fires on a
daily basis and then adding up the prediction results for each month. Therefore, stan‑
dard evaluation metrics commonly utilized in classification problems were employed to
assess the model’s performance in regard to predicting the daily occurrence of forest fires.
Specifically, the accuracy and F1‑score were utilized as evaluation metrics, represented by
Equations (9) and (10).

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

F1 − score = 2 ∗ 1
1

Precision + 1
Recall

(10)

Here, TP, TN, FP, and FN denote True Positive, True Negative, False Positive, and
False Negative, respectively. The accuracy measures the proportion of correctly predicted
outcomes among all the observations, offering an overall assessment of the predictive per‑
formance of the model. On the other hand, the F1‑score, derived from the harmonic mean
of the precision and recall [59], provides a balanced evaluation metric suitable for imbal‑
anced data.
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4. Data Preprocessing
4.1. Target Area

Figure 5 shows the target area of this study. We selected Gangneung, Samcheok,
Chuncheon, and Hongcheon, all of which are located in Gangwon province, South Ko‑
rea. Gangwon‑do encompasses 21% of Korea’s total forested area, with forests covering
a vast 81% of the province. Consequently, it has endured forest fire damage in more re‑
gions than any of the other 16 provinces in Korea [60,61]. The Taebaek Mountain Range
runs throughGangwon province, dividing the region into Yeongseo to thewest and Yeong‑
dong to the east. The term “Yeongseo” refers to the western (西, seo) side of the range (嶺,
Yeong) and “Yeongdong” refers to the eastern (東, dong) side. As the entire province of
Gangwon is located within the Taebaek Mountain Range, this geographic feature serves
as a standard reference in regard to the climate classification. The climate of the Yeongseo
region, which includes areas, such as Hongcheon and Chuncheon, is classified as a humid
continental climate with drywinters (Dwa), according to the Köppen climate classification.
Chuncheon falls within the Dwa category, while Hongcheon is categorized as both Dwa
and Dwb. In contrast, the Yeongdong region, which includes Gangneung and Samcheok,
features amix of climates, including someCfbzones. The coastal areas are classified as Cfa,
while the mountainous regions fall within Dfb. Gangneung also contains small pockets of
Dfa, while both Gangneung and Samcheok follow the general pattern of Cfa for coastal
areas and Dfb for mountainous regions [62]. The forest composition in Gangwon province
is also distinguished by the division between the Yeongseo and Yeongdong regions. In the
Yeongdong region, coniferous forests are primarily distributed along the eastern coastal
areas, extending inland toward the forested areas near Gangneung. Samcheok, on the
other hand, is dominated by extensive broadleaf forests in the western mountainous areas.
In the western part of the province, the forests of Chuncheon are predominantly small
broadleaf forests, while Hongcheon is characterized by a predominance of mixed forests
(Figure 6) [60].
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Figure 6. The forest composition [60] in Chuncheon, Gangneung, Hongcheon, and Samcheok is pre‑
sented, starting from the second quadrant and proceeding clockwise. Dark green represents conifer‑
ous forests, light green indicates mixed forests, and yellow represents deciduous forests.

In this study, to account for the distinct characteristics of the Yeongseo andYeongdong
regionsmentioned above, two areaswith a high frequency of forest fireswere selected from
each region. To analyze the occurrence of forest fires in the target area and the surrounding
areas, we collected forest fire occurrence data from 1991 to 2022, provided by the Korea
Forest Service. As can be seen in Figure 5, the analysis shows that all of the target regions
had a high number of forest fires compared to neighboring regions. Figure 7 shows the
number of forest fires in the target area by year, from 1991 to 2022.
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Table 1 presents the data utilized in this study. The collected data consist of hourly
observations, whichwere processed into daily data through the data processing procedure
illustrated in Figure 8. During this process, the daily maximum, minimum, and average
values were calculated for each variable, along with the derivation in terms of the proxy
variables. Additionally, moving averages (3‑day, 7‑day moving averages) were applied to
account for the influence of past meteorological conditions on the present values.

