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Abstract: Monitoring of operations has become a critical activity in forestry, aiming to provide
the data required by planning and production management. Conventional methods, on the other
hand, come at a high expense of resources. A neural network was trained, validated, and tested in
this study based on multi-modal data to classify relevant operational events in mechanized weed
control operations. The architecture of a neural network was tuned in terms of the number of hidden
layers and neurons, and the regularization term was set at various values to obtain optimally tuned
models for three data modalities: triaxial acceleration data coupled with speed extracted from GNSS
signals (AS), triaxial acceleration (A), and speed alone (S). In the training and validation phase, the
models based on AS and A achieved a very high classification accuracy, accounting for 92 to 93%
when considering four relevant events. In the testing phase, which was run on unseen data, the
classification accuracy reached figures of 91 to 92%, indicating a good generalization ability of the
models. The results point out that multimodal data are able to provide the features for distinguishing
events and add spatial context to the monitored operations, standing as a suitable solution for offline,
partly automated monitoring. Future studies are required to see how the capabilities of online,
real-time technologies such as deep learning coupled with computer vision can add more context
and improve classification performance.
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1. Introduction

The management of forests for timber production requires a series of operations aimed
at establishing, tending, and harvesting the wood [1,2]. Poplar forests are highly valued
worldwide, mainly due to their shorter production cycles, fast growing capacity, and the
high-quality wood they provide [3,4], whereas poplar wood has several well-established
and emergent uses in industries such as plywood and panel production, replacement of
plastic as a material, outdoor construction applications, agri-food, medical, and packaging
industries [5]. However, the management of poplar forests typically requires a higher
number of operations, compared to conventional forestry [6]. Young poplar forests, for
instance, require weed control operations to enhance the ability of trees to compete with
the surrounding vegetation [3]. Typically, such operations are implemented several times
in the youth stages of the poplar forest stands.

Modern weed control operations are supported by a full mechanization, although
some plot-level smaller areas may require additional manual work [7]. For mechanical
weed control, commonly used equipment comprises a farm tractor fitted with active devices
such as plows or rotary tillers [8]. Of these, rotary tillers have been increasingly used in
Romania, due to their capability to comminute and mix the weeds with the soil.
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On the other hand, forest managers charged with weed control operations often lack
a decision support system that can estimate the time needed for operations, provide the
spatial context for planning, allocate resources such as money and fuel, and provide updates
on the level of operational completeness. As a consequence, the planning and monitoring of
operations is usually performed using conventional methods and protocols, which require
manual inputs of data, incur a low level of data processing automation, and necessitate
extensive paperwork.

The developments in machine learning for forest operations activity recognition has
provided new ways to collect, process, and interpret the data, by removing the human
effort and expertise required to a large extent [9,10]. These advancements are welcome
as forest management is increasingly focusing its resources on production and activities
that directly contribute to income. However, this brings a lack of well-trained personnel
that need to make an effort to develop statistics and models to support the planning and
implementation of the operations. Moreover, the improvements in operational equipment,
as well as the implementation of different technologies in new areas [11,12], are progressing
at an unprecedented rate. This makes it very difficult to keep the pace with studies that
evaluate the operational performance, whereas the knowledge provided by the existing
studies has only a limited applicability in new contexts [13]. Commonly used algorithms
such as neural networks, random forests, and support vector machines are now available
for implementation in several freeware software platforms [14–16]. Such algorithms may
be trained to work with multi-modal data [17], and significant progress has been made in
terms of using these data in recognizing activities with high accuracy and adding temporal
and spatial context to classification problems, which are essential for operational planning,
implementation, and monitoring [18,19].

Since farm tractors enable multifunctionality, and they are a common choice due to
cost affordability [20–22]; developing and using systems able to collect, pre-process, and
transfer the information for decision making is less likely to happen for these machines.
Developing such systems could provide contextualized operational classifications in the
time and space domains but will also increase the machine cost. In other words, algorithms
that may correctly detect the tasks forming an operation with a given active device such as
a plow could be less effective, for instance, when using a rotary tiller, mainly due to the
mechanical behavior of the two. In addition, farm tractors are typically used for a long
time with the aim of recovering the investments in machines, and many owners prefer
to keep them in use at the expense of higher maintenance and repair costs, which means
that an important share of the fleet is still dominated by old machines. Commonly, these
machines are not equipped with devices able to collect useful data on their state such as
CAN-BUS [23], and among the possible solutions for activity recognition and monitoring
are those making use of external sensors.

On the other hand, the task of collecting and classifying time study data is typically
transferred to the science of forest operations, since there is a lack of qualified personnel to
undertake such jobs. Performing it conventionally, this activity is prone to error [24] and
uses up important resources [25]. As a consequence, at least in the short term, a system
able to collect and process data will be limited to offline applications able to prove concepts
and, eventually, to produce data and statistics that support a full-scale, online deployment.
To this end, conventional machine leaning models can be used in an offline approach to
make accurate and contextualized predictions on relevant operational events based on
multi-modal data such as that combining GNSS, which is able to contextualize location and
movement parameters, and accelerometer data, which are able to document, by magnitude,
specific events showing contrasting patterns in the time domain [26–28].

The goal of this study was to check whether the combined use of GNSS and triaxial
accelerometer signals can provide a suitable input for an accurate neural network classi-
fication of relevant operational events in the time domain for a rotary tiller-based weed
control operation. Two objectives were set for this study: (i) to run tests by trial-and-error,
aiming to see which set of signals (modality) works best in producing an overall highly
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accurate classification, which was performed by iteratively training and validating the
neural network on various sets of input signals while varying its architecture and tuning its
parameters; and (ii) to test the best performing neural network models on unseen data, so
as to check their generalization ability, which was achieved by saving the best performing
model of each set of input signals and feeding it with unseen data.

2. Materials and Methods
2.1. Data Sourcing and Processing

The data required by this study were collected in Romania in June of 2018. In this
country, most of the poplar forests are concentrated along the Danube River [29], and
their management involves operations such as preparing the soil, planting, cultivation and
weed management, thinning, and final harvesting by clearcutting [30,31]. The field study
was carried out in the forests managed by Poiana Mare Forest District, which is under
the administration of Dolj Forest Directorate of the National Forest Administration–RNP
Romsilva (Figure 1). According to the Romanian management of poplar forests, final
harvesting is performed at an age of 25–30 years by clear-cutting implemented in areas
that do not exceed 5 hectares. Once harvested, these areas require stump removal, soil
preparation, planting, which currently is achieved partly mechanized [32], and, at given
time intervals, weed control operations, which can be implemented manually, mechanically,
or as a combination of both [7,30]. The decision on the degree of mechanization in weed
control operations depends on the size of the plots, availability of machines, and manual
labor requirements. In Romania, the poplar stands are harvested by clear cutting at the end
of rotation, and the harvested plots have a limited size of up to 5 hectares.
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A farm tractor equipped with a rotary tiller was taken into study, as shown in Figure 
2, since this equipment configuration is being increasingly used in the country, mainly 
due to the operational performance and quality of the work. The tractor was a Romanian-
made U650 model (UTB—Uzina Tractorul Brașov, Brașov, Romania) manufactured in 
2004, equipped with a diesel engine and featuring an engine output of 47.8 kW. A Maschio 

Figure 1. Study location: (a) the plot taken into study showing the GPS locations (yellow) collected
during the field observation; (b) location of the study area at national level (yellow dot). Note:
the maps were created in open source QGis software (QGis 3.4.12) by using freely available vector
datasets of the country and the open access Bing ® aerial data as accessible at the study time.

