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Abstract: Ecological sluices were constructed along the Tarim River to supplement the ecosystem’s
water supply. However, the impact of water regulation by these sluices on the surface water area
(SWA) and its relationship with the vegetation response remain unclear. To increase the efficiency of
ecological water use, it is crucial to study the response of SWA to water control by the ecological gates
and its relationship with vegetation restoration. We utilized the Google Earth Engine (GEE) cloud
platform, which integrates Landsat-5/7/8 satellite imagery and employs methods such as automated
waterbody extraction via mixed index rule sets, field investigation data, Sen + MK trend analysis,
mutation analysis, and correlation analysis. Through these techniques, the spatiotemporal variations
in SWA in the middle reaches of the Tarim River (MROTR) from 1990–2022 were analyzed, along
with the relationships between these variations and vegetation restoration. From 1990–2022, the SWA
in the MROTR showed an increasing trend, with an average annual growth rate of 12.47 km2 per year.
After the implementation of ecological gates water regulations, the SWA significantly increased, with
an average annual growth rate of 28.8 km2 per year, while the ineffective overflow within 8 km of the
riverbank notably decreased. The NDVI in the MROTR exhibited an upward trend, with a significant
increase in vegetation on the northern bank after ecological sluice water regulation. This intervention
also mitigated the downward trend of the medium and high vegetation coverage types. The SWA
showed a highly significant negative correlation with low-coverage vegetation within a 5-km range of
the river channel in the same year and a significant positive correlation with high-coverage vegetation
within a 15-km range. The lag effect of SWA influenced the growth of medium- and high-coverage
vegetation. These findings demonstrated that the large increase in SWA induced by ecological gate
water regulation positively impacted vegetation restoration. This study provides a scientific basis for
water resource regulation and vegetation restoration in arid regions globally.

Keywords: ecological sluice regulation; surface water area; vegetation restoration; Google Earth
Engine (GEE); Tarim River; arid region water management

1. Introduction

Water resources are the most critical ecological factor in arid and semi-arid regions
and affect plant community growth and succession [1]. In these areas, surface water and
groundwater from river systems serve as the primary water sources for natural vegeta-
tion [2]. Surface water bodies, including natural lakes, ponds, rivers, and artificial reservoirs
and channels, are especially vital in arid inland areas, where they play a crucial role in
maintaining terrestrial ecosystem stability and supporting sustainable socioeconomic de-
velopment [3]. However, climate change and human activities have disrupted the original
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distribution of surface water [4], leading to an ecological imbalance in water supply and
demand, as well as the degradation of desert riparian vegetation in certain regions [5]. Con-
sequently, the rational management of water resources using riparian ecological hydraulic
projects has attracted considerable focus from scientific communities both domestically
and internationally.

As remote sensing technology and geographic information systems (GIS) have rapidly
progressed, optical remote sensing data have become a major information source for
monitoring large-scale surface water dynamics due to their ease of access, ease of processing,
and high accuracy in waterbody extraction [6]. For instance, the threshold method examines
the spectral properties of aquatic bodies and selects suitable thresholds to effectively
distinguish them [7]. The water index method, in contrast, utilizes the differences in
reflectance between the blue–green and infrared bands to generate characteristic indices that
amplify information about water bodies, thus facilitating water extraction. The Normalized
Difference Water Index (NDWI), which utilizes green and near-infrared bands from Landsat
data to enhance water features, was initially proposed by S.K. McFeeters [8]. Subsequently,
H Xu subsequently improved this index by proposing the Modified Normalized Difference
Water Index (MNDWI), which significantly increases water extraction accuracy in urban
areas [9]. Furthermore, Zou et al. developed a rule set for automated water extraction by
integrating the MNDWI, NDVI, and EVI [10]. This rule set does not require a threshold
for the MNDWI and has proven to be more effective in extracting wetland water bodies.
It has been widely applied on a global and intercontinental scale [11]. In recent years, the
powerful interaction and computational capabilities of GEE have overcome the limitations
of traditional remote sensing techniques in handling long time series and large-scale spatial
data, which makes GEE an efficient tool in waterbody research [12,13]. It has become an
efficient tool in the field of waterbody research [14,15]. For example, Pekel et al. used
the GEE platform to produce global surface water change remote sensing products on
annual and monthly scales from 1984 to 2020. They provided 30-m spatial resolution
global dynamic waterbody information that covers the temporal and spatial distribution,
change intensity, transformation, regeneration cycles, and characteristics of seasonal and
permanent water bodies [16]. Zou et al. processed 370,000 images of data from the GEE
cloud platform to extract data on open water areas within the United States and analyze its
changing trends and causes [17].

To restore the riparian forest ecosystems of the Tarim River Basin, the Chinese govern-
ment invested 10.7 billion yuan in comprehensive management and conservation efforts
in 2000 [18]. Several key ecological measures involved increasing water flow in the down-
stream river sections, constructing ecological water diversion dams in the flood-prone
middle reaches, and distributing ecological gates along the dams. Ecological water diver-
sion plays a crucial role in restoring degraded ecosystems in arid and semi-arid regions.
It supplies essential water replenishment to damaged ecosystems through the strategic
introduction of water sources [19,20]. The widespread distribution of ecological gates
is critical for achieving ecological regulation and precise regional division in the Tarim
River Basin [21]. However, uncertainties and inconsistencies exist in the scale and spatial
distribution of water diversion [22], posing challenges to the scientific assessment and
policy formulation of ecological water diversion projects. The remote sensing satellite
monitoring of hydrological changes and use of vegetation indices to identify changes in
vegetation density and greenness have been widely applied [23–25]. By analyzing the
impact of surface hydrology on vegetation, an in-depth study of the effects of ecological
sluice water transfers on vegetation can be used to comprehensively assess the ecological
benefits of ecological water transfer projects in the Tarim River Basin [26].