Table 1. Description of the data utilized in the study.

Data Name Source Unit Period
(Year) Abbreviation

Forest fire data Forest fire occurrence Korea Forest
Service (KFS) ‑

1991~2022

‑

Meteorological
data

Wind speed
Korea

Meteorological
Administration

(KMA)

m/s WS

Temperature ◦C TA

Relative humidity % HM

Dew point temperature ◦C TD

Precipitation mm PCP

Proxy variables
Fine fuel moisture code

‑
‑ FFMC

Effective humidity % EFHM

No precipitation days day N_PCP_days
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meteorological factors on the day, but also the influence of past meteorological factors, the variables
were calculated by applying a moving average.

4.2. Proxy Variables
In this study, three proxy variables based on the meteorological factors were calcu‑

lated. First, the effective humidity (He) represents dryness by allocating a weight to the
relative humidity from several days before the event, according to the elapsed time. Sim‑
ilar to relative humidity, it ranges from 0 to 100 and is calculated by allocating a weight
to the relative humidity from four days before the event, according to the elapsed time, as
shown in Equation (11), where r is the coefficient. In this study, 0.7, which is the current
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coefficient used by the Korea Meteorological Administration (KMA), was utilized [63–65].
Ht

0d is the average humidity on the day and Ht
xd is the relative humidity x days ago.

He = (1 − r)×
[

Ht
0d + rHt

1d + r2Ht
2d + r3Ht

3d + r4Ht
4d
]

(11)

Second, the FFMC is one of the main factors in the FWI System, a meteorological
index used by the Canadian Forest Fire Danger Rating System (CFFDRS), proposed by [66],
which indexes themoisture content of fine fuel on the forest floor using fourmeteorological
factors: air temperature, relative humidity, wind velocity, and daily precipitation [4]. The
FFMC ranges from 0 to 99, with a higher number indicating a lower moisture content and
a higher forest fire risk.

Finally, the no precipitation days factor represents the number of consecutive days
without rain. In this case, if the precipitation was 0.5 mm or less, it was considered as
a no precipitation day. A higher number of days without rain lowers the leaf moisture
content, fueling forest fires and prolonging dryness in the atmosphere, creating favorable
conditions for forest fires. Therefore, we utilized this variable in our study.

4.3. Data Processing by Comparing the Distribution of Forest Fires
Box plots allow a visual comparison of the distribution of data between forest fire and

non‑forest fire days, and they also identify outliers that fall outside this boundary. Identi‑
fying and handling outliers is a crucial step in the data preprocessing stage, as outliers can
significantly influence the results of the analysis and can lead to inaccurate conclusions [67].
The boundaries established in this study are defined below. Where Q1 is the first quartile,
Q3 is the third quartile, IQR is the interquartile range, which is the difference between the
third and first quartiles, Fin is the inner boundary, and Fout is the outer boundary.

IQR = Q3 − Q1 (12)

Fin = Q1 − 1.5 ∗ IQR (13)

Fout = Q3 + 1.5 ∗ IQR (14)

The distribution of the data between forest fire and non‑forest fire days for the key
variables was visualized as a box plot, and the results are shown in Figure 9. The red dots
in each plot identify the outliers that fell outside the established boundaries. In Table 2, a
class imbalance problem is apparent. In order to develop a machine learning model with
good performance in the presence of a class imbalance problem, it was necessary to make
the proportion of the two classes similar, as well as to create a clear difference between the
data distribution in terms of the forest fire and non‑forest fire days. In addition, extreme
meteorological conditions (a high FFMC, low effective humidity, high wind speed, etc.)
that are prone to causing forest fires had to be preserved. Therefore, in this study, the data
processing was conducted considering the aforementioned points. First, the quantiles and
fences were used to handle the outliers and tomake clear the differences in the distribution
of the data between the forest fire and non‑forest fire days. In addition, the data points that
fell outside the boundaries, but corresponded to extreme meteorological conditions, were
identified and preserved as extreme values rather than outliers. Figure 10 shows the before
and after data processing results for Gangneung, one of the target areas, as an example. It
can be seen that a clear difference exists in regard to the distribution of the data between
the forest fire and non‑forest fire days. Table 2 presents the results of the data processing
by target area, and it can be seen that the data from the forest fire days are preserved as
much as possible and the data from the non‑forest fire days are removed.
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Table 2. The results of the data processing by target area. It can be seen that we have deleted Non‑
Forest Fire, while preserving Forest Fire, as much as possible. However, as Table 2 shows, there is
still a class imbalance problem.