A farm tractor equipped with a rotary tiller was taken into study, as shown in Figure 2,
since this equipment configuration is being increasingly used in the country, mainly due
to the operational performance and quality of the work. The tractor was a Romanian-
made U650 model (UTB—Uzina Tractorul Bras, ov, Bras, ov, Romania) manufactured in 2004,
equipped with a diesel engine and featuring an engine output of 47.8 kW. A Maschio
Gaspardo W 145 (Maschio Gaspardo S.p.A., Campodarsego, Italy) rotary tiller was attached
to the tractor using the power take-off. It was manufactured in 2016, and designed to
operate on strips with a width of 145 cm at a depth of 18 cm. Its operation is sustained by a
power range of 18–30 kW.
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Figure 2. Configuration of the equipment taken into study: (a) the farm tractor equipped with the
rotary tiller showing the location of the handheld GNSS receiver (1); (b) the rotary tiller observed in
the study, (c) placement of the triaxial accelerometer (2) on the rotary tiller.

The data collectors used were a GNSS handheld unit which was placed on the tractor
cab and set to collect data at a rate of one second, a triaxial accelerometer which was placed
on the rotary tiller and set to collect data at a rate of one second, and a miniaturized camera
that was placed in the cab with the field of view oriented towards the rotary tiller so as to
also see the activity of the driver, and set to collect video data continuously. The technical
features of the equipment used to collect the data, as well as the protocols used to collect,
pair, and process data are similar to those described in [26,27,32].

At the office, GNSS and accelerometer data were paired in a Microsoft Excel sheet
based on the time labels collected by both devices. Since both devices provided samples at
a rate of one second along with their corresponding time labels standing for the date, hour,
minute, and second of sampling, these data were used to pair the samples collected by the
two devices. Then, video data were carefully analyzed to document the database by the
main operational events. The observed work, which is typical to weed control operations,
includes the advancement of the farm tractor equipped with the tiller on the space between
two tree rows. After arriving at the plot’s headland, maneuvers are taken to exit a given
operated strip and to enter on a new one. Besides these types of events, other maneuvers
can be taken in the plot, as well as full stops with the engine of the tractor running without
power transmission to the tiller, or full stops with the tractor’s engine off.

Based on the video data visualization, the work was divided into relevant operational
events. These included (Table 1): (i) the equipment completely stopped with the engine
turned off, which is typical to various delays, equipment preparation for work, meal time
and other breaks, (ii) the tractor with the engine on, but with no movement of the equipment,
which is typical to short breaks taken in the plot or at the headland, (iii) maneuvering,
which is required at the headlands to exit an operated strip and to enter on a new one, or
in the plot to pass over various obstacles and to change the row of operation, as well as
(iv) active work, during which the tractor moves while powering the tiller which operates
the soil. As observed in the field and in the video files, the maneuvers were taken with
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disengagement of the power provided to the tiller while the latter was lifted from the
ground when maneuvering.

Table 1. Events observed and documented based on the analysis of video data.

Event Abbreviation Used for
Annotation Description

Active work WORK
The tractor moves and powers the tiller which is used to remove
the weed and till the soil. Conventionally, tiller disengagement was
included in this category.

Maneuvering MAN
Includes the exit and entering maneuvers, maneuvers taken in the
plot, and very short stops (couple of seconds) in the plot. Tiller was
disengaged during these events.

No movement, engine on STOP The tractor is stopped with the engine running for longer periods
of time.

No movement, engine off OFF The tractor is stopped with the engine turned off, typically at the
headland and at the beginning and end of the working day.

According to the time consumption classification in forest operations [19], the events
described in Table 1 stand, by cumulation in a given day, for the gross time consumption.
This time category along with those operated during that time may provide important
figures on the gross productivity. Taken together, active work and maneuvering provide
a good approximation of the net time consumption which, used along with the operated
area, may provide estimates on the net productivity. The time spent by the equipment
in events with no movement can be used as a good approximation of other categories
of time consumption which are relevant to understanding the operational performance,
such as repair and maintenance time, meal and other breaks time, and delays, respectively.
However, to plan the operations, science and practice are typically interested in the net
time, since it is used to develop piece-rate systems used to evaluate and pay for the work
being performed [33], whereas accurately documenting different kind of delays typically
requires extensive field data [34].

In total, the collected dataset had 15,688 records taken at a rate of one second. Before
data annotation, and based on the analysis of video files, 1092 records were removed
since they covered the time used to prepare the study. Although this time could be
documented separately by conventional studies [18], it is rather irrelevant when monitoring
the operations. The annotated dataset used for machine learning contained a number of
14,595 records.

2.2. Prediction of Operational Events by Machine Learning

The annotated dataset was arbitrarily divided in two parts, using the first 10,003 records
to support the first objective of this study (hereafter called dataset 1–DS1), and using the
last 4592 records to support the second objective of this study (hereafter called dataset
2–DS2). The division of the initial dataset was conducted whilst having in mind that each
dataset should contain data for all of the documented events, as well as the fact that a given
sequence of records belonging to a given event in the time frame should not be split and
allocated to different datasets, this way preserving the original pattern in data.

GNSS data provide several attributes such as the location, sampling rate, heading,
speed, and sampling date and time. These were extracted from GPX files with the use
of Garmin BaseCamp (Version 4.7.0) software, in a way which was similar to [27,28]. For
activity recognition and monitoring, besides the location, movement speed is important to
distinguish between given operational events. As such, this feature was used as an input
signal for machine learning, and was called S (km/h). Triaxial accelerometer data provide
readings on the three axes (x, y and z), as well as an aggregated measure called the vector
magnitude, which is computed from the triaxial measurements, as generically described in
Equation (1). An important feature of vector magnitude is that it accommodates the effects
of a sensor’s orientation; therefore, it virtually removes the inconvenience related to the
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location at which the sensor is placed on different machines, or on the same machine on
different days. Vector magnitude was used as an input signal for machine learning, and
it was called A (g). In total, three approaches were possible to support the first objective
of the study: using the A and S data as features taken together (hereafter called modality
AS), using solely A data (hereafter called modality A), or using S data (hereafter called
modality S).