Previous studies have determined the degree of ecological restoration and the compre-
hensive benefits of ecological water diversion based on factors such as the physiological
growth of P. euphratica, vegetation remote sensing, and groundwater monitoring [19,27].
However, research on the distribution patterns of surface water bodies and the relationship
between the vegetation response and gate-controlled water regulation remains limited.



Forests 2024, 15, 2005 3 of 26

Therefore, this study selected the middle reaches of the Tarim River (from Yingbazha
to Qiala) as the research area. Using GEE cloud platform technology and integrating
Landsat-5/7/8 satellite imagery, this study comprehensively utilized a mixed index rule
set for automatic waterbody extraction combined with field investigation data to reveal
the spatiotemporal dynamics of SWA and vegetation response characteristics over the past
33 years. This study quantitatively analyzed the spatiotemporal characteristics of surface
water bodies and vegetation recovery responses before and after ecological gate control.
The research findings address the knowledge gap concerning the effects of environmen-
tal water resource redistribution on vegetation dynamics and surface water availability
through floodgate regulation. This study provides scientific evidence for the essential
role of global water resource management in maintaining ecosystem health, especially in
arid regions.

2. Materials and Methods
2.1. Study Location

The Tarim River is located along the northern edge of the Taklamakan Desert within
the Tarim Basin and is the longest inland river in China, with a total length of 2137 km [20].
This study focuses on the middle reaches of the Tarim River that covers the section from
Yingbazha to Qiala and spans a total length of 398 km. Protective embankments are
present on both sides of the river, with widths ranging from 1 to 3 km (Figure 1). In 2000,
the government constructed water diversion dams and ecological gates along the main
channel, with 34 ecological gates built in the middle reaches of the Tarim River; construction
was completed in 2009 [19]. The floodwaters during the flood season can be effectively
converted into ecological water, supplying vegetation such as the P. euphratica forests along
the Tarim River [26,28]. This region is characterized by an extremely arid continental
warm climate, with sparse rainfall and high evaporation rates [29]. The average annual
precipitation ranges between 18 and 45 mm, while the average annual evaporation reaches
between 2500 and 3000 mm. The main soil types include sandy soil, oasis meadow soil,
meadow soil, and saline soil [25]. For this study, we segmented the area from Yingbazha to
Qiala into four distinct sub-regions:

S1: Yingbazha to Shazihe,
S2: Shazihe to Wusiman,
S3: Wusiman to Arqike, and
S4: Arqike to Qiala.

2.2. Vegetation Response Monitoring Sample Strips and Sample Placement

We focused on the Kambaerwustan ecological gate irrigation area, which is a major
supplementary water area for P. euphratica forests in the middle reaches of the Tarim River.
The Kambaerwustan ecological gate irrigation area is located between Yingbazha and
Shazihe, and it marks the starting point of the water conveyance dike on the northern
bank of the middle reaches of the Tarim River. Analysis of the water discharge from the
ecological gates over the past decade revealed substantial changes and responses in the
Kambaerwustan ecological gate irrigation area, which makes it a typical monitoring area.

Monitoring transects and plots were established as follows. Beginning 150 m from
the ecological gate, three replicate transects were set up. The river water could reach
only approximately 600 m from the discharge point, so plots were arranged within this
600-m range. Tree plots, each sized 25 by 25 m, were established at 150-m intervals along
each transect. Within each tree plot, two shrub plots, each measuring 5 by 5 m, and
three herbaceous plots, each measuring 1 by 1 m, were randomly placed. A total of three
monitoring transects and 12 tree monitoring plots were set up in the Kambaerwustan
monitoring area of the middle reaches of the Tarim River (Figure 2).
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The monitoring indicators included repeated monitoring of the three transects in June
2016, 2017, and 2018. The 2016 data served as the control group (before ecological water
supplementation), while the 2017 and 2018 data were used as the experimental group.
The sample survey method [30] was employed to investigate and statistically analyze the
species in the experimental and control plots. The major indicators included the species
composition of the P. euphratica community, the frequency and distribution of P. euphratica
seedlings, the diameter at breast height (DBH) of mature P. euphratica, and the number of P.
euphratica individuals per unit area.
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2.3. Data Sources

Based on the GEE cloud platform (v0.1.350), this study processed original Landsat
5 TM (Developed through a collaboration involving NASA, NOAA, EOSAT, USGS, and
GE, Santa Barbara, CA, USA), Landsat 7 ETM+ (Raytheon SBRS (Santa Barbara Remote
Sensing), Goleta, CA, USA), and Landsat 8 OLI (Ball Aerospace & Technologies Corp.,
Boulder, CO, USA) images in batches. Data preprocessing included cloud and shadow
masking to improve data quality. Following this, the annual average values of the NDVI
and FVC were calculated for the study area to maintain temporal data stability, supporting
a long-term analysis of vegetation dynamics. Additionally, Sentinel-2 data [31] was used
for validation and comparison to assess the reliability of the Landsat-derived results. To
ensure the accuracy of waterbody extraction, DEM data was used to remove mountain
shadows that interfere with waterbody identification. The JRC Global Surface Water (GSW)
data is employed to compare and validate the results of waterbody extraction. Specific data
sources are provided in Table 1.

Table 1. Source of data.