Region Type Forest Fire Non‑Forest Fire Total

Gangneung Before processing 179 11,509 11,688
After processing 163 6686 6849

Samcheok
Before processing 114 11,574 11,688
After processing 99 6641 6740

Chuncheon
Before processing 203 11,485 11,688
After processing 186 5970 6156

Hongcheon Before processing 200 11,488 11,688
After processing 171 6431 6602

4.4. Selection of the Independent Variables Through Variable Selection
During model training, the inclusion of variables irrelevant to or sharing overlap‑

ping features with dependent variables can compromise the model’s performance. Conse‑
quently, eliminating irrelevant features can enhance the model’s accuracy and reduce the
model training time by reducing the data dimensions [68]. In this study, the variables were
selected in two stages. In the first step, the forward selection method was applied to select
the variables that were highly correlated with the dependent variable from the total vari‑
ables. In the second step, the selected variables were grouped together with the variables
that had the same characteristics to create variable groups. Then, the correlation coefficient
was calculated for each variable group. Finally, only one variable with the highest correla‑
tion coefficient was selected from each variable group. Figure 11 shows the variables for
Gangneung that were selected for each variable group, by applying the forward selection
method and correlation analysis.
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Figure 11. The process of selecting the variables using forward selection and correlation analysis
(Gangneung). In Step 1, the variables are selected by applying the forward selection method. In
Step 2, we created groups of variables with the same characteristics and analyzed the correlation
between each group of variables and the dependent variable. After that, the most highly correlated
variable was selected, one by one, from each group.
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4.5. Multicollinearity Analysis
Multicollinearity is characterized by a strong correlation between the independent

variables, which can affect a model’s prediction accuracy [69]. Hence, it is necessary to
identify whether multicollinearity exists between the independent variables. This study
utilized the variance inflation factor (VIF) to prevent multicollinearity from undermining
the model’s predictive accuracy. Equation (15) represents the VIF equation, where R2

i is
the regression coefficient obtained by excluding the i‑th variable. Generally, the variable
must be removed when the VIF exceeds 10 [24]. Therefore, this study uses VIF analysis to
eliminate variables with VIFs > 10, in order to address the multicollinearity problem.

VIFi =
1

1 − R2
i

(15)

Figure 12 shows the VIF values of the selected variables by target area. In all the target
areas, theVIFs of the dewpoint temperature and air temperaturewere greater than 10, with
the dew point temperature having the highest VIF. Therefore, the dew point temperature
was removed from all the target areas. The VIF analysis was then reapplied and all the
variables had a VIF of 10 or less. Finally, the selected variables for each target area are
shown in Table 3.
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Table 3. Final variables selected using the variable selection method and multicollinearity analysis
for each target area. Where, 3 daysmeans a 3‑daymoving average, andmax andminmeanmaximum
and minimum, respectively.