A = 2
√

x2 + y2 + z2 (1)

where A is the vector magnitude, and x, y, and z are magnitudes measured on the x, y, and
z axes, respectively.

Three main steps were considered in this study, which were adapted to the common
language used in machine learning. Accordingly, training and validation are typically
the steps used to check the performance of models before feeding them with unseen data,
whereas later, testing is conducted to check for their generalization ability. As a first step,
the three modalities were checked for accuracy by training and validation on DS1. For that,
the functionalities of the Orange Visual Programming [14] (Version 3.31.1) software were
used. The workflow used to test and validate the best modalities in terms of classification
performance is described in Figure 3. The neural network functionalities supported by the
used software can be configured in terms of architecture and tuned for hyperparameters.
For each modality, the architecture was configured so as to have 1, 5, and 10 hidden layers.
For each option in terms of the number of hidden layers, the number of neurons was set at
10, 100, and 1000, respectively. The Rectified Linear Unit (ReLU) as well as the stochastic
gradient descent optimizer (ADAM) were used for all these options as a standard activation
function and solver, respectively, due to their performance and popularity in machine
learning [35–37]. The number of iterations was set to the maximum enabled by the software
(1,000,000) and, for each option the regularization term was tuned at α = 0.0001, 0.001, 0.01,
0.1, 1, and 10. By the number of modalities, number of hidden layers, number of neurons
per layer and regularization term values, a total of 162 models were trained and validated
(54 models for each modality).
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Figure 3. The workflow used to train, validate the models, and to save the best performing model
in Orange Visual Programming. Legend: 1—the “Data” widget enables loading data and setting
the feature and target variables, 2—the “Neural Network” widget enables the configuration of the
network architecture and hyperparameter tuning each time a model is trained and validated, 3—the
“Test and Score” widget enables the selection of the training and validation options as well as the
extraction of classification performance metrics once the process is complete, and 4—the “Save Model”
widget enables model saving. Note: the software enables the communication of various kinds of
information between the widgets by connecting them.
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To select the best model, the performance of classification was evaluated based on
the overall classification accuracy (CA). Using the “Test and Score” widget, the software
enables the calculation of the commonly used metrics for classification performance, most
of which are described, for instance, in [38,39]. They include the classification accuracy
(CA), precision (PREC), recall (REC), and cross-entropy (LOSS). In addition, the software
enables the computation of training and validation time. Classification accuracy was used
as the main metric to characterize the classification performance because it indicates the
share of correctly predicted instances of the total dataset [39]. In the steps of testing and
validation, the overall classification accuracy was used as a criterion to select the best
performing models.

To supplementarily document the overall classification performance, training (TT)
and validation (VT) time, the area under the ROC curve (AUC), classification accuracy
(CA), F1 score (F1), precision (PREC), recall (REC), specificity (SPEC), and cross-entropy
(LOSS) were computed and reported for each model as well. The steps of training and
validation were performed by a stratified cross-validation using 10 folds. Cross-validation
is a technique used to prevent overfitting by dividing the dataset into a number of folds, of
which one is retained for validating the results trained on the rest; the procedure is repeated
multiple times by using a different fold for validation each time, and then the results are
averaged to produce more robust figures on a model’s performance [40]. Training models
by cross-validation is also a good strategy to deal with datasets that are limited in size [41].

Procedurally, all 162 models were first trained and validated. Based on the figures on
classification accuracy (CA), a final model was retained and saved for each modality. Then,
these three models were used to make predictions on unseen, although annotated, data.
The workflow used for making predictions on unseen data is described in Figure 4.” The
workflow interconnects the data loaded by a “Data” widget with a given model loaded by
the “Load Model widget and with a “Predictions” widget, which pairs the true classes of
unseen data with those predicted by the model and returns the main metrics of classification
performance. In addition, the workflow supports the computation of a confusion matrix,
which may be used to map the absolute or relative frequency of actual instances against the
predicted ones.
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accounting for 92.8%. However, “WORK” and “STOP” events were better classified, ac-
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Figure 4. The workflow used to make predictions on unseen data by the saved models. Legend:
1—a “Data” widget used to load data and set the feature and target variables for unseen data, 2—the
“Load Model” widget used to successively load the best performing models saved for AS, A and
S modalities, 3—the “Predictions” widget used to make predictions on classification performance
for unseen data, and 4—the “Confusion Matrix” widget used to show misclassifications. Note:
the software enables the communication of various kinds of information between the widgets by
connecting them.
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2.3. Computer Architecture and Data Visualization

All the tasks involving the training and validation of the models were carried out on a
Dell Alienware 17 R3 machine equipped with an Intel © Core TM i7–6700HQ CPU, featuring
2.60 GHz, 4 cores, and 8 Logical Processors, with an installed physical memory of 16 GB,
under a Microsoft Windows 10 Home edition operating system (Microsoft, Redmond, WA,
USA). Effects brought on by the modality, network architecture, and hyperparameters were
visually assessed using the “Scatter Plot” widget connected to a “Data” widget which was
used to load the necessary information from a Microsoft Excel file. The steps of pairing the
GNSS and accelerometer data, as well as coding of data according to the events seen in the
video files, were supported by Microsoft Excel.

3. Results
3.1. Training and Validation

The main results characterizing the classification performance during the training
and validation of the models are included for the three modalities in Table 2, where the
optimal models are described in terms of architecture and hyperparameters. Using AS and
A modalities to train and validate the models provided similar classification performances.
For these two modalities, the overall classification accuracy (CA, OVERALL, Table 2)
reached values of 92.8 (modality A) to 93% (modality AS), indicating the benefits of using
the acceleration as data input for classification. When using both acceleration and GNSS
speed, the classification accuracy improved for maneuvering (MAN, 98.2%), stop (STOP,
94.2%), and off (OFF, 97%) events, emphasizing the effect of class imbalance in DS1, where
“Work” events accounted for 7261 observations (73% of DS1), as well as the increased power
of the A signal to discriminate the events. In the same dataset (DS1), maneuvering (MAN,
2046, 20%), stop (STOP, 299, 3%), and off (OFF, 397, 4%) events accounted for less than
25%. Overall, the classification accuracy for modality A was lower, accounting for 92.8%.
However, “WORK” and “STOP” events were better classified, accounting for classification
accuracies of 97.8 and 97%, respectively. For these models, the multi-class cross-entropy
(LOSS, Table 2) had values of 0.19 and 0.23, respectively, pointing out that working with
AS modality may provide lower errors during generalization.

Table 2. Summary of the best models in terms of classification performance.