Data Time
Period

Spatial
Resolution

Time
Resolution Data Source

Landsat 5 TM 1990–2012 30 m 15 d U.S. Geological Survey
Landsat 7 ETM+ 1999–2002 30 m 15 d U.S. Geological Survey

Landsat 8 OLI 2013–2020 30 m 15 d U.S. Geological Survey
Sentinel-2MSI 2017–2020 10 m 10 d European Space Agency
NASADEM 2020 30 m — NASA Jet Propulsion Laboratory

JRC GSW 1984–2022 30 m — European Commission Joint
Research Centre

2.4. Study Methods
2.4.1. Water Extraction and Accuracy Verification

This study employs a hybrid index rule set for waterbody extraction, grounded
in the algorithm developed by Zou et al. [17]. The Landsat satellite imagery data was
preprocessed using JavaScript scripts on the GEE platform, which included cloud removal
and the calculation of indices such as MNDWI [9], NDVI [32], and EVI [33]. The criteria for
extracting waterbodies are defined as MNDWI > NDVI or MNDWI > EVI, and EVI < 0.1.
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This hybrid index method has been successfully employed in research conducted across
various regions, including the northern slope of the Kunlun Mountains situated in an
alpine region [34], the Yellow River Basin [10,35], the coastal areas of East Asia [36], and
the Horqin Sandy Land [37]. These studies demonstrate that the hybrid indices possess
significant applicability and accuracy in diverse ecological settings, effectively capturing
changes in surface waterbodies. The formulas for these indices are presented below:

MNDWI =
Green − SWIR
Green + SWIR

(1)

NDVI =
NIR − Red
NIR + Red

(2)

EVI = 2.5 × NIR − Red
NIR + 6 × Red − 7.5 × Blue + 1

(3)

where Blue, Green, Red, NIR, and SWIR represent the blue, green, red, near-infrared, and
shortwave infrared bands of Landsat imagery, respectively.

The mixed spectral index method for waterbody extraction is still affected by mountain
shadows. Shadows can cause variations in the spectral response of identical objects, leading
to substantial deviations in water and vegetation index values within the same area. To
mitigate the impact of shadows on NDVI, object-oriented methods are commonly employed
to detect and adjust DN values in shadowed regions [38]. Alternatively, terrain-correction
models are applied [39]. Given that waterbodies are mainly situated in flat terrains, nu-
merous researchers have utilized terrain slope data to reduce the influence of shadows in
mountainous regions across various images [40]. This study adopted previous research
findings [41] to improve the extraction results by setting a rule that eliminates mountain
shadows in waterbodies when the slope is less than 8◦. The method for calculating the
Water Inundation Frequency (WIF) involves determining the ratio of the total number of
times a waterbody is identified each year to the number of effective observations. Based on
previous research [42], regions with 25% < WIF ≤ 75% are defined as seasonal waterbodies,
whereas regions with WIF > 75% are defined as permanent waterbodies. The formula for
calculating WIF is presented as follows:

WIF =
1
N

N

∑
i=1

w (4)

where N indicates the number of effective observations annually, while w is a binary
variable representing the waterbody type at each pixel, with a value of 0 for nonwater
bodies and 1 for waterbodies.

During the water transfer period from 2019 to 2022, this study employed Sentinel-2 MSI
high-resolution imagery data, systematically collecting 715 samples encompassing various
types of waterbodies, such as rivers, lakes, and reservoirs, as well as non-waterbody areas,
to comprehensively validate the accuracy of the waterbody extraction results. Through
classification analysis, 668 waterbody samples were identified, yielding an extraction ac-
curacy of 93.76% and a Kappa coefficient of 0.86. The method demonstrates substantial
classification accuracy and consistency in waterbody identification, underlining its applica-
bility and reliability. To further increase the transparency of our findings, we conducted a
comparative analysis of the extraction results with the JRC Global Surface Water (GSW)
data set (Figure 3). The analysis demonstrates that our method provides more detailed
information on waterbody distribution compared to the JRC data. This comparison offers
a more comprehensive validation of the extraction results, enhancing the precision and
reliability of detecting dynamic changes in waterbodies.
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2.4.2. Extraction of the Intra-Annual Vegetation Characteristic Data

Based on the GEE platform, annual vegetation phenological indicators (start of season
(SOS), and end of season (EOS)) were obtained with MODIS13Q1 EVI time-series data
fitted with a double-logistic function (Equation (1)) [43].

f (t) = v1 + v2(
1

1 + e(−m1(t−n1))

1
1 + e(−m2(t−n2))

) (5)

where f (t) is the fitted EVI value on day t; v1 is the minimum fitted EVI for the year; v2 is the
difference between the maximum and minimum fitted EVI values for the year; and m1, n1,
m2, and n2 are parameters representing the green-up and senescence stages of vegetation,
with n1 and n2 indicating the dates that correspond to the maximum rates of green-up and
senescence, respectively, and m1 and m2 identifying the slopes of the fitted curves.

The times that correspond to the maximum and minimum slopes of the fitted model
curve represent the SOS and EOS, respectively, with the difference between them represent-
ing the growing season length (GSL) [44]. This method is adaptive and does not rely on
subjective experience, which makes it suitable for the vegetation in the Tarim River Basin.

The double-logistic model based on the GEE platform demonstrated good stability
across different land cover types. The fitted curves for different vegetation cover types
(forest and cropland) differed greatly in the green-up and senescence stages. By measuring
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the date when the EVI of a year reached the same magnitude as its long-term average value,
the annual variability of forests and cropland could be determined.

2.4.3. Sen + MK Trend Analysis

The Theil–Sen median (TSM) trend analysis [45] and the Mann–Kendall (MK) non-
parametric test are widely used methods for analyzing NDVI spatial variation character-
istics [46]. This study combines these methods to assess the statistical significance of the
Sen trend [47]. Compared to traditional univariate linear regression trend analysis [48],
this integrated approach effectively mitigates the potential interference of data-distribution
characteristics and missing data on research outcomes, while also reducing the impact of
outliers [49]. The calculation formula is as follows:

β = Median(
Xj − Xi

j − i
), ∀j > i (6)

where β represents the vegetation coverage trend. A positive β indicates an increasing
trend, while a negative β indicates a decreasing trend. The function Median () represents
the median.

The Mann–Kendall test is a nonparametric method for identifying trends in time series
data. It does not require the data to conform to a normal distribution and is resilient in the
presence of missing values and outliers. It is well-suited for evaluating the significance
of trends in long-term time series data [50]. The calculation formula is detailed in the
literature [51].

2.4.4. Mann–Kendall Mutation Analysis

To examine abrupt changes in the NDVI series from 2000 to 2022, the MK method was
employed to test the time series. This method primarily detects changes in the variables
from one relatively stable state to another. The calculation formula for the MK mutation
test can be found in the literature [52].