Region Relative
Humidity FFMC Effective

Humidity Temperature Wind Speed
No

Precipitation
Days

Gangneung
MA 3 days 3 days today 3 days 3 days today

Type max ‑ ‑ min min

Samcheok
MA 3 days today today 7 days 7 days today

Type max ‑ ‑ min min ‑

Chuncheon
MA 3 days 3 days today 3 days 7 days today

Type min ‑ ‑ min max ‑

Hongcheon
MA 3 days 3 days today today 7 days today

Type max ‑ ‑ min max ‑

4.6. Synthetic Minority Oversampling Technique (SMOTE)
As shown in Table 2, all the target areas have class imbalance problems. Imbalanced

data can adversely affect the prediction accuracy of machine learning models [59]. Im‑
balanced data can introduce bias into the model outcomes, due to the machine learning
algorithm’s predisposition to favor the majority class. This occurs because the algorithm
typically learns to prioritize themost frequent class, neglecting the underrepresented class,
which leads to poor predictive performance in terms of the less frequent categories. Ad‑
ditionally, imbalanced data can negatively impact the generalization ability of machine
learningmodels. The limited representation of theminority class increases the risk of over‑
fitting, as the model may memorize specific examples from the minority class rather than
learning generalizable patterns, resulting in suboptimal predictions based on new data.
One approach to address this issue is through sampling methods. There are two main
sampling techniques, undersampling, where the data from the majority class are dropped
to make the minority class more representative, and oversampling, where the data from
the minority class are increased to make the majority class more representative. In the pre‑
vious step, we removed the data from the non‑forest fire days, while preserving the data on
the forest fire days, as much as possible. This resulted in a clear difference in the distribu‑
tion of the data according to the forest fire and non‑forest fire days, but a class imbalance
problem still existed. We needed a technique that could generate data that belonged to
the distribution of forest fire data, rather than data that were randomly generated. There‑
fore, among the oversampling techniques that could satisfy the requirements of this study,
we used the SMOTE, which has been used in several forest fire prediction studies [70–72].
SMOTE operates on the principle of the k‑nearest neighbor (k‑NN) algorithm. It identi‑
fies K‑nearest neighbors based on data from the minority class and computes their differ‑
ences on a straight line. These differences are then randomlymultiplied by values between
0 and 1 to generate new data [73]. In this study, we generated the data so that the ratio of
forest fire days and non‑forest fire days was 1:2. Figure 13 shows the results of the SMOTE
application, and a comparison of the results before and after the SMOTE application by
target area is shown in Table 4.
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Figure 13. The results of applying the synthetic minority oversampling technique (SMOTE) are
shown in these 3D scatter plots on the variables influencing forest fire occurrence, where the blue
points represent non‑forest fire conditions and the red points represent forest fire conditions. The
SMOTE was applied to increase the number of red points (forest fire occurrences) and address the
class imbalance.

Table 4. The results of oversampling using SMOTE by target area.

Region Type Forest Fire Non‑Forest Fire Total

Gangneung Before 163 6686 6849
After 3343 6686 10,029

Samcheok
Before 99 6641 6740
After 3320 6641 9961

Chuncheon
Before 186 5970 6156
After 2985 5970 8955

Hongcheon Before 171 6431 6602
After 3215 6431 9646

5. Application and Results
5.1. The Prediction Results from a Single Model

The multi‑model ensemble‑based forest fire prediction model proposed in this study
comprised the five models mentioned above. Preceding the ensemble method’s applica‑
tion, each model’s prediction performance was assessed. All the models were trained us‑
ing the data from 1991 to 2015 for training and the data from 2016 to 2022 for verification.
Given the diverse units and ranges of the input data used for training, MinMax scaling
was employed to standardize the data range. The formula for MinMax scaling is shown
in Equation (16), where x is the input data, xmin is the minimum value, and xmax is the
maximum value.

x − xmin
xmax − xmin

(16)