Modality and
Dataset

Optimal Architecture and
Hyperparameters

Event
Class AUC CA F1 PREC REC SPEC LOSS

AS, DS1

N = 1, n = 1000, α = 0.001,
Activation function = ReLU,
solver = ADAM, number of

iterations = 1,000,000, stratified
cross-validation by 10 folds.

OVERALL 0.986 0.930 0.917 0.906 0.930 0.964 0.191
WORK 0.986 0.930 0.917 0.906 0.930 0.964 0.191
MAN 0.998 0.982 0.987 0.987 0.987 0.966 0.048
STOP 0.984 0.942 0.868 0.816 0.927 0.946 0.131
OFF 0.939 0.970 0.000 0.000 0.000 1.000 0.084

A, DS1

N = 1, n = 100, α = 0.001,
Activation function = ReLU,
solver = ADAM, number of

iterations = 1,000,000, stratified
cross-validation by 10 folds.

OVERALL 0.972 0.928 0.914 0.902 0.928 0.952 0.227
WORK 0.985 0.978 0.985 0.981 0.989 0.950 0.080
MAN 0.972 0.942 0.867 0.819 0.921 0.948 0.154
STOP 0.924 0.970 0.000 0.000 0.000 1.000 0.088
OFF 0.948 0.965 0.558 0.566 0.549 0.983 0.086

S, DS1

N = 5, n = 1000, α = 1,
Activation function = ReLU,
solver = ADAM, number of

iterations = 1,000,000, stratified
cross-validation by 10 folds.

OVERALL 0.886 0.848 0.819 0.792 0.848 0.800 0.463
WORK 0.918 0.911 0.941 0.913 0.971 0.755 0.268
MAN 0.853 0.855 0.665 0.630 0.703 0.894 0.343
STOP 0.885 0.970 0.000 0.000 0.000 1.000 0.099
OFF 0.878 0.960 0.000 0.000 0.000 1.000 0.120

Note: N—number of hidden layers, n—number of neurons per hidden layer, α—regularization parameter, AUC—
area under the receiver operating curve, CA—classification accuracy, F1—F1 score, PREC—precision, REC—recall,
SPEC—specificity, LOSS—cross entropy.

Using the S data alone led to an important drop in classification accuracy (OVERALL,
CA = 84.8%, Table 2), as well as to a high increment in multi-class cross-entropy (OVERALL,
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LOSS = 0.463, Table 2), indicating a limited ability of the GNSS speed alone to accurately
classify the events taken into study. At the event class level, the classification accuracy was
better for events that did not involve a machine’s movement such as “STOP” (CA = 97%,
Table 2) and “OFF” (CA = 96%, Table 2), indicating that lower ranges of GNSS speed may
accurately predict such events. “WORK” events were still highly accurately classified
(CA = 91.1%, Table 2), maybe due to a differentiation in the magnitude of speed, but the
overall result in classification accuracy may be the consequence of “MAN” events being
misclassified based on speed, since this event class had a classification accuracy of 85.5%.

There were differences in the classification performance of the trained and validated
models, as shown in Tables A1–A3. Training and validation time also increased in direct
relation to the complexity of the neural network’s architecture (Figure A2) and the value
used for the regularization term. Training and validating all the models presented in
Tables A1–A3 took about 92 h, a time which was quite equally shared between the models
using AS data (approximately 30 h), A (approximately 29 h), and S (approximately 33 h)
modalities. Of these, working with complex architectures (five or ten layers containing
1000 neurons each) took more time; it accounted for 7.6 (A), 8.1 (AS) and 9.7 (S) hours when
working with a neural network of five layers holding 1000 neurons each, and for 19.1 (A),
20.4 (AS), and 21.6 (S) hours when working with a neural network of ten layers holding
1000 neurons each. These architectures did not improve the classification performance and,
excepting the models based on the S modality, regularization terms set at 1 and 10 returned
poorer classification performances.

3.2. Testing on Unseen Data

The main results characterizing the models’ performance on unseen data are included
for the three modalities in Table 3. Classification performance on unseen data is important
to understanding how these models will work in real operational conditions. The testing
dataset (DS2) contained a number of 4592 observations covering three classes of events:
“WORK” (3235, about 71% of the data), “MAN” (1243, about 27% of the data), and “OFF”
(114, about 2% of the data). As shown, the order of classification performance changed,
pointing out that the model based on the A modality would perform better.

Table 3. Summary of the models’ performance on unseen data.

Modality and
Dataset

Optimal Architecture and
Hyperparameters Event Class AUC CA F1 PREC REC SPEC LOSS

AS, DS2

N = 1, n = 1000, α = 0.001, Activation
function = ReLU, solver = ADAM,
number of iterations = 1,000,000,

stratified cross-validation by 10 folds.

OVERALL 0.984 0.906 0.922 0.946 0.906 0.985 0.187
WORK 0.998 0.906 0.988 0.998 0.977 0.995 0.187
MAN 0.976 0.906 0.814 0.882 0.755 0.962 0.187
OFF 0.927 0.906 0.250 0.165 0.518 0.933 0.187

A, DS2

N = 1, n = 100, α = 0.001, Activation
function = ReLU, solver = ADAM,
number of iterations = 1,000,000,

stratified cross-validation by 10 folds.

OVERALL 0.981 0.922 0.931 0.943 0.922 0.976 0.188
WORK 0.995 0.922 0.984 0.993 0.976 0.983 0.188
MAN 0.974 0.922 0.852 0.881 0.825 0.958 0.188
OFF 0.921 0.922 0.283 0.206 0.447 0.956 0.188

S, DS2

N = 5, n = 1000, α = 1, Activation
function = ReLU, solver = ADAM,
number of iterations = 1,000,000,

stratified cross-validation by 10 folds.

OVERALL 0.902 0.901 0.887 0.876 0.901 0.836 0.352
WORK 0.916 0.901 0.948 0.917 0.981 0.787 0.352
MAN 0.892 0.901 0.811 0.852 0.774 0.950 0.352
OFF 0.868 0.901 0.000 0.000 0.000 1.000 0.352

Note: N—number of hidden layers, n—number of neurons per hidden layer, α—regularization parameter, AUC—
area under the receiver operating curve, CA—classification accuracy, F1—F1 score, PREC—precision, REC—recall,
SPEC—specificity, LOSS—cross entropy.