2.4.5. Phased Development of Ecological Sluice Systems Along the Tarim River

The implementation of ecological sluices along the Tarim River was divided into
three distinct phases. This division was guided by the timeline of dike construction and
ecological water management interventions:

No Ecological Gate (NEG) Phase (1990–2000): During this period, no ecological sluice
gates were in place.

Ecological Gate Construction (EGC) Phase (2000–2010): This phase marks the period
focused on constructing ecological sluice gates along the riverbank, aiming to enhance
water management and distribution to adjacent riparian zones.

Ecological Gate Control Water (EGCW) Phase (2010–2022): This phase corresponds to
the operation and active control of water flow through the ecological gates, designed to
enhance water availability for vegetation restoration and ecological stability.

2.4.6. Correlation Analysis

The Pearson correlation coefficient [53] was used to calculate the correlation between
SWA data and FVC on a pixel-by-pixel basis, thus quantifying the relationship between
FVC and SWA. The formula is as follows:

r =
n(∑ xy)− (∑ x)(∑ y)√

[n ∑ x2 − (∑ x)2][n ∑ y2 − (∑ y)2]
(7)

where n is the sample size, and x and y represent the observed values of SWA and
FVC, respectively.
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3. Results
3.1. Spatiotemporal Dynamics of SWA in the Middle Reaches of the Tarim River
3.1.1. Temporal Dynamics in SWA of the MROTR

A comprehensive assessment of the SWA in the middle reaches of the Tarim River
(MROTR) from 1990 to 2022 was conducted, including both permanent and seasonal
water bodies, as well as their cumulative total. In this area, the total SWA increased from
79.36 km2 in 1990 to 490.98 km2 in 2022, which is an increase of 411.62 km2, with an average
annual growth rate of 12.47 km2 per year (Figure 4). Specifically, in the non-ecological
gate (NEG) phase, the growth of SWA was particularly notable, with an annual change
rate reaching 20.5 km2. This was largely due to substantial fluctuations in uncontrolled
natural runoff that caused waterbody expansion. Between 2000 and 2010, as the EGC
commenced, the SWA decreased to 87.73 km2, with an average annual change rate of
−16.88 km2/year, reflecting instability in water resource management during the initial
stages of ecological gate development. However, during the ecological gate-controlled
water (EGCW) phase, the SWA increased rapidly, with an average annual growth rate
of 28.8 km2/year, particularly in the seasonal water area, which expanded at a rate of
11.86 km2/year. This indicates the effectiveness of the ecological gates in regulating
water resources.
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The permanent SWA remained relatively stable and fluctuated within a narrow range,
whereas the seasonal SWA exhibited significant growth during the EGCW stage. The
trends in SWA changes were consistent with the runoff data from hydrological stations in
the MROTR, and the peak runoff years aligned with the expansion of the SWA. During
the EGCW stage, the synchronization of peak runoff and seasonal water area expansion
highlights the gates’ efficiency in water regulation, particularly during peak flow periods.
This regulation ensured an adequate water supply during the vegetation growth season,
and it has created favorable conditions for the revival of riparian vegetation.

3.1.2. Spatial Changes in SWA of the MROTR

Using Geographic Information Systems (GIS) (ArcGIS 10.8), we compiled 33 images of
water bodies captured between 1990 and 2022 to develop a comprehensive map illustrating
the distribution of surface water over an extended period in the MROTR area (Figure 5a).
Throughout the NEG period, the recorded maximum total area of water reached 2871 km2.
This area decreased to 2598 square kilometers during the EGC period. Nevertheless, in the
EGCW period, there was a notable expansion in the total water area, reaching 4329 square
kilometers. Most water bodies were located along the northern bank, with subregion S1
having the smallest proportion, accounting for 14.2% (Figure 5d), whereas S4 included the
largest share at 36.6%. The average annual seasonal water areas for subregions S1 through
S4 were determined to be 40.33 km2, 56.04 km2, 70.05 km2, and 85.02 km2, respectively
(Figure 5b,c,e,f). The cumulative water areas were also calculated for each decade from 1990



Forests 2024, 15, 2005 10 of 26

to 2022 (Figure 5g). Throughout all phases, S4 consistently exhibited the largest cumulative
water area, while S1 had the smallest.
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3.1.3. Dynamic Characteristics of the SWA Before and After the Control of Water by
Ecological Sluice Gates

Each year’s SWA was classified into four specific categories, namely, SWA < 200 km2

(classified as dry years, SWA I), 200 km2 < SWA < 300 km2 (normal years, SWA II),
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300 km2 < SWA < 400 km2 (wet years, SWA III), and SWA > 400 km2 (extremely wet years,
SWA IV), as detailed in Table 2.

Table 2. Annual SWA classification.

Level Criteria for Division Year

I SWA < 200 km2 1990, 1997, 2008, 2009

II 200 km2 < SWA < 300 km2
1991, 1992, 1993, 1995, 1997, 1999, 2000, 2001,

2002, 2003, 2004, 2012,
2014, 2020, 2021

III 300 km2 < SWA < 400 km2
1996, 1998

2005, 2006, 2010
2011, 2013, 2015, 2018, 2019

IV SWA > 400 km2 1994, 2016, 2017, 2022

To analyze the SWA during years with varying water inflows, representative years
were selected. For the analysis of SWA, distinct years were selected across different levels:
Level II included the years 1993, 2001, and 2014, while Level III encompassed 1996, 2005,
2013, 1998, 2006, and 2019. For Level IV assessment, 1994 and 2022 were the focal points.