Figure 14 shows the forest fire prediction results from a single model and Table 5
shows the results of applying the evaluation metrics for each model. SVM and LR showed
lowprediction performance, because they predicted forest fire occurrence excessively com‑
pared to the other models in regard to all the target areas. The best performing models
were XGB in regard to Yeongdong (Gangneung, Samcheok) and RF in regard to Yeongseo
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(Chuncheon, Hongcheon), according to a comparison of the F1‑score of the single models.
A confusion matrix of the single models is summarized in Figure A1, in Appendix A. The
FP was present in all the models. The FP of the best performing single model in regard to
each target areawas analyzed and the results are shown as a scatter plot in Figure 15. It can
be seen that the FPs are located on the border of the TP and TN, and the data distribution
of the FPs is closer to the data distribution of the TP than the TN. While FPs may indicate
potential forest fire events if triggered by external factors (e.g., human activity), excessive
FPs can diminish the model’s reliability. Hence, there is a need to develop a model that
accurately reflects actual forest fire occurrence data, while minimizing FPs to enhance the
model’s prediction performance and reliability.
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Table 5. The evaluation results for each model.

Region Type Evaluation XGB SVM RF LR k‑NN Ensemble

Gangneung
Training

F1‑score 0.82 0.66 0.91 0.50 0.79 0.89

Accuracy 0.99 0.97 0.99 0.95 0.98 0.99

Validation
F1‑score 0.73 0.61 0.72 0.54 0.64 0.78

Accuracy 0.98 0.96 0.98 0.95 0.97 0.98

Samcheok

Training
F1‑score 0.92 0.75 0.90 0.64 0.86 0.95

Accuracy 0.99 0.99 0.99 0.98 0.99 0.99

Validation
F1‑score 0.72 0.56 0.69 0.45 0.67 0.78

Accuracy 0.99 0.97 0.99 0.97 0.98 0.99

Chuncheon

Training
F1‑score 0.88 0.71 0.93 0.55 0.81 0.93

Accuracy 0.99 0.98 0.99 0.96 0.98 0.99

Validation
F1‑score 0.90 0.81 0.90 0.74 0.82 0.93

Accuracy 0.99 0.97 0.98 0.96 0.97 0.99

Hongcheon
Training

F1‑score 0.88 0.75 0.93 0.62 0.83 0.93

Accuracy 0.99 0.98 0.99 0.97 0.99 0.99

Validation
F1‑score 0.86 0.71 0.89 0.72 0.74 0.93

Accuracy 0.98 0.97 0.99 0.97 0.97 0.99
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the best single model. The F1-scores for Samcheok, Chuncheon, and Hongcheon also out-
performed the best single model by 8.3%, 3.3%, and 4.5%, respectively. Figure A1, in Ap-
pendix A, shows that the FPs also decreased in regard to each target area, decreasing by 
six, three, four, and five, respectively. The abovementioned results are summarized in Ta-
ble 5. 

 
(a) Gangneung 

Figure 15. Three‑dimensional and two‑dimensional visualization of FP, TP, andTN, of the single best
predictive model by the target area using FFMC, EFHM, and N_PCP_DAYS. Data points judged to
be FPs were identified at the boundaries of the TP and the TN in all the target areas.

5.2. The Prediction Results from the Multi‑Model Ensemble (MME) Method
The forest fire predictionmodel developed in this study employs the ensemblemethod

to address the aforementioned limitations of single model predictions. If at least four of
the five models predict a forest fire occurrence for given input data, the ensemble model
predicts a forest fire event. The training period spanned 1991–2015, consistent with the
single model training period, while the verification period extended from 2016 to 2022.
F1‑score and accuracy metrics were utilized to assess the ensemble model’s prediction per‑
formance. Figure 16 shows the forecasting results from the MMEmodel for the validation
period, and the confusionmatrix is shown in Figure A1, in Appendix A.We found that the
MME model had better prediction results in regard to all the target areas. In Gangneung,
the F1‑score of the MME model was 0.78, which is about 6.8% higher than the best single
model. The F1‑scores for Samcheok, Chuncheon, and Hongcheon also outperformed the
best single model by 8.3%, 3.3%, and 4.5%, respectively. Figure A1, in Appendix A, shows
that the FPs also decreased in regard to each target area, decreasing by six, three, four, and
five, respectively. The abovementioned results are summarized in Table 5.
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6. Discussion
Forest fires in South Korea are predominantly caused by human activities, rather than