The classification performance would not be particularly different when using models
based on AS and S data, respectively. These returned a classification accuracy of 90% on
unseen data, while the model based on modality A returned a classification accuracy of 92%
(Table 3). However, the error levels were preserved at similar levels and in a similar order
of magnitude among the AS, A, and S models, indicating a higher error in the case of the S
model working on unseen data (LOSS = 0.352, Table 3). Overall, the classification accuracy
of AS and A models on unseen data was close to that of the training and validation phase
(Tables 2 and 3), with differences that accounted for 2.4 and 0.6%, respectively.
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Figure 5 shows the confusion matrices of the AS, A, and S models when working
with unseen data. For instance, the AS model tested on unseen data confused “WORK”
events with “MAN” events for a number of 73 observations, which may be due to similar
movement speeds. In some other cases, it confused “MAN” with “OFF” events, which may
also be due to a lower magnitude in acceleration and similar magnitudes in speed. As such,
irrespective of the model used, there was some degree of inter-class similarity in the data,
leading to confusion from the models.
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In all cases, “WORK” events were not confused as “OFF” events (Figure 5a–c). Inter-
estingly, the model based on S data was better at setting apart the data from “OFF” events
since, in contrast to AS and A models, it did not confuse “MAN” with “OFF” events.

4. Discussion

Monitoring forest operations by advanced techniques is important and increasingly
required in practice and science to remove the subjectivity of assessments and the errors
that may occur due to data collection over long periods of time, as well as to control the
costs incurred by collecting, processing, and analyzing the data. It may also serve as a
better method to accommodate safety concerns when working nearby dangerous machines.

The results of this study indicate that the type of data sourcing modality is important
in the performance of a neural network designed for event-based classification tasks. This is
supported by the classification performance outcomes when using the vector magnitudes of
triaxial acceleration coupled with GNSS speed as data inputs, for which the overall classifi-
cation accuracy in the training and validation phase was of 93%. Using this combination of
input signals also provides the context required for the localization of operations since the
GNSS data are documented with features such as geographical coordinates, altitude, and
heading. As such, the acceleration data are more likely to provide the distinctive features
needed to identify the relevant events, whereas the GNSS speed helps in improving the
accuracy of classification, particularly in events that involve movement. However, by
comparing the classification accuracies of the best performing neural network models on
DS1, it seems that the GNSS speed makes only a marginal contribution to the improvement
in classification accuracy in the training and validation steps. For instance, the classification
accuracies of the AS, A, and S modalities were 93, 92.8, and 84.8%, respectively, indicating
that using the GNSS speed alone comes at a high expense in event-based classification
accuracy. Also, using the vector magnitude of the acceleration signal alone provides a
classification accuracy close to that provided when combined with the GNSS speed but, by
using this approach, the spatial context of the operations is lost.

In terms of the neural network’s architecture and hyperparameter tuning, the AS
and A modalities required a single hidden layer to achieve the best classification perfor-
mance, whereas the S modality required a network with five hidden layers to show its best
performance (Tables 2 and A1–A3). This hints at how the neural networks managed the
complexity stored in the signals, indicating that accurately learning from the S modality
with a single hidden layer was much more difficult to achieve, requiring more hidden
layers but with fewer neurons. Also, finer regularization terms (α = 0.001 and 0.0001) were
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the best option to increase the classification accuracy based on the AS and A modalities,
respectively, whereas a coarser regularization term (α = 1) was more suitable for the S
modality. Nevertheless, very coarse regularization terms (α = 10) generally led to a dilution
in classification accuracy, irrespective of the modality, depth, and width of the networks
used (Tables A1–A3). Neural networks using the AS and A modalities required a higher
number of neurons per layer to give their best classification performance. In this regard,
classification accuracy based on AS data worked the best with 1000 neurons, whereas clas-
sification accuracy based on A data worked the best with 100 neurons. In comparison, the
neural network using S data required only 10 neurons to show its best performance. This
may be another hint at how data complexity stored in the modalities’ signals was handled,
since it seems that arriving at the best classification accuracy depended on a decreasing
number of weights in the order AS, A, and S, respectively. It is worth mentioning that
training and validating the neural networks using 5 and 10 hidden layers of 1000 neurons
each did not provide additional benefits in terms of classification accuracy but used up
important computational resources, irrespective of the modality used as data input.

The performance of the models on unseen data is essential to understanding how they
will behave in real world applications. Although there was a minor dilution in classification
accuracy, the tuned models of the AS, A, and S modalities showed a high classification
accuracy in predicting the events on unseen data. While this confirms the generalization
ability of the trained and validated models, the most frequently confused events were
“WORK” and “MAN”, pointing out the inter-class similarity of the data. As a potential
solution, these two classes could be merged to improve the classification performance.
However, this approach would have led to missing an important work element for time
study classification, and it would have inflated the time spent as main work time [18,19].
What is clear is that the “OFF” events were never misclassified as “WORK” or “MAN”
events, which is promising considering that the time spent in such events stays outside
the productive time [42],. From this point of view, separating the productive time from
other time consumption categories would probably lead to an improved classification
accuracy since working with binary classification problems based on triaxial acceleration
data typically returns close to 100% in classification accuracy [26,43].

Poplar forests, on the other hand, are located on sites showing a wide variability in
terms of soil condition [44], weed characteristics, and spacing of the trees [7,44], all of which
may at least affect the distribution of events on classes, as well as the magnitude of the
acceleration signals recorded. To these factors, one can add the variations in magnitude
of acceleration due to the type of rotary tiller used, and particularly due to its size class.
To some extent, these variations can be accommodated by the way in which the neural
network models are built, since they use a standard data preprocessing flow that runs a
standardization before training [45]. Data standardization provides input datasets that are
scaled so as to have a mean value of zero and a standard deviation of 1, a procedure that is
robust to outliers [46]. This is helpful to balance the effect of high magnitude observations,
which adds to the benefits of using the vector magnitude of acceleration data to remove the
effects of datalogger orientation [9,26]. Then, the GNSS signal in terms of the magnitude
of the speed could be affected only by the operational conditions, for which sustaining
much higher speeds than those observed in this study is less likely. As a fact, the moving
speeds of machines used in short rotation forests are typically low and in the range of those
observed in this study [47–51].

The main limitation of this study is related to the type of the dataset used. Ideally,
robust models would consider variations that may be brought on by the type of machine
used, the experience of the operators, and practice in various areas. For the time being, ac-
counting for all these factors when developing the machine learning models is challenging.
This comes mainly from the fact that there is no available data annotated for the operational
monitoring of operations such as in this study, which is a common challenge in machine
learning applications [17]. In addition to a resource-intensive process and the expertise
required to annotate the data, large datasets may require an increased computational power
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to be able to train the models. In this study, training and testing took from a couple of
minutes to a couple of hours, and there was a trend in the magnitude of computational
resources depending on the architecture used for the neural networks. Future studies could
accommodate this limitation and check whether there will be a significant difference in the
classification accuracy of the models trained on newcoming data. Due to the way in which
deep learning models are built, they are likely to perform with higher classification perfor-
mances, an option that should be kept in mind in future studies. For instance, valorizing
the available knowledge and models that shape the science of deep learning and computer
vision holds a lot of potential for better understanding the events and making better and
more contextualized predictions based on a combination of 1D and 2D channel data.