GIS technology was utilized to create buffer zones at intervals of 1 km along the
riverbanks extending from the ecological gates. This method facilitated the calculation of
SWA for each segment of 1 km. The findings demonstrated variable changes in SWA at
varying proximities to the riverbank before and after the implementation of the ecological
gates (Figure 6). The data indicated that within the 2–8-km distance from the ecological
gates, there was an average reduction in SWA of 4.7 km2 per kilometer during the EGCW
stage compared to the NEG stage. Similarly, SWA reduced by an average of 6.11 km2

per kilometer during the EGC stage. During wet years, the average increase in SWA was
1.3 km2 per kilometer in the EGCW phase within the 10–40-km range from the ecological
gates compared to the NEG phase. This suggests that during wet conditions, the water con-
trol measures implemented by the ecological gates significantly enhance water distribution
in remote areas. Similarly, in normal water years, the SWA in the EGCW stage increased by
an average of 1.1 km2 per kilometer within the 23–35-km range from the ecological gates,
relative to the NEG phase. This further underscores the effectiveness of ecological gates in
extending lateral water conveyance, even in relatively stable water conditions.

Since the implementation of the Tarim River embankment construction and the water
regulation measures via ecological gates in 2010, ineffective water overflow within an
8-km radius has been effectively controlled, facilitating the lateral diffusion of water over
long distances. In normal water years, the SWA expanded within the 23–35-km range. In
wet years, water conveyance reached up to 38 km, markedly increasing the SWA from
10 to 40 km. During exceptionally wet years, the conveyance distance further extended
to 40 km. These findings indicate that the establishment of ecological sluice and water-
regulation measures have not only optimized the distribution of water resources near
the riverbank but also significantly improved the efficiency and spatial coverage of long-
distance water conveyance.

3.2. Characteristics of the Spatiotemporal Dynamics of Vegetation in the MROTR
3.2.1. Temporal Changes in Vegetation

Since 2001, the continuous development of water conveyance levees along with the
installation of ecological gates in the MROTR has effectively minimized ineffective overflow,
providing critical water sources for the vegetation on both banks. The water supply capacity
of these gates is regulated according to the water requirements of the natural vegetation.
The annual mean NDVI and the mean monthly NDVI from June to September for 2000 to
2022 were calculated (Figure 7a,b). The results indicated that among the four subregions
(S1–S4), S4 had the highest NDVI values, with the annual mean NDVI following the order
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S4 > S3 > S2 > S1. Furthermore, the NDVI in all subregions showed an upward trend. A
trend analysis of the annual mean NDVI in the MROTR was conducted, and the results
revealed that all four subregions passed the MK test for the period 2000–2022. Subregions
S1, S2, and S4 exhibited increasing trends, with abrupt changes observed in S2 and S4 in
2005, which were associated with a significant reduction in SWA in the Tarim River from
2004 to 2005. In contrast, the S3 region experienced showed an abrupt change in 2019.
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The statistics and change sequences for the SOS and EOS of the growing season in
the four subregions from 2000 to 2022 are depicted in Figure 7c–f. The significance of the
changes was weaker in the intra-annual indicators than in the interannual NDVI indicators,
but the regional differences decreased. The MK test of the intra-annual characteristics of
vegetation in the MROTR revealed that the SOS advanced in S1, S2, and S4. Abrupt changes
occurred in 2006 for both S1 and S4 and in 2003 for S2. In the S3 region, an abrupt change
occurred in 2004, with a trend toward a delayed growing season between 2006 and 2012.
With respect to the EOS, abrupt changes were observed in 2007 for S1, S3, and S4, with the
growing season end times beginning to delay in 2010, 2011, and 2008, respectively. The
S2 region experienced an abrupt change in 2010, with an advancing trend in the growing
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season end time from 2002 to 2013, followed by a delaying trend from 2014 to 2022. These
findings indicate that ecological gate management has significantly impacted vegetation
growth periods and has increased vegetation growth potential.
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3.2.2. Spatial Variation in Vegetation

From 1990 to 2022, the vegetation coverage exhibited a fluctuating downward trend
(Figure 8) that was closely associated with the implementation of water regulation measures
by the ecological gate system. During the NEG phase, the average high-coverage vegetation
accounted for 22.67% of the total area. Following the construction of ecological gates in
2000, instability in early water regulation resulted in a reduction in the mean vegetation
coverage, with the EGC phase showing a reduction in high-coverage vegetation to 21.21%.
In the EGCW phase, from 2010 to 2022, high-coverage vegetation further decreased to
17.73%. Conversely, low-coverage vegetation gradually increased with water redistribution
from 48.82% in 1990 to 56.21% in 2022.
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The spatial distribution of vegetation coverage significantly changed after the con-
struction of the ecological sluice and water regulation measures in 2000. According to
the FVC change trend (Figure 8), from 2000 to 2010, there was a noticeable decrease in
vegetation on the northern bank of the Tarim River, as the ecological gates had not yet fully
come into effect. However, after the implementation of water control measures in 2010, the
northern bank experienced a significant increase in water supply, leading to a substantial
recovery of vegetation that accounted for 6.56% of the area with a significant increase
in vegetation. In contrast, the vegetation on the southern bank significantly decreased,
covering 19.69% of the area. Compared with the pregate phase, the postimplementation
phase of the ecological gates had a differential impact on vegetation recovery. The northern
bank experienced significant vegetation restoration, while the southern bank experienced a
decline in vegetation coverage.

3.2.3. Characterization of the Vegetation Changes Before and After Water Control by
Ecological Gates

The average vegetation cover during the NEG, EGC, and EGCW phases was calculated,
along with the area of each vegetation cover type in 1-km increments within a 55-km
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distance from the riverbank (Figure 9). Within 15 km of the riverbank, the area of low
vegetation cover increased as the distance from the riverbank grew, but beyond 15 km, it
gradually decreased. Between 1990 and 2022, the areas with low vegetation cover followed
the order EGCW > EGC > NEG. For the other vegetation cover types, the area consistently
decreased as the distance from the riverbank increased. The rates of increase and decrease
in the vegetation cover area differed across vegetation types prior to and following the
construction of the ecological gates. Further analysis was conducted to compare the
vegetation cover area change rates between the NEG and EGC phases and between the
EGC and EGCW phases. The results indicated that the increase in low vegetation cover
was more pronounced during the EGC-EGCW phase than during the NEG-EGC phase.
Conversely, the reduction in medium–low and high vegetation cover was less significant
during the EGC-EGCW phase than during the NEG-EGC phase. These findings suggest
that the implementation of water control at the ecological gates increased the area of
low vegetation cover while mitigating the reduction trends for medium–low and high
vegetation cover types.
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3.3. Response of Vegetation to Surface Water Area Changes in the MROTR
3.3.1. Monitoring Results of the Experimental Sample Points

