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Abstract: Forest above-ground carbon stock (AGCS) is one of the primary ecological evaluation
indicators, so it is crucial to estimate the AGCS accurately. In this research, we added the climatic and
topographic factors to the estimation process by a remote sensing approach to explore their impact
and to achieve more precise estimations. We hope to develop a more accurate estimation method
for AGCS based on remote sensing data and climate data. The random forest (RF) method has good
robustness and wide applicability. Therefore, we modeled and predicted the AGCS by RF based on
sixty field sample plots of Pinus densata pure forests in southwest China and the factors extracted
from Landsat 8 OLI images (source I), Sentinel-2A images (source II), and combined Landsat 8 OLI
and Sentinel-2A images (source III). We added the topographic and climatic factors to establish the
AGCS estimation model and compared the results. The topographic factors contain elevation, slope,
and aspect. Climatic factors contain mean annual temperature, annual precipitation, annual potential
evapotranspiration, and monthly mean potential evapotranspiration. It was found that the R2 and
RMSE of the model based on source III were better than the R2 and RMSE of the models based on
source I and source II. Compared to the models based on source I and source II, the model based on
source III improved R2 by up to 0.08, reduced RMSE by up to 2.88 t/ha, and improved P by up to
4.29%. Among the models without adding factors, the model based on source III worked the best,
with an R2 of 0.87, an RMSE of 10.81 t/ha, an rRMSE of 23.19%, and a P of 79.71%. Among the models
that added topographic factors, the model based on source III worked best after adding elevation,
with an R2 of 0.89, an RMSE of 10.01 t/ha, an rRMSE of 21.47%, and a P of 82.17%. Among the
models that added climatic factors, the model that added the annual precipitation factor had the best
modeling result, with an R2 of 0.90, an RMSE of 9.53 t/ha, an rRMSE of 20.59%, and a P of 83.00%.
The prediction result exhibited that the AGCS of the Pinus densata forest in 2021 was 9,737,487.52 t.
The combination of Landsat 8 OLI and Sentinel-2A could improve the prediction accuracy of the
AGCS. The addition of annual precipitation can effectively improve the accuracy of AGCS estimation.
Higher resolution of climate data is needed to enhance the modeling in future work.
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1. Introduction

The FAO (Food and Agriculture Organization of the United Nations) reported that the
global carbon stock of biomass in live forests reached 294.535 billion t, with an average of
72.6 t/ha. This represents approximately 44.5% of the total global carbon stock in global
forest ecosystems, including those in dead wood, dead leaves, and soil [1]. An accurate
forest carbon stock estimation allows for a more intuitive reflection of the forest carbon
potential [2]. Moreover, remote sensing can be very useful for estimating forest parameters.
Therefore, it is necessary to explore and develop new methods for more accurate AGCS
estimation based on remote sensing. It is conducive to facilitating the sustainable balance
and stable development of the global ecological environment. The forest cover of Shangri-
La [3] plays an important role in the ecological balance of northwestern Yunnan, as well as
in the global ecological balance.

The Landsat series data are widely employed as a standard optical remote sensing
dataset for estimating the AGCS and AGB (above-ground biomass) in forest ecosystems.
In the estimation studies of the AGCS and AGB, the low resolution of Landsat data is
their main drawback, while Sentinel 2 data have higher resolution as well as more band
information [4], and these advantages can compensate for the shortcomings of Landsat
data to some extent. However, there are still a number of studies that have only used
Landsat data. For example, the use of Landsat 8 OLI remote sensing data based on mixed
effects can improve the accuracy of forest AGB estimation [5]. The results of the Landsat
8 OLI-based forest AGB estimation study by Li et al. also showed that this image can be
well used for forest AGB estimation [6]. Zheng et al. indicated that forest AGB can also be
better estimated based on Landsat images [7]. After processing Landsat long-time series
image data by a filtering algorithm, Teng et al. obtained higher AGB prediction accuracy [8].
Meanwhile, Landsat images can also be applied to estimate grassland AGB [9]. In addition
to the studies mentioned above, there are many other applications of Landsat images for
AGB estimation [10–14]. Their research objects or research methods are also different. Thus,
Landsat images play an important role in the estimation of AGB.

The advantage of the Sentinel-2 images over the Landsat image is their higher spatial
resolution of 10 and 20 m and temporal resolution (up to 5 days) [4]. It is feasible to
apply the Sentinel-2 images to estimate the forest AGB and AGCS. The higher resolution
of Sentinel-2 images tends to bring higher accuracy to the estimation of the AGB and
AGCS [15]. Sentinel-2 images can provide important information in forest biomass research,
such as some of the vegetation indices from Sentinel-2 [16], which can effectively enable
remote sensing estimation of AGB [17]. The potential of the Sentinel-2 images in vegetation
biomass studies allows them to be used in grassland biomass estimation [18–20] and in
combination with other remote sensing images [21,22]. Combining multiple remote sensing
sources may solve some difficulties of using a single source data for AGB modeling [23].