5. Conclusions

The classification performance of mechanized weed control operational events by
conventional neural network machine learning was found to be high based on triaxial
acceleration and speed data extracted from GNSS signals in both training–validation and
testing phases. This option enables forest managers to obtain accurate time- and space-
contextualized estimations of the machine performance and will help in removing many
of the less efficient processes required to collect, process, and analyze time study data.
Provided that an offline option will be sufficient, the methods described herein can solve
the problem of operational monitoring. For more advanced tools, multi-modal online
solutions could be researched, as well as how well deep learning and computer vision
perform would in operational classification.
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Appendix A

Table A1. Classification performance of the AS modality in the training and validation phase.

Modality N n α TT VT AUC CA F1 PREC REC SPEC LOSS

AS

1 10 0.0001 113.013 0.018 0.985 0.926 0.911 0.901 0.926 0.966 0.198
1 10 0.001 108.273 0.015 0.985 0.925 0.910 0.900 0.925 0.966 0.199
1 10 0.01 108.526 0.017 0.985 0.920 0.899 0.895 0.920 0.964 0.204
1 10 0.1 60.654 0.016 0.980 0.913 0.885 0.865 0.913 0.962 0.234
1 10 1 32.598 0.018 0.955 0.907 0.878 0.856 0.907 0.938 0.292
1 10 10 16.659 0.016 0.935 0.859 0.827 0.797 0.859 0.794 0.455
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Table A1. Cont.

Modality N n α TT VT AUC CA F1 PREC REC SPEC LOSS

AS

5 10 0.0001 57.992 0.021 0.986 0.928 0.915 0.904 0.928 0.965 0.191
5 10 0.001 64.708 0.032 0.986 0.928 0.916 0.905 0.928 0.965 0.191
5 10 0.01 61.388 0.023 0.985 0.928 0.915 0.905 0.928 0.965 0.193
5 10 0.1 66.964 0.020 0.985 0.928 0.915 0.904 0.928 0.964 0.193
5 10 1 80.314 0.033 0.978 0.914 0.885 0.864 0.914 0.957 0.239
5 10 10 45.376 0.022 0.936 0.864 0.832 0.803 0.864 0.810 0.442

AS

10 10 0.0001 58.585 0.029 0.983 0.918 0.908 0.900 0.918 0.967 0.208
10 10 0.001 59.474 0.030 0.984 0.924 0.911 0.900 0.924 0.963 0.201
10 10 0.01 57.133 0.028 0.984 0.925 0.911 0.900 0.925 0.963 0.198
10 10 0.1 82.339 0.034 0.984 0.924 0.910 0.899 0.924 0.962 0.201
10 10 1 88.714 0.036 0.981 0.913 0.884 0.864 0.913 0.959 0.232
10 10 10 77.527 0.031 0.500 0.726 0.611 0.527 0.726 0.274 0.790

AS

1 100 0.0001 114.736 0.028 0.986 0.929 0.915 0.904 0.929 0.964 0.192
1 100 0.001 112.851 0.040 0.986 0.927 0.913 0.902 0.927 0.964 0.193
1 100 0.01 82.035 0.029 0.982 0.913 0.885 0.865 0.913 0.961 0.223
1 100 0.1 86.150 0.029 0.982 0.913 0.885 0.865 0.913 0.961 0.223
1 100 1 29.645 0.030 0.956 0.908 0.880 0.857 0.908 0.942 0.289
1 100 10 13.096 0.028 0.935 0.858 0.825 0.795 0.858 0.790 0.451

AS

5 100 0.0001 110.955 0.091 0.981 0.914 0.903 0.893 0.914 0.964 0.216
5 100 0.001 101.378 0.072 0.981 0.917 0.902 0.891 0.917 0.954 0.215
5 100 0.01 100.513 0.087 0.978 0.910 0.897 0.885 0.910 0.957 0.235
5 100 0.1 151.335 0.080 0.983 0.920 0.908 0.897 0.920 0.966 0.207
5 100 1 222.884 0.087 0.978 0.912 0.884 0.863 0.912 0.954 0.241
5 100 10 158.203 0.084 0.935 0.866 0.835 0.806 0.866 0.820 0.429

AS

10 100 0.0001 194.814 0.156 0.980 0.918 0.908 0.899 0.918 0.960 0.218
10 100 0.001 186.888 0.168 0.982 0.915 0.905 0.896 0.915 0.964 0.213
10 100 0.01 189.664 0.170 0.979 0.917 0.900 0.889 0.917 0.961 0.221
10 100 0.1 275.760 0.153 0.981 0.921 0.906 0.895 0.921 0.960 0.214
10 100 1 334.031 0.145 0.976 0.910 0.882 0.862 0.910 0.956 0.244
10 100 10 434.342 0.158 0.500 0.726 0.611 0.527 0.726 0.274 0.791

AS

1 1000 0.0001 339.500 0.141 0.986 0.929 0.917 0.906 0.929 0.964 0.191
1 1000 0.001 326.498 0.158 0.986 0.930 0.917 0.906 0.930 0.964 0.191
1 1000 0.01 329.788 0.152 0.982 0.914 0.886 0.885 0.914 0.962 0.221
1 1000 0.1 325.097 0.163 0.982 0.914 0.886 0.885 0.914 0.962 0.221
1 1000 1 122.386 0.158 0.956 0.908 0.879 0.857 0.908 0.941 0.288
1 1000 10 62.033 0.153 0.935 0.861 0.829 0.800 0.861 0.802 0.446

AS

5 1000 0.0001 3444.300 1.977 0.982 0.920 0.905 0.895 0.920 0.964 0.212
5 1000 0.001 3353.729 2.016 0.983 0.921 0.911 0.903 0.921 0.965 0.206
5 1000 0.01 5764.162 2.073 0.981 0.917 0.905 0.895 0.917 0.966 0.220
5 1000 0.1 5371.765 1.968 0.981 0.917 0.904 0.893 0.917 0.961 0.225
5 1000 1 5936.627 2.029 0.970 0.906 0.877 0.854 0.906 0.935 0.265
5 1000 10 5273.351 1.935 0.918 0.788 0.731 0.718 0.788 0.511 0.573

AS

10 1000 0.0001 11,822.498 4.064 0.971 0.916 0.895 0.887 0.916 0.955 0.265
10 1000 0.001 10,310.822 5.091 0.973 0.914 0.892 0.884 0.914 0.947 0.254
10 1000 0.01 11,545.202 6.115 0.975 0.897 0.892 0.890 0.897 0.965 0.255
10 1000 0.1 11,281.575 4.423 0.967 0.892 0.875 0.861 0.892 0.926 0.282
10 1000 1 18,172.055 5.781 0.969 0.876 0.854 0.849 0.876 0.955 0.311
10 1000 10 10,284.011 5.245 0.500 0.726 0.611 0.527 0.726 0.274 0.792

Note: N—number of hidden layers, n—number of neurons per hidden layer, α—regularization parameter,
TT—training time (seconds), VT—validation time (seconds), AUC—area under the receiver operating curve,
CA—classification accuracy, F1—F1 score, PREC—precision, REC—recall, SPEC—specificity, LOSS—cross entropy.
The best performing model is highlighted in bold.
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Table A2. Classification performance of the A modality in the training and validation phase.