In 2016, the government of the Xinjiang Uygur Autonomous Region launched an
action to protect the source and upper MROTR and its P. euphratica forests by designating
the upper and middle reaches as major pilot areas. From 2016 to 2018, we conducted field
surveys in the middle reaches to quantitatively analyze the impact of surface water on
the growth and diversity of desert riparian plant communities. In the middle reaches,
108 subplots of 1 m × 1 m were randomly set up within each larger P. euphratica plot
near the Kanbaerwusitan ecological gate. The density of P. euphratica seedlings increased
from 0.008 plants/m2 in 2016 to 0.80 plants/m2 in 2018, representing an increase of
0.72 plants/m2 and a growth rate of 89.1%. These findings indicate that surface water
strongly promotes the regeneration of P. euphratica plants.

In 2016, the occurrence frequencies of P. euphratica under excellent, good, medium,
poor, and very poor growth conditions were 0.06, 0.17, 0.28, 0.31, and 0.172 plants/m2, re-
spectively. By 2018, these frequencies had changed to 0.11, 0.15, 0.34, 0.24, and 0.168 plants/m2,
respectively, with growth rates of 78%, −15%, 21%, −24%, and −3%, respectively. These
changes indicate a shift in growth conditions toward better and medium grades, optimizing
the growth structure of the P. euphratica forest.

Based on the field survey data from 2016 to 2018, the vegetation cover was moni-
tored through remote sensing and compared for the same period. The SWA reached its
maximum in 2017, with 510.29 km2 in 2016, 557.98 km2 in 2017, and 391.22 km2 in 2018.
Vegetation remote sensing monitoring areas were selected according to their distance from
the riverbank to analyze the impact of SWA changes on vegetation. As shown in Figure 10,
vegetation cover increased annually from 2016 to 2018, even though the surface water area
significantly decreased in 2018 compared with 2017. High vegetation cover areas increased
by 3% in 2018 compared with 2017, likely due to the increase in groundwater levels during
the abundant water year of 2017, which continued to support vegetation growth despite
the reduced water inflow in 2018.

3.3.2. Time-Lag Correlation Between Vegetation and the SWA

A comparative analysis of vegetation cover was conducted for the dry year of 2007 and
the normal water years of 2011 and 2013, with SWAs measuring 189.2 km2, 315.97 km2, and
331.02 km2, respectively. Despite the increase in SWA during these years, remote sensing
data indicated a slight decrease in vegetation cover (Figure 11). A further investigation
revealed a slight decline of the SWA values in the preceding years: 355.7 km2 in 2006,
348.34 km2 in 2010, and 305.46 km2 in 2012.

To examine whether surface water has a lagged effect on vegetation cover in the
MROTR, buffer zones were established at 0–5 km and 5–15 km from the river. The number
of vegetation pixels in different coverage categories was extracted from these zones, and a
correlation analysis was conducted with river inflow data, which determined the SWA for
each year.

Within 5 km of the river, the correlation between river inflow and vegetation cover
was assessed (Figure 12a1–a4). The results indicated that the correlation was stronger
between river inflow and the subsequent year’s vegetation cover than between river
inflow and the same year’s vegetation cover, with the coefficient of determination (R2)
improving by 0.1428, 0.0841, and 0.0411 for areas with no coverage, moderate coverage,
and high coverage, respectively. In the 5–15 km buffer zone, similar patterns were observed
(Figure 12c1–c4). The correlation between river inflow and the subsequent year’s vegetation
cover was again stronger, with the R2 values increasing by 0.0929, 0.0993, and 0.0219 for
areas with no coverage, moderate coverage, and high coverage, respectively. This indicates
that vegetation within both 5 km and 5–15 km of the river exhibited a stronger response to
the previous year’s water conditions than to the current year’s water levels.



Forests 2024, 15, 2005 17 of 26
Forests 2024, 15, x FOR PEER REVIEW 19 of 29 
 

 

 
Figure 10. Vegetation FVC in the MROTR remote sensing monitoring area in 2016, 2017 and 2018 
(each monitoring area corresponds to the vegetation FVC of the year and the surface waterbody of 
the year). 

3.3.2. Time-Lag Correlation Between Vegetation and the SWA 
A comparative analysis of vegetation cover was conducted for the dry year of 2007 

and the normal water years of 2011 and 2013, with SWAs measuring 189.2 km2, 315.97 km2, 
and 331.02 km2, respectively. Despite the increase in SWA during these years, remote sens-
ing data indicated a slight decrease in vegetation cover (Figure 11). A further investigation 
revealed a slight decline of the SWA values in the preceding years: 355.7 km2 in 2006, 
348.34 km2 in 2010, and 305.46 km2 in 2012. 

Figure 10. Vegetation FVC in the MROTR remote sensing monitoring area in 2016, 2017 and 2018
(each monitoring area corresponds to the vegetation FVC of the year and the surface waterbody of
the year).



Forests 2024, 15, 2005 18 of 26Forests 2024, 15, x FOR PEER REVIEW 21 of 29 
 

 

 
Figure 11. Vegetation FVC in the MROTR remote sensing monitoring areas in 2007, 2011, and 2013. 
Each monitoring area corresponds to the vegetation FVC of the current year and the surface water-
body of the previous year, e.g., Figure 2007a shows the vegetation FVC of 2007 and the surface 
waterbody of 2006. 
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2013. Each monitoring area corresponds to the vegetation FVC of the current year and the surface
waterbody of the previous year, e.g., Figure 2007a shows the vegetation FVC of 2007 and the surface
waterbody of 2006.
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Figure 12. Correlations between water inflows and vegetation cover from 1990 to 2022. (a,b) show
the correlations between different water inflows and vegetation cover within 5 km of the riverbank,
(c,d) show the correlations between water inflows and vegetation cover within 5 km–15 km from the
riverbank. (b,d) show the correlations between water inflows and vegetation cover 1 year after the
lag year.