natural factors like lightning. Over the past decade, 65% of forest fires occurred during the
spring season. This suggests that forest fires are significantly influenced by meteorolog‑
ical conditions, in addition to anthropogenic factors. Therefore, developing a forest fire
prediction model based on meteorological factors is crucial for effective prevention and
early detection of forest fires. As some previous studies [20,23,32] have utilized the indices
in the FWI System, this study utilized the FFMC, one of the indices in the FWI System, as
an input variable for the machine learning model. It was determined that if the forest fire
risk index was considered to be an important input variable in the forest fire prediction
model, good prediction performance could be achieved. Most existing research on for‑
est fire prediction models has focused on comparing the performance of various machine
learning models to identify the best‑performing model [21,22,24,74–76]. In contrast, this
study applied ensemble techniques to combine the prediction results of multiple models,
achieving superior prediction performance compared to using a single model.

Compared to similar studies in SouthKorea, ref. [25] conducted a deep learning‑based
forest fire prediction study for the spring season across the entire country, while this study
advances the field by enabling more detailed predictions according to the season and ge‑
ographical area. Similar to this study, ref. [74] applied machine learning, meteorological
factors, and sampling techniques to predict forest fires; however, they divided Gangwon‑
do into nine zones instead of usingmunicipal units, achieving an accuracy of 76.1%. In [76],
machine learning, meteorological factors, and sampling techniqueswere also employed, as
in this study, but forest fire prediction was conducted for the entire Gangwon‑do province,
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resulting in an accuracy of approximately 94%. The spatial scale of the target area in this
studywas set to themunicipal unit, which likely contributed to the good level of prediction
performance achieved.

In Table 5, the accuracy values are observed to be close to 1. This is because accuracy,
as defined in Equation (9), is calculated by adding up the number of days with and with‑
out forest fire occurrences. To account for the class imbalance inherent in forest fire data,
we also utilized the F1‑score, which is a more appropriate metric for evaluating model
performance in such unbalanced scenarios.

7. Conclusions
In this study, we developed a model to predict the number of forest fires by applying

the MME technique to meteorological factors, which are the key variables affecting forest
fires. To validate the model, we applied it to four regions in Gangwon‑do, Korea, an area
that has experienced large‑scale forest fires. The main conclusions drawn from this study
are as follows:
(1) When comparing the prediction results of a single model and the MME model using

the F1‑score, the MMEmodel produced the best prediction results (Gangneung 6.8%,
Samcheok 8.3%, Chuncheon 3.3%, andHongcheon 4.5%). Additionally, the false pos‑
itive (FP) rate decreased in all four target areas;

(2) Since the MME model developed in this study predicts the number of forest fires
based onmeteorological factors, combining it withmeteorological forecast data could
enable region‑specific forest fire predictions, allowing for proactive measures to be
implemented that would contribute to the preservation of forest resources and
ecosystems;

(3) By providing predictions on the number of forest fires, intuitive information on how
many fires are likely to occur can be delivered. This information can assist local forest
fire managers during decision‑making, when planning forest fire prevention strate‑
gies. Furthermore, if climate change scenario data are applied, it is possible to predict
the number of future forest fires due to climate change and establishmid‑ to long‑term
forest fire prevention measures at the local level.
However, the forest fire predictionmodel developed in this study has limitations. For‑

est fires are also influenced by human and social factors, such as the tree species, tourism
activity, and topographical features, but this study only accounted for meteorological fac‑
tors. Future research should aim to improve the model by incorporating human and social
factors. Additionally, the same meteorological variables were applied across all four sea‑
sons in this study. As the number of forest fires varies by season and the meteorological
factors influencing forest fires may differ, future studies need to develop seasonal forest
fire prediction models, by selecting the relevant meteorological factors for each season.
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