Modality N n α TT VT AUC CA F1 PREC REC SPEC LOSS

A

1 10 0.0001 131.311 0.012 0.972 0.924 0.910 0.898 0.924 0.951 0.232
1 10 0.001 131.927 0.015 0.972 0.924 0.909 0.897 0.924 0.951 0.232
1 10 0.01 84.366 0.014 0.971 0.915 0.893 0.886 0.915 0.947 0.249
1 10 0.1 41.572 0.017 0.971 0.911 0.883 0.860 0.911 0.947 0.274
1 10 1 33.968 0.014 0.940 0.911 0.882 0.861 0.911 0.949 0.322
1 10 10 20.710 0.016 0.941 0.820 0.776 0.750 0.820 0.630 0.530

A

5 10 0.0001 35.899 0.015 0.969 0.927 0.915 0.904 0.927 0.953 0.226
5 10 0.001 37.753 0.019 0.970 0.926 0.914 0.904 0.926 0.953 0.226
5 10 0.01 36.095 0.018 0.970 0.925 0.913 0.902 0.925 0.952 0.228
5 10 0.1 50.689 0.019 0.971 0.927 0.916 0.905 0.927 0.952 0.225
5 10 1 68.317 0.020 0.964 0.911 0.883 0.860 0.911 0.947 0.272
5 10 10 53.425 0.019 0.879 0.855 0.820 0.790 0.855 0.737 0.548

A

10 10 0.0001 42.265 0.028 0.972 0.926 0.912 0.900 0.926 0.950 0.224
10 10 0.001 38.729 0.021 0.968 0.926 0.913 0.900 0.926 0.949 0.228
10 10 0.01 43.539 0.027 0.969 0.927 0.914 0.902 0.927 0.949 0.226
10 10 0.1 47.266 0.030 0.967 0.927 0.915 0.903 0.927 0.951 0.225
10 10 1 46.889 0.024 0.967 0.927 0.915 0.903 0.927 0.951 0.225
10 10 10 132.933 0.025 0.500 0.726 0.611 0.527 0.726 0.274 0.790

A

1 100 0.0001 177.114 0.033 0.972 0.928 0.914 0.902 0.928 0.952 0.227
1 100 0.001 174.069 0.032 0.972 0.928 0.914 0.902 0.928 0.952 0.227
1 100 0.01 166.468 0.030 0.972 0.925 0.911 0.899 0.925 0.951 0.231
1 100 0.1 103.447 0.033 0.969 0.911 0.883 0.860 0.911 0.946 0.265
1 100 1 68.159 0.032 0.939 0.911 0.882 0.861 0.911 0.948 0.319
1 100 10 17.931 0.028 0.943 0.796 0.744 0.721 0.796 0.564 0.524

A

5 100 0.0001 107.925 0.090 0.969 0.923 0.913 0.904 0.923 0.954 0.235
5 100 0.001 117.054 0.084 0.969 0.926 0.914 0.903 0.926 0.952 0.235
5 100 0.01 113.997 0.094 0.970 0.927 0.915 0.905 0.927 0.953 0.230
5 100 0.1 187.261 0.090 0.972 0.925 0.914 0.903 0.925 0.954 0.232
5 100 1 286.817 0.087 0.966 0.912 0.883 0.860 0.912 0.946 0.269
5 100 10 123.166 0.084 0.938 0.855 0.820 0.791 0.855 0.740 0.477

A

10 100 0.0001 172.370 0.153 0.969 0.918 0.904 0.892 0.918 0.946 0.246
10 100 0.001 162.744 0.165 0.968 0.923 0.911 0.899 0.923 0.949 0.241
10 100 0.01 190.324 0.159 0.970 0.919 0.902 0.890 0.919 0.944 0.239
10 100 0.1 190.054 0.088 0.972 0.925 0.914 0.903 0.925 0.954 0.232
10 100 1 294.704 0.085 0.966 0.912 0.883 0.860 0.912 0.946 0.269
10 100 10 132.107 0.099 0.938 0.855 0.820 0.791 0.855 0.740 0.477

A

1 1000 0.0001 376.896 0.153 0.971 0.927 0.913 0.901 0.927 0.952 0.227
1 1000 0.001 377.893 5.242 0.971 0.926 0.913 0.901 0.926 0.952 0.227
1 1000 0.01 381.633 0.165 0.971 0.927 0.913 0.901 0.927 0.952 0.228
1 1000 0.1 393.555 0.153 0.970 0.912 0.883 0.861 0.912 0.948 0.253
1 1000 1 172.661 0.142 0.940 0.911 0.883 0.861 0.911 0.949 0.319
1 1000 10 80.511 0.150 0.942 0.829 0.789 0.760 0.829 0.673 0.523

A

5 1000 0.0001 3523.763 2.005 0.967 0.908 0.899 0.891 0.908 0.94806 0.256
5 1000 0.001 4215.993 2.090 0.968 0.914 0.901 0.889 0.914 0.94573 0.253
5 1000 0.01 4812.080 2.035 0.967 0.912 0.900 0.889 0.912 0.94658 0.249
5 1000 0.1 6389.862 2.044 0.967 0.914 0.896 0.883 0.914 0.94518 0.243
5 1000 1 7175.113 2.049 0.957 0.911 0.882 0.860 0.911 0.94395 0.280
5 1000 10 4760.121 2.123 0.925 0.782 0.723 0.718 0.782 0.47803 0.567
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Table A2. Cont.

Modality N n α TT VT AUC CA F1 PREC REC SPEC LOSS

A

10 1000 0.0001 8451.184 4.251 0.967 0.913 0.895 0.884 0.913 0.945 0.260
10 1000 0.001 7971.356 4.504 0.960 0.906 0.890 0.876 0.906 0.915 0.289
10 1000 0.01 15,169.579 4.909 0.960 0.908 0.895 0.883 0.908 0.940 0.281
10 1000 0.1 10,456.199 4.993 0.960 0.892 0.885 0.880 0.892 0.941 0.297
10 1000 1 15,724.293 4.441 0.961 0.912 0.883 0.860 0.912 0.943 0.277
10 1000 10 10,937.570 4.479 0.500 0.726 0.611 0.527 0.726 0.274 0.794

Note: N—number of hidden layers, n—number of neurons per hidden layer, α—regularization parameter,
TT—training time (seconds), VT—validation time (seconds), AUC—area under the receiver operating curve,
CA—classification accuracy, F1—F1 score, PREC—precision, REC—recall, SPEC—specificity, LOSS—cross entropy.
The best performing models are highlighted in bold and the model with the lowest computational requirements
was retained for testing.