However, the opposite pattern was observed for low vegetation cover. The correlation
between river inflow and the same year’s vegetation cover was stronger, with weaker
correlations for the subsequent year’s vegetation, as shown by the decreased R2 values of
−0.1209 and −0.1048 (Figure 12b2,d2). According to previous research [54], deep-rooted
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species, such as Populus euphratica, and salt-tolerant plants, such as Tamarix spp., tend to
be influenced more by groundwater levels and long-term water infiltration. The growth
of these plants is dependent on water conditions over multiple years. In contrast, low
vegetation cover types, which mainly consist of shallow-rooted grasses and shrubs, such as
Suaeda spp. and Calligonum spp., are more responsive to surface water and soil moisture,
resulting in a stronger reaction to annual precipitation and water inflow. These species
have relatively short life cycles, with water availability quickly reflected in the same year’s
vegetation cover and growth patterns. These variations highlight the different water-use
adaptations and ecological functions of diverse plants in the region.

3.3.3. Correlations of Vegetation Indicators with SWA

From 1990 to 2022, the spatial trend of vegetation cover in the MROTR showed a
decreasing pattern, whereas the NDVI time series for the middle reaches and the four
subregions exhibited an increasing trend from 2000 to 2022. The SOS showed an advancing
trend, and the EOS mostly showed a delaying trend, resulting in an extended growing
period. A long-term correlation analysis between the SWA and the vegetation NDVI, SOS,
EOS, and growing season length (GLS) revealed that the SWA was positively correlated
with the NDVI and negatively correlated with the SOS, EOS, and GLS. The EOS was
significantly positively correlated with the duration of the growing season (Figure 13).
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4. Discussion
4.1. Impact of Ecological Sluice Gate Water Control on Water Bodies

The main objective of using ecological gates for irrigation management in the Tarim
River Basin is to enhance water flow to downstream areas, improve conditions for water
supply, and work towards the protection and restoration of natural vegetation in regulated
areas [28]. In arid regions, the core challenge of ecological conservation lies in how to
achieve the optimal match between ecological water supply [55,56] and vegetation water
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demand through precise water regulation [57]. As a result, the use of ecological gate
systems for water transfer offers a distinct strategy for allocating water resources and
facilitating ecological restoration in the Tarim River Basin [58]. Given that its operational
mechanism depends on the movement and spatial distribution of water resources within
the zones of ecological management, understanding the response patterns of SWA during
the EGCW phase is crucial for ecological regulation and accurate regional delineation in
the Tarim River Basin.

During the EGCW phase, the SWA in the MROTR significantly increased and exhibited
notable spatiotemporal variation (Figure 4). Compared with earlier stages, the expansion of
the SWA during the EGCW phase was more stable and rapid, especially in wet years, when
the water distribution range expanded significantly (Figure 6). During this period, the
regulation by ecological gates reduced ineffective overflow in areas close to the riverbank
(2–8 km) and facilitated the lateral transfer of water to farther regions (10–40 km). In both
normal and wet years, the SWA continued to increase within the 23–35-km range, with
water transfer distances reaching 40 km, thus greatly expanding the distribution of seasonal
water bodies. In regions far from the river that are ecologically sensitive, diverting water
via ecological gates sets the stage for overflow, thereby encouraging substantial seedling
growth [59]. Long-distance water transfer effectively facilitates seed dispersal into new
soils and ecosystems, thus expanding the distribution range of plant populations [26,60]
demonstrated that surface water inundation is a key driver of vegetation expansion, as the
vegetation area significantly increases with the expansion of surface water when groundwa-
ter levels are stable. This effective water resource regulation provides the necessary water
supply for riparian vegetation growth and improves the conditions for ecological restora-
tion. The area of permanent water bodies remains relatively stable, and the expansion of
seasonal water bodies is the main contributor to the increase in the SWA. Additionally,
seasonal water bodies are a key factor that influences the distribution of plant species in
arid regions [61]. By combining runoff peaks with the expansion of seasonal water bodies,
the ecological gate system optimizes water flow regulation, enhances water resource use
efficiency, and provides a stable water supply during the vegetation growing season. This
regulation strategy during the EGCW phase significantly improves ecological restoration
in the MROTR and provides practical insights for future water resource management.

This study significantly contributes to water resource management in arid regions.
Bwambale et al. [62] research presents advanced smart monitoring and control strategies
for irrigation scheduling, stressing the necessity of precise water regulation mechanisms.
Our findings underscore the unique adaptive strategies used in the Tarim River Basin,
particularly concerning ecological gate management, which may provide valuable insights
for similar global efforts. Observed patterns of surface water expansion and vegetation
response highlight both the effectiveness of our approach and the importance of sustainable
local ecological management. The construction of ecological gates has modified water
distribution, and appropriate flow management can facilitate the expansion of seasonal
water bodies and improve vegetation cover. Water resource regulation is ecologically
crucial in arid regions, with long-term consequences affecting water availability, vegetation
dynamics, and aquatic ecosystem stability. Therefore, implementing water resource reg-
ulation requires a comprehensive consideration of the ecological environment’s carrying
capacity, and strategies should be scientifically formulated to ensure sustainable water use
and ecosystem restoration and protection.