Topographic factors are commonly addressed in related studies. These studies include
assessing the site quality of forest land before estimating the AGB and AGCS [24,25]. Zhao
et al. also estimated the AGB based on the different site classes [26]. In our previous study,
the terrain ecological niche index (TNI) was added to improve the prediction accuracy of
the AGCS [27]. Additionally, AGB estimation models were built by categorizing elevation
and slope [3] and utilizing topographic factors as mixed effectors [28]. Adding topographic
factors allows for dynamic biomass estimation over long time series data [29]. Elevation,
slope, and aspect factors were added in the estimation of the AGCS and its uncertainty
analysis [30], as well as in the AGB estimation of natural forests [31]. The study by Xu
et al. [32] also used topographic factors to establish the AGB estimation model. It is
important to note that the specific topographic factors (such as elevation, slope, and aspect)
employed in these studies vary with their specific usage and research objectives.

The AGCS and AGB are also affected by climate factors that affect forest growth [33,34],
as land surface temperature can have an impact on forest carbon stock and biomass [35].
Land surface temperature is negatively correlated with forest cover, especially in the dry
season [36]. Therefore, land surface temperature could naturally be applied to estimate the
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AGCS [37–39]. However, climatic factors such as temperature and precipitation have yet to
be practically applied to the estimation of biomass or carbon stock in the vast majority of
studies. Studies on the AGCS and climatic factors have preferred to analyze the spatial and
temporal correlation between carbon stock and climatic factors [40–42].

Most studies on forest AGB and AGCS in Shangri-La, Yunnan Province, have pri-
marily focused on the influence of topographic factors on AGB modeling and estima-
tion [30,32,43,44]. A few studies have addressed climatic factors [37,45,46]. Among them,
Wang et al. and Cheng et al. [45,46] used the same climatic factors, solar radiation in
the growing season, growing accumulated temperature, and precipitation in the growing
season, and Yin et al. [37] used the land surface temperature. Although these studies used
additional factors, they only utilized the Landsat images with relatively coarse spatial
resolution. In addition to this, most studies of Pinus densata in the region also have used
only Landsat data [8,27–29,47]. In contrast, far fewer AGB or AGCS studies [44,48,49] have
been conducted in the region using Sentinel-2 data.

Although some studies that have used Landsat images to estimate the AGCS have
added topographic or climatic factors [24,25,27–32], they were limited by the resolution of
the images used and the inadequacy of single-source remote sensing. Climatic factors were
used much less often than topographic factors in studies about AGB and AGCS estimation.
On the other hand, the studies using Sentinel-2 images have solved the lack of resolution of
Landsat images while ignoring the effect of topographic and climatic factors [15–18,20–23].

Pinus densata is a prominent tree species in the region [3], so it should get increased
attention and meticulous evaluation to facilitate more informed management decisions.
Since most studies on the AGB or AGCS of Pinus densata do not consider the comprehensive
influence of environmental factors and remote sensing data sources, it is evident that
further supplementation is needed in the relevant research on the AGCS of the Pinus
densata forest in Shangri-La. Based on this, we studied Pinus densata in Shangri-La, Yunnan
Province, China. We combined the Landsat 8 OLI and Sentinel-2A images in 2021, DEM
data, sample plots, mean annual temperature (MAT), annual precipitation (AP), annual
potential evapotranspiration (APET), and monthly mean potential evapotranspiration
(MMPET) data in 2021 of the area. However, in the Landsat images, there is a difference
in the acquisition date between “LC81310412021082LGN00” and the rest of the images
due to cloud amount control, and this part of the images was not further processed in this
study. We used three types of remote sensing sources, Landsat 8 OLI, Sentinel-2A, and
their combined remote sensing factors, and then added topographic and climatic factors to
model by RF. Finally, we compared them to pick the optimal model. The optimal model
was ultimately used to predict the AGCS in the Pinus densata forest. The primary objective
of this study was to explore a more appropriate method to estimate the AGCS in the Pinus
densata forest in Shangri-La by remote sensing. Additionally, these efforts aim to fill the
research gaps concerning the AGCS of the Pinus densata forest in Shangri-La.

2. Materials and Methods
2.1. Study Area

Shangri-La is located in the northwestern corner of Yunnan Province and is rich in
biological resources. The area is situated in a highland area with a high terrain and an
average elevation of approximately 3459 m. The terrain of Shangri-La is complex and varied,
encompassing mountains, canyons, plateaus, grasslands, and lakes. Its administrative
boundaries are bisected by the Jinsha River’s waterways in Diqing, Yunnan Province. The
Jinsha River flows through the Shangri-La metropolitan area from the northwest to the
southeast, while the Lancang and Nujiang Rivers flow through the area from the north and
east, respectively. Shangri-La exhibits a subtropical monsoon climate alternating with a
mountain monsoon climate. The region’s mean annual temperature is about 5.4 ◦C, and
the annual precipitation is about 617 mm. The main tree species in the area include Pinus
densata, Picea yunnanensis, Picea asperata, etc. [3]. In Shangri-La, Pinus densata participates
in the maintenance of species diversity, regulates the climate, participates in the carbon
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cycle, and, as one of the dominant tree species in the region, accounting for 22.71% of the
Shangri-La tree woodland area [50], has a huge potential for carbon sequestration. Pinus
densata plays a significant role in the forestry industry of Shangri-La. The geographic
location of the study area, the distribution of Pinus densata and the distribution of sample
plots are shown in Figure 1.
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Figure 1. Research area.

2.2. Technical Route

In this research, we worked along the technical route shown in Figure 2, which mainly
includes data processing; factor extraction, selection, and combination; modeling; and
AGCS estimation.

2.3. Data Source and Processing
2.3.1. Remote Sensing Data

The remote sensing images we used are Landsat 8 OLI (30 m) and Sentinel-2A (10 m) in
2021, and they were downloaded from Geospatial Data Cloud (https://www.gscloud.cn/,
accessed on 20 August 2023) and Copernicus Data Space Ecosystem (https://dataspace.
copernicus.eu/, accessed on 20 August 2023), respectively. In order to ensure image quality,
all remote sensing images we used had less than 1% cloud amount, so we did not use the
cloud-masking operation. The details of each image data are shown in Table 1. All remote
sensing images were used to extract the values on the image elements corresponding to the
sample plots.

https://www.gscloud.cn/
https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
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Table 1. Information of the remote sensing images.

Image Type Image ID Cloud Amount/(%) Acquisition Date

Landsat 8 OLI

LC81310412021082LGN00 0.88 23 March 2021

LC81320412021313LGN00 0.58 9 November 2021

LC81320402021313LGN00 0.89 9 November 2021

Sentinel-2A

S2A_MSIL2A_20211108T035951_N0500_R004_T47RNM_20230103T171747.SAFE 0.04 8 November 2021

S2A_MSIL2A_20211118T040041_N0500_R004_T47RNK_20230101T032435.SAFE 0.05 18 November 2021

S2A_MSIL2A_20211118T040041_N0500_R004_T47RNL_20230101T032435.SAFE 0.00 18 November 2021

S2A_MSIL2A_20211118T040041_N0500_R004_T47RPK_20230101T032435.SAFE 0.17 18 November 2021

S2A_MSIL2A_20211118T040041_N0500_R004_T47RPL_20230101T032435.SAFE 0.01 18 November 2021

S2A_MSIL2A_20211218T040201_N0500_R004_T47RPM_20221225T151243.SAFE 0.00 18 December 2021
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Landsat 8 OLI images were used after radiometric calibration and the FLAASH
atmospheric correction. The Sentinel-2 images are level 2A, they were resampled to 10 m
in SNAP 9.0.0, and mosaiced and cropped to use in ENVI 5.6. Finally, the resolution of
Landsat 8 OLI images was downscaled to 10 m × 10 m by resampling in ENVI 5.6 [51].
Resampling of Landsat data may create some limitations, such as changes in spectral
information in some areas, or result in changes or loss of some spatial information. We
obtained three types of data sources.

Source I: the factors from Landsat 8 OLI.
Source II: the factors from sentinel-2A.
Source III: the factors from the combination of Landsat 8 OLI and Sentinel-2A.

2.3.2. Sample Plots

The sample plots data were from 60 field plots surveyed in 2019 and 2021 [49]. All
sample plots were 10 m × 10 m. All 60 sample plots, 20 from 2019 and 40 from 2021, were
randomly distributed within the study area. The average AGB was calculated using the
allometric growth equation of Pinus densata [52], which is also based on the measured
average diameter at breast height (DBH) and tree height. Finally, the AGB density of each
sample plot was obtained from the mean AGB and the area of the sample plots.

W = 0.073·D1.793·H0.880 (1)

where W is the AGB per tree (kg), D is the diameter at breast height (cm), and H is the
height (m).

The biomass density in the sample plots was multiplied by the Pinus densata carbon
content coefficient to obtain the AGCS density. According to the Guidelines for Measuring
Carbon Stock in Forest Ecosystems [53], the recommended carbon content coefficients apply
to all major dominant tree species in China. The coefficient for Pinus densata is 0.501 [37].
Finally, the AGCS density of the sample plots was obtained by the carbon stock conversion
formula [37].

C = W·CF (2)

where C is the carbon stock (kg), W is the biomass (kg), and CF is the carbon content coefficient.
With Equations (1) and (2), we obtained the measured AGCS of Pinus densata in each

sample plot as one of the key data for modeling.

2.3.3. Topography Data

According to the DEM data of Shangri-La, we extracted the topographic factors
by ArcGIS, including elevation, slope, and aspect. The DEM data we used are from
the ASTER GDEM data product. They were downloaded from Geospatial Data Cloud
(https://www.gscloud.cn/, accessed on 20 August 2023). The data have a horizontal
accuracy of 30 m and a vertical accuracy of 20 m. The DEM data were converted from 30 m
to 10 m resolution by resampling. Thus, we obtained topographic factors with a resolution
of 10 m.

2.3.4. Climate Data

Climatic factors were obtained from the National Tibetan Plateau Science Data Center,
including mean annual temperature [54–58], annual precipitation [54,56–59], annual po-
tential evapotranspiration, and monthly mean potential evapotranspiration [54–57,60,61]
in 2021. The spatial resolution of this data is approximately 1 km. This dataset is generated
by downscaling in China through the delta spatial downscaling scheme, which is based
on the global 0.5◦ climate dataset released by CRU and the global high-resolution climate
dataset released by WorldClim.

We used China’s monthly mean temperature data (0.1 ◦C) and monthly precipitation
data (0.1 mm) [59] to calculate the mean annual temperature (1 ◦C) and annual precipitation
(1 mm) by ArcGIS.

https://www.gscloud.cn/
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Similarly, we used the China’s potential evapotranspiration (0.1 mm) data [61] to
calculate the monthly potential evapotranspiration (1 mm). The spatial resolution of this
data is the same as that of temperature and precipitation data. It is obtained by using the
Hargreaves potential evapotranspiration calculation formula [57,62,63] based on China’s
1 km monthly mean temperature, minimum temperature, and maximum temperature
dataset [55].

2.4. Factors Extraction and Combination
2.4.1. Factors Extraction

To achieve data harmonization, we converted the Landsat 8 OLI images, DEM data,
and climatic data from 1 km and 30 m to 10 m resolution by resampling. All the remote
sensing variables in this work contain Landsat 8 OLI and Sentinel-2A texture factors,
vegetation index factors, and band factors. Each texture feature can have some importance
for AGCS modeling and estimation, but based on the results of factor selection, two kinds
of texture features, CC and SM, are more important for AGCS modeling and estimation.
The vegetation indices of Landsat 8 OLI were calculated by band math in ArcGIS on each
sample plot. The vegetation indices calculation formula of Sentinel-2A was obtained from
the SNAP. All remote sensing factors extraction for the two kinds of remote sensing images
was performed in ArcGIS. Similarly, topographic and climatic factors were extracted by
ArcGIS on each sample plot.

2.4.2. Factor Selection and Combination

The texture factors included eight types ranging from 3 to 11 window sizes in each
band for both Sentinel-2A and Landsat 8 OLI images. The eight types of texture factors
included homogeneity (HO), dissimilarity (DI), mean (ME), angular second-order moments
(SM), entropy (EN), correlation (CC), variance (VA), and contrast (CO).

The band factors of Landsat 8 OLI images include B1~B7, B53, B64, B65, B67, B74,
B547, and B4/Albedo. The vegetation indices factors include NDVI, TNDVI, RVI, SAVI,
TSAVI, MASAVI, MSAVI2, GEMI, IPVI, and EVI.

The band factors of Sentinel-2A images include B1~B9, B11, and B12. The vegetation
indices factors include NDVI, TNDVI, RVI, SAVI, TSAVI, MASAVI, MSAVI2, GEMI, IPVI,
EVI, IRECI, MCARI, MTCI, REIP, NDI45, and PSSRa. The information of all extracted
factors is presented in Table 2.

Table 2. Information of all factors.

Types Factors Source

Topographic factors and band factors
Elevation, slope, aspect B1~B7/B1~B9,
B11, B12 B53, B64, B65, B67, B74, B547,

B4/Albedo
DEM, Landsat 8 OLI and sentinel-2A

Texture factors

(HO)homogeneity, (DI)dissimilarity,
(ME)mean, (SM)angular second order

moments, (EN)entropy, (CC)correlation,
(VA)variance, (CO)contrast

Landsat 8 OLI and sentinel-2A

Vegetation indices factors

NDVI, TNDVI, RVI, SAVI, TSAVI,
MASAVI, MSAVI2, GEMI, IPVI, EVI,
IRECI, MCARI, MTCI, REIP, NDI45,

PSSRa.

Landsat 8 OLI and sentinel-2A

Climatic factors

Mean annual temperature, annual
precipitation, annual potential

evapotranspiration, monthly mean
potential evapotranspiration

National Tibetan Plateau Science Data
Center

The results of factor selection are presented in Table 3. The factors that have a signifi-
cant correlation with AGCS density in the sample plots were selected by Pearson correlation
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analysis. Subsequently, we used RF to further select the factors with a cumulative feature
importance contribution of 80% and above. For comparison, we performed the same
selection of remote sensing factors of Landsat 8 OLI and sentinel-2A separately. VIF anal-
ysis is one of the commonly used multicollinearity detection methods [64–66], and the
multicollinearity method for detecting the influence of unbiased predictive significance in
RF modeling is average Gini impurity reduction (AGIR) comparison [67].

Table 3. Information of selected factors.

Data Type Source of Data Selected Factors

Source I Landsat 8 OLI LrR11B6CC, LrR11B5CC, LrR11B7CC, LrR11B6SM, LrR11B7SM

Source II Sentinel-2A SR5B8ASM, PSSRa, SR11B5SM, SR7B6CC, SR5B6CC, SR9B5SM,
SR11B8ACC, SR5B1CC

Source III Landsat 8 OLI and
Sentinel-2A

LrR11B5CC, LrR11B6CC, LrR11B5SM, LrR11B7CC, LrR7B6CC,
LrR9B6CC, SR5B6CC, SR5B8ASM, SR7B6CC, SR11B5SM, PSSRa

In the selected results, the expression is “S/LrRXBYZZ”. S/Lr is Sentinel-2A or resampled Landsat 8 OLI,
RX is window size, BY is a certain band, ZZ is a certain texture feature’s abbreviation, and PSSRa is the
chlorophyll index.

Another key data used for modeling was obtained by extracting factor values from
selected remote sensing factors, topographic and climatic factors, through sample plots.

We added topographic and climatic factors in source I, II, III to model the following:

(1) Combination of topographic and remote sensing factors, elevation and source I, II, III;
slope and source I, II, III; aspect and source I, II, III.

(2) Combination of climatic and remote sensing factors, annual precipitation and source
I, II, III; mean annual temperature and source I, II, III; annual potential evapotran-
spiration and source I, II, III; monthly mean potential evapotranspiration and source
I, II, III.

With all the combinations of data and factor additions, we obtained twenty-four sets
of data for modeling:

Model 1: established by source I
Model 2: established by source II
Model 3: established by source III
Model 4: established by elevation and source I
Model 5: established by slope and source I
Model 6: established by aspect and source I
Model 7: established by elevation and source II
Model 8: established by slope and source II
Model 9: established by aspect and source II
Model 10: established by elevation and source III
Model 11: established by slope and source III
Model 12: established by aspect and source III
Model 13: established by annual precipitation and source I
Model 14: established by mean annual temperature and source I
Model 15: established by annual potential evapotranspiration and source I
Model 16: established by monthly mean potential evapotranspiration and source I
Model 17: established by annual precipitation and source II
Model 18: established by mean annual temperature and source II
Model 19: established by annual potential evapotranspiration and source II
Model 20: established by monthly mean potential evapotranspiration and source II
Model 21: established by annual precipitation and source III
Model 22: established by mean annual temperature and source III
Model 23: established by annual potential evapotranspiration and source III
Model 24: established by monthly mean potential evapotranspiration and source III
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2.5. Model Establishment and Evaluation

In this research, we used RF to model and estimate the AGCS in the Pinus densata
forest. This method is primarily utilized to solve classification and regression problems. It
has the advantages of high accuracy, resistance to overfitting, and interpretability. The RF
parameters were described in Bao et al. [47]. These parameters and their ranges in this work
are: n_estimators: 20–200, max_depth: 6–9, min_samples_leaf: 2, and min_samples_split: 2.
These parameters were chosen based on multiple cross-validation tests. The dataset for
this study is small, so we used the parameters described above. Using too large a range of
parameters may result in overfitting.

We used RF to randomly select 80% of the sample data for model training. The
remaining 20% of the sample data was used to validate the trained model. The model
evaluation indicators include the coefficient of determination (R2), the root mean square
error (RMSE), the relative root mean square error (rRMSE), and accuracy (P). The R2 is
used to reflect the overall model fitting effect, the RMSE is used to quantify the degree of
error, the rRMSE is used to indicate the relative deviation of the estimated value from the
measured value, and P is used to reflect the average prediction accuracy of the model [68].
The formulas are as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(yi − y)2

n
(4)

rRMSE =
RMSE

y
(5)

P =
1
n∑n

i=1

(
1 −

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣) (6)

where yi is the true value, ŷi is the model regression value, y is the mean value, and n is the
plot number.

We compared all the models and picked an optimal model. Finally, we used the data
used in this model to perform AGCS estimation by RF as a way to develop a method for
AGCS estimation based on remote sensing data and topographic or climatic data.

3. Results
3.1. Modeled by Remote Sensing Factors

Source I, source II, and source III were modeled before adding topographic or climatic
factors. The results are shown in Table 4.

Table 4. Modeling results from different data sources.

Data Source Model R2 RMSE/(t·ha−1) rRMSE/(%) P/(%)

Source I Model 1 0.85 11.38 23.46 78.71
Source II Model 2 0.82 12.41 24.21 79.74
Source III Model 3 0.87 10.81 23.19 79.71

Among the three models, the model established by source III has the best R2, RMSE,
and rRMSE. Its indicators are better than those of the models constructed by source I and
source II. The accuracy of the model based on source III is also very close to that of the
model based on source II. From the modeling results in Table 4, it can be seen that the
source I-based model has the advantage of better R2 and RMSE, while the source II-based
model has the advantage of better rRMSE and P. The model based on source III has more
balanced model indicators, which may be due to the fact that the high resolution of the
Sentinel-2A data provides more detail and information. The scatterplot of each model is
shown in Figure 3.
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Figure 3. Model fitting effect based on three data sources: (a) Model fitting effect of remote sensing
factors of source I, (b) model fitting effect of remote sensing factors of source II, and (c) model fitting
effect of remote sensing factors of source III.

From a practical application point of view, the coefficient “b” can be interpreted as
a baseline adjustment term. In biomass estimation research, due to the complexity and
uncertainty of the measurement process, it may not be possible to fully and accurately
describe the real situation of biomass only by relying on the linear relationship between the
measured value and the predicted value. At this time, the coefficient “b” can fine-tune this
linear relationship to make the predicted value closer to the actual biomass.

3.2. Modeled Adding Topographic Factors

The topographic factors were added to source I, source II, and source III for modeling.
The results are shown in Table 5. A comparison of the modeling results after adding
topographic factors is shown in Figure 4.

As shown in Figure 5, after adding the topographic factors, various indicators of the
AGCS estimation model have different improved percentages. The comparative results
show that the R2 of the model based on source III is the highest, the R2 of the model based
on source I is the second highest, and the R2 of the model based on source II is the lowest
group after adding the same topographic factor. Regarding prediction accuracy, the model
based on source II is the highest when adding the same topographic factor; after adding
aspect, the prediction accuracy of model 9 reaches 82.80%. The model based on source III
is the second highest; after adding elevation, the prediction accuracy of model 10 reaches
82.17%. The prediction accuracy of the model based on source I is the lowest relatively;
after adding aspect, the prediction accuracy of model 6 reaches 81.14%. Furthermore, the
model indicators improved their percentage when adding the topographic factor in the
order of model source II, model source I, and model source III.

Table 5. Modeling results adding topographic factors.

Data Source Added Factors Model R2 RMSE/(t·ha−1) rRMSE/(%) P/(%)

Source I
Elevation Model 4 0.88 10.37 21.90 80.67

Slope Model 5 0.88 10.24 21.57 80.92
Aspect Model 6 0.88 10.38 22.33 81.14

Source II
Elevation Model 7 0.85 11.51 21.49 82.70

Slope Model 8 0.86 11.22 21.69 82.10
Aspect Model 9 0.85 11.37 20.56 82.80

Source III
Elevation Model 10 0.89 10.01 21.47 82.17

Slope Model 11 0.88 10.16 21.34 81.33
Aspect Model 12 0.89 9.92 21.95 81.18
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3.3. Modeled Adding Climatic Factors

As previously stated, the climatic factors were added to source I, source II, and source
III to model. After that, the modeling results were subjected to a comparative analysis. The
model indicators are presented in Table 6. Figure 6 illustrates the comparative analysis of
the modeling improvement after adding the climatic factors.

Table 6. Modeling results after adding climatic factors.

Data Source Added Factors Model R2 RMSE/(t·ha−1) rRMSE/(%) P/(%)

Source I

AP Model 13 0.88 10.34 21.51 81.54
MAT Model 14 0.89 9.81 20.24 82.59
APET Model 15 0.89 10.02 20.16 82.83

MMPET Model 16 0.88 10.40 21.26 82.70

Source II

AP Model 17 0.88 10.77 19.60 84.42
MAT Model 18 0.85 11.40 20.66 83.11
APET Model 19 0.86 11.18 20.69 82.91

MMPET Model 20 0.85 11.41 21.83 83.00

Source III

AP Model 21 0.90 9.53 20.59 83.00
MAT Model 22 0.89 9.95 21.39 81.82
APET Model 23 0.88 10.07 21.54 82.03

MMPET Model 24 0.89 9.88 22.02 81.85
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As illustrated in Figure 7, the modeling results after adding climatic factors to the
three data sources are as follows: all the model indicators exhibited better values in com-
parison to those of the model constructed before adding topographic and climatic fac-
tors. Compared with the modeling results when adding topographic factors, the R2 and
prediction accuracy of models 13–24, which included the climatic factors, has a further
improvement. Among the three data sources, the R2 of the model based on source III is
once again the highest. The R2 of the model based on source I is the second highest, but it is
very close to the R2 of the model based on source III. The R2 of the model based on source
II is the lowest relatively. Among the three data sources, the prediction accuracy of the
model based on source II including climate factors remains the highest; after adding annual
precipitation, the prediction accuracy of model 17 reaches 84.42%. The prediction accuracy
of the model based on source III is the second highest, after adding annual precipitation,
the prediction accuracy of model 21 reaches 83.00%. Among the three data sources, the
prediction accuracy of the model based on source II is the lowest relatively. The order of im-
proved percentage of model indicators is source II, source II, and source III, in descending
order. A comparison of the model established after adding factors to source III indicates
that the most effective climatic factor is the annual precipitation, and the most effective
topographic factor is the elevation.
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3.4. AGCS Mapping

We compared the AGCS estimation models of Pinus densata forest, which were estab-
lished by adding topographic or climatic factors to the three kinds of data sources. Then,
the optimal model obtained by adding the annual precipitation factor to source III was
used for AGCS estimation and mapping, and it has been shown that Pinus densata is more
sensitive to moisture effectiveness (precipitation and relative humidity) in the early part
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of the growing season [62]. Finally, the estimated AGCS value for the Pinus densata forest
in Shangri-La was 9,737,500 t in 2021. The distribution of AGCS is illustrated in Figure 8.
Some scholars have also made remote sensing estimates of Pinus densata AGB and AGCS
in Shangri-La using different methods and data. Compared to the following studies, we
have not only added some climatic factors, but also Sentinel-2A data. The carbon stock
of the Pinus densata arbor layer in 2008, estimated by Yue [50], was 8,640,900 t based on
Landsat TM image data. Wang et al. [45] used remote sensing information modeling to
estimate the AGB in 2009, and the result was 20,000,000 t. Liao et al. [29] estimated the
AGB during the 1987–2017 period by Landsat time series images and RF algorithm, and
the result was 8,496,300~9,157,800 t. Teng et al. [8] combined the AHTC filtering algorithm
and RF algorithm to estimate the AGB during 1987–2017 similarly; the results ranged from
11,545,300 t to 16,542,000 t. Sun [31] estimated the AGB by Landsat 8 OLI data, and the
result was 11,719,600 t. Xie [69] used Landsat 8 OLI images combined with the K-NN
algorithm to estimate the AGB in 2015, and the result was 12,100,000 t. Chen et al. [49]
based their analyses on RF and combined Sentinel-1 and Sentinel-2A data to estimate
the AGB in 2021, and the result was 17,210,000 t. In addition to the results of the AGCS
study conducted by Yue [50], we calculated the AGB of the studies mentioned above to
AGCS values using the Pinus densata carbon content coefficient of 0.501. These values
are presented in Table 7. Compared with the research results of Chen et al. [49] and Xie
et al. [69], the AGCS values of the three studies are relatively close, and our estimation
result is not the highest one. Therefore, our results are reliable.
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Table 7. Biomass and carbon stock values estimated by relevant studies.

Data Year AGB Value/Million Tons AGCS Value/Million Tons Source Methodology

2008 16.67 8.64 Yue [50] Modeled and estimated AGB by
SVM

2009 20.00 10.02 Wang et al. [45]
Combining multiple factors to

estimate AGB by remote sensing
information model

2015 12.10 6.06 Xie [69]
Adding topographic factors and

estimating AGB by optimized
k-NN

2016 11.72 5.87 Sun [52]
Establishing the biomass model of
sample trees and then estimating

overall AGB

1987–2017 8.50~9.16 4.26~4.59 Liao et al. [29]
Adding topographic factors and
establishing dynamic model to

estimate AGB by RF

1987–2017 11.55~16.54 5.78~8.29 Teng et al. [8]
Estimating AGB after improving

image quality by filtering
algorithms

2021 17.21 8.62 Chen et al. [49]
Estimating AGB by Sentinel-1/2

data and RF while considering the
seasonal effects

2021 \ 9.74 This study
Estimating AGCS by RF based on
two kinds of remote sensing data

and climatic factors

According to Table 7, the AGCS values estimated in this study are in between the
above results. The carbon stock values of the related studies listed in the table fluctuate up
and down. This phenomenon may be attributed to some reasons. These reasons include
the types of remote sensing images used in each study, the sources and errors of the sample
plots, the methods of calculating carbon stock, the differences in modeling methods, the
characteristics of the algorithms utilized for modeling, and the differences in the Pinus
densata forest area between periods, which collectively result in fluctuating and imprecise
values in the estimation. In addition, the sample plot data used in this study were surveyed
in 2019 and 2021, respectively, and tree growth during this period may also affect AGCS
estimation. However, the estimated annual growth of Pinus densata in the region is very
small, and the impacts would be minimal [49].

We estimated the AGCS value of each distribution point based on the Pinus densata
distribution data of the corresponding year, the optimal model data, and the RF algorithm
to get the final AGCS distribution map in ArcGIS 10.8.1.

4. Discussion
4.1. Application of Remote Sensing Data Combination in Forest AGCS/AGB Estimation

Some studies of forest AGB or AGCS estimation have selected only Landsat as the
remote sensing data [13,24–32,37]. Single Landsat data may bring some insufficiency.
According to this research, although the models based on Landsat have a higher R2,
their prediction accuracy is relatively low [8,29,37,47]. Other studies used only Sentinel-2
data [15–20,23,48]. Although Sentinel-2 data can provide rich spectral information, the
information provided by a single remote sensing data is limited. In addition, the model
fitting effect based on Sentinel-2 data is poor relative to that based on Landsat [69–71]. In
this study, we also found that the AGCS estimation models constructed by Landsat 8 OLI
data generally have better fitting effects, while the AGCS estimation models established
by Sentinel-2A data have better prediction accuracy. Combining the two kinds of remote
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sensing image data, we can obtain more spectral information, texture factors, and vege-
tation indices. Therefore, we obtained an AGCS estimation model with excellent fitting
effect and prediction accuracy. In the other studies [23,49,50,72–78], the authors combined
different remote sensing data to study the AGB and stock volume. These data included
Landsat 8 OLI, Sentinel-1, Sentinel-2, LiDAR, and others. It can be seen from these studies
that more remote sensing data can bring more information. Moreover, there are AGB
multi-source remote sensing estimation studies that combined UAV Lidar data and UAV
multispectral data [79]. There is also a biomass estimation study based on multi-source
remote sensing data combined with deep learning [80] and AGB multi-source remote
sensing estimation studies using a combination of GF-2, Landsat 8, and Airborne Laser
Scanning (ALS) data [81]. At present, the application of multi-source remote sensing is
increasing. Compared to these studies, we lack LiDAR data or SAR data, but environmental
factors also need to be taken into account in AGB estimation studies. Deep learning may
also receive more attention in future AGB multi-source remote sensing estimation studies.
However, the reason why we only used two types of remote sensing data is that this study
aims to explore the influence of adding factors on the estimation of Pinus densata AGCS.
Therefore, we did not use more complex multi-source remote sensing data. In addition,
differences in sensors or spectral ranges may also affect the comparability of AGB and
AGCS estimation based on multi-source remote sensing data.

4.2. Advantages in Model Accuracy from Sentinel-2A

According to modeling results, the prediction accuracy of the models based on source
II is always the best among the three kinds of data sources. It aligns with the findings of
Zhou and Feng [74], which demonstrated that the model based on the Sentinel-2 images
achieved better accuracy compared to the same model based on the Landsat 8 factors set.
Puliti et al. [75] also mentioned that Landsat data had lower prediction accuracy than
Sentinel-2 data. This may be because the Sentinel-2A product has a relatively large spatial
coverage and high resolution, which is more advantageous to the estimation of the AGB
and AGCS [78]. This is consistent with the result mentioned by Huang et al. [76]: the
prediction accuracy is higher for Sentinel-2 data than Landsat 8 data. The models based
on source III arrived at the second highest prediction accuracy, which may be related to
the resolution of the remote sensing data itself and the size of sample plots. The Sentinel-2
images resolution supports an accuracy of up to 10 m, while the Landsat 8 OLI images
have a resolution of up to 30 m. Combining two kinds of remote sensing factors may
have a complementary effect on the model fitting effect and prediction accuracy, and the
model based on source III has satisfactory results in both the fitting effect and prediction
accuracy. This is consistent with the findings of Luo et al. [77], who demonstrated that the
combination of Sentinel-2B and Landsat 8 OLI data yielded superior results. Regarding
the modeling results, the model based on source III already had good results before the
addition of topographic or climatic factors. Although these factors have a limited degree of
optimization for the model, the improvement of the models based on source I and source II
is much higher, while the improvement of the models based on source III was relatively
poorer. Nevertheless, when adding annual precipitation, the model prediction accuracy
based on source III reached 83.00%. It was higher than some previous studies. For instance,
the prediction accuracy of AGB was 78.77% ± 2.39% with the addition of topographic
factors by Liao et al. [29]. The prediction accuracy of carbon stock was 81.00% with the
addition of land surface temperatures by Yin et al. [37].

4.3. Changes in Model Indicators and the Importance of Climatic Factors

From Tables 4–6, it can be seen that the changes in indicators between models based
on the same data source are not obvious. It is due to the fact that the model indicators
represent the relationship between the measured values and the predicted values [68], and
the predicted values usually do not have a large gap with the measured values, which
results in the indicators of the models not changing much as well. If the indicators of each
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model change too much, it means that the predicted values of the model change a lot, and
the model is unstable. In addition, the multicollinearity