Table A3. Classification performance of the S modality in the training and validation phase.

Modality N n α TT VT AUC CA F1 PREC REC SPEC LOSS

S

1 10 0.0001 22.730 0.014 0.900 0.847 0.818 0.791 0.847 0.800 0.454
1 10 0.001 22.928 0.015 0.899 0.847 0.818 0.791 0.847 0.800 0.454
1 10 0.01 22.376 0.014 0.899 0.847 0.818 0.791 0.847 0.801 0.454
1 10 0.1 24.338 0.012 0.900 0.846 0.816 0.788 0.846 0.793 0.455
1 10 1 29.579 0.016 0.884 0.844 0.812 0.783 0.844 0.769 0.473
1 10 10 25.196 0.015 0.870 0.816 0.775 0.747 0.816 0.641 0.565

S

5 10 0.0001 31.968 0.021 0.899 0.848 0.820 0.794 0.848 0.814 0.450
5 10 0.001 37.113 0.018 0.897 0.848 0.820 0.794 0.848 0.815 0.451
5 10 0.01 34.499 0.023 0.898 0.848 0.820 0.794 0.848 0.816 0.451
5 10 0.1 43.378 0.018 0.898 0.848 0.820 0.794 0.848 0.816 0.451
5 10 1 61.593 0.020 0.884 0.848 0.819 0.792 0.848 0.805 0.462
5 10 10 59.856 0.023 0.500 0.726 0.611 0.527 0.726 0.274 0.790

S

10 10 0.0001 34.280 0.026 0.899 0.848 0.820 0.794 0.848 0.814 0.451
10 10 0.001 33.086 0.024 0.898 0.848 0.819 0.793 0.848 0.810 0.451
10 10 0.01 37.279 0.022 0.898 0.847 0.820 0.794 0.847 0.814 0.452
10 10 0.1 62.776 0.030 0.898 0.848 0.820 0.795 0.848 0.816 0.451
10 10 1 113.624 0.030 0.877 0.848 0.819 0.792 0.848 0.804 0.462
10 10 10 123.910 0.023 0.500 0.726 0.611 0.527 0.726 0.274 0.790

S

1 100 0.0001 28.583 0.028 0.900 0.847 0.820 0.794 0.847 0.816 0.451
1 100 0.001 27.898 0.027 0.899 0.847 0.820 0.794 0.847 0.816 0.451
1 100 0.01 25.951 0.028 0.900 0.847 0.820 0.794 0.847 0.814 0.451
1 100 0.1 31.891 0.026 0.899 0.848 0.819 0.793 0.848 0.806 0.452
1 100 1 49.729 0.031 0.889 0.844 0.812 0.783 0.844 0.771 0.470
1 100 10 25.909 0.025 0.870 0.816 0.775 0.747 0.816 0.641 0.561

S

5 100 0.0001 81.134 0.088 0.898 0.847 0.820 0.795 0.847 0.818 0.452
5 100 0.001 90.476 0.089 0.898 0.847 0.819 0.794 0.847 0.815 0.452
5 100 0.01 132.277 0.090 0.899 0.847 0.819 0.792 0.847 0.807 0.451
5 100 0.1 222.879 0.088 0.898 0.847 0.818 0.792 0.847 0.808 0.454
5 100 1 212.696 0.082 0.896 0.848 0.819 0.792 0.848 0.806 0.457
5 100 10 133.832 0.081 0.863 0.796 0.748 0.725 0.796 0.563 0.614

S

10 100 0.0001 199.142 0.165 0.899 0.847 0.818 0.792 0.847 0.807 0.453
10 100 0.001 208.465 0.158 0.899 0.847 0.819 0.793 0.847 0.810 0.452
10 100 0.01 328.109 0.171 0.896 0.847 0.820 0.795 0.847 0.817 0.455
10 100 0.1 498.491 0.152 0.896 0.846 0.818 0.793 0.846 0.815 0.458
10 100 1 413.117 0.176 0.888 0.847 0.819 0.793 0.847 0.811 0.462
10 100 10 604.866 0.166 0.500 0.726 0.611 0.527 0.726 0.274 0.791
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Table A3. Cont.

Modality N n α TT VT AUC CA F1 PREC REC SPEC LOSS

S

1 1000 0.0001 123.832 0.168 0.898 0.848 0.820 0.793 0.848 0.810 0.453
1 1000 0.001 117.616 0.144 0.898 0.848 0.820 0.793 0.848 0.810 0.453
1 1000 0.01 122.734 0.162 0.898 0.848 0.820 0.793 0.848 0.810 0.453
1 1000 0.1 135.329 0.155 0.899 0.848 0.819 0.792 0.848 0.805 0.453
1 1000 1 125.781 0.159 0.889 0.844 0.813 0.785 0.844 0.776 0.471
1 1000 10 141.933 0.141 0.871 0.819 0.779 0.750 0.819 0.655 0.556

S

5 1000 0.0001 3967.578 2.070 0.897 0.847 0.819 0.793 0.847 0.814 0.456
5 1000 0.001 6176.544 2.029 0.899 0.848 0.820 0.794 0.848 0.814 0.452
5 1000 0.01 6545.242 2.077 0.900 0.848 0.819 0.793 0.848 0.810 0.452
5 1000 0.1 5265.886 2.064 0.893 0.847 0.820 0.795 0.847 0.818 0.461
5 1000 1 8161.303 2.186 0.886 0.848 0.819 0.792 0.848 0.800 0.463
5 1000 10 4835.667 2.274 0.811 0.759 0.686 0.688 0.759 0.409 0.681

S

10 1000 0.0001 9320.816 4.993 0.897 0.846 0.818 0.792 0.846 0.806 0.458
10 1000 0.001 17,128.945 4.442 0.897 0.848 0.820 0.794 0.848 0.814 0.455
10 1000 0.01 14,130.691 3.850 0.894 0.847 0.819 0.793 0.847 0.813 0.456
10 1000 0.1 13,607.806 4.461 0.898 0.847 0.819 0.793 0.847 0.812 0.454
10 1000 1 12,868.969 3.838 0.884 0.844 0.817 0.793 0.844 0.817 0.488
10 1000 10 11,687.663 4.818 0.500 0.726 0.611 0.527 0.726 0.274 0.794

Note: N—number of hidden layers, n—number of neurons per hidden layer, α—regularization parameter,
TT—training time (seconds), VT—validation time (seconds), AUC—area under the receiver operating curve,
CA—classification accuracy, F1—F1 score, PREC—precision, REC—recall, SPEC—specificity, LOSS—cross entropy.
The best performing model is highlighted in bold.
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