4.2. Impact of Ecological Gate-Controlled Water on Desert Riparian Vegetation

In arid regions, water resources serve as the crucial abiotic factor influencing riparian
forest ecosystems. The accumulation of ecological water sources, including groundwater,
surface water, and soil moisture, effectively promotes vegetation growth [26,63]. According
to the FVC trend chart (Figure 8), from 2000 to 2010, vegetation on the northern bank of the
MROTR decreased significantly, while from 2010 to 2022, the vegetation on the northern
bank increased substantially. This corresponds with the establishment of ecological sluice
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and the EGCW phase. The construction phase reduced water overflow from river channels,
which caused significant degradation of vegetation on the northern bank of the MROTR.
After the completion of the ecological gates and water control embankments, the vegetation
on the northern bank increased dramatically.

Our study also reveals that SWA was significantly negatively correlated with low-
coverage vegetation within 15 km of the river channel (Figure 12a2,b2,c2,d2). Low-
coverage vegetation was more influenced by water bodies in the same year, as shown in
Figure 12b2,d2, where the correlation between water bodies and vegetation weakened
when there was a 1-year lag. These low-coverage vegetation types, mainly grasses and
shrubs [64], such as Suaeda spp. and Calligonum spp., typically have shallow root systems
and are highly dependent on surface water and topsoil moisture [65,66]. These plants often
respond strongly to annual precipitation, river replenishment, and surface water expan-
sion, as their short growth cycles cause water fluctuations to be rapidly reflected in the
vegetation cover and growth conditions in the same year [67]. As the river flow increases,
the SWA expands, which increases the moisture content of the shallow soil and provides a
favorable environment for seed germination. However, due to strong evaporation, saliniza-
tion becomes severe, and the increased water volume washes surface salts into one area.
During this period of high soil salinity, it becomes difficult for seedlings to transition to
young forests [68–70], resulting in a decline in low-coverage vegetation during this phase.
In contrast, SWA promotes the growth of medium- and high-coverage vegetation, with
a lag effect that extends as water volumes increase (Figure 12). The varying river flow
volumes have significant effects on vegetation at different distances from the river, and
they promote the growth of medium- and high-coverage vegetation types. Medium- and
high-coverage vegetation are composed mainly of deep-rooted plants, such as Populus
euphratica [71] and salt-tolerant species, such as Tamarix spp. [64]. Since their roots can
penetrate deep into the ground and adapt to dry and saline-alkaline soil conditions [72,73],
their growth is often influenced by groundwater levels and long-term water infiltration.
Therefore, their growth trends are more dependent on water conditions from previous
years, which explains why medium- and high-coverage vegetation are more affected by
the previous year’s waterbodies than by the current year’s waterbodies.

The effectiveness of water delivery through ecological gates fluctuates with varying
water volumes. In wet years, ecological gates can sustain ecological protection and vege-
tation recovery, whereas in low-flow years, their guaranteed rate of ecological protection
and vegetation recovery for desert riparian vegetation is low [25]. Different vegetation
types have varying water requirements, and different flooding frequencies have distinct
impacts on the species diversity of downstream vegetation in the Tarim River [18]. Too low
or too high flooding frequencies are not conducive to restoring and maintaining species
diversity, while moderate flooding disturbances can maintain high biodiversity [74]. After
flooding in the middle reaches of the Tarim River Basin, the number and diversity of plant
species decrease as the distance from the ecological gates increases [61]. After the imple-
mentation of EGCW, the area of low-coverage vegetation increased significantly, whereas
the declining trends in medium- and high-coverage vegetation types slowed. Ecological
water conservancy projects in the Tarim River Basin have enhanced the coupling between
the water supply and vegetation water demand, improving the efficiency of water use for
plant growth.

4.3. Limitations and Future Prospects of This Study

The accuracy of waterbody extraction is significantly influenced by the quality of
the remote sensing data. Because of the 16-day revisit cycle of Landsat, short-term water
events (such as flash floods) may be overlooked. Additionally, the 30-m spatial resolution
of Landsat imagery may be insufficient to adequately capture the spatial distribution of
small waterbodies. In the future, the use of higher-resolution multispectral data (such
as Sentinel-2A) and the integration of optical imagery with SAR data could improve the
accuracy of waterbody extraction.



Forests 2024, 15, 2005 23 of 26

This study analyzed the changes in vegetation cover types across different stages, but
because of the high heterogeneity of riparian forest vegetation in desert areas, the responses
of plants vary. Research has focused primarily on the expansion and seasonal dynamics
of surface water. Although surface water promotes vegetation recovery, the long-term
effects of groundwater dynamics on plant growth have not been thoroughly explored.
Groundwater is crucial for the growth of deep-rooted plants, such as Populus euphratica
and Tamarix spp., in arid regions; however, this aspect was insufficiently analyzed in this
study. The effectiveness of EGCW fluctuates significantly in different water years, and the
alignment between vegetation recovery and water resource regulation remains uncertain
in some regions. Diverse vegetation types exhibit spatial and temporal differences in water
demand. Low-coverage vegetation is sensitive to annual waterbody changes, whereas
medium- and high-coverage vegetation show delayed responses to water conditions in
previous years. This distinction will be a key focus of future research.

5. Conclusions

From 1990 to 2022, the SWA in the MROTR underwent significant changes, particularly
after the construction of ecological gates, with a growth rate of 28.8 km2 per year. The
regulation of water resources by the ecological gate system effectively reduced the inefficient
spread of water near riverbanks while significantly increasing the water area in more
distant regions. This effect was especially pronounced in wet and extremely wet years,
where the water delivery distance reached 40 km. Since the implementation of continuous
water delivery and the construction of ecological gates in the MROTR in 2001, both the
temporal and spatial dynamics of vegetation have shown a significant response. Overall
vegetation coverage has become less volatile, and the area of low-coverage vegetation has
gradually increased, reflecting the differential impacts of water resource regulation on
various vegetation types. During the EGCW stage, the vegetation on the northern bank
of the river significantly recovered, whereas the vegetation on southern bank exhibited a
declining trend. The lag effect of SWA on vegetation growth indicates that deep-rooted
plants are sensitive to long-term water level changes, while low-coverage vegetation
responds more directly to water changes within the same year. These findings demonstrate
that ecological gates have played a critical role in improving water resource efficiency and
promoting regional ecological restoration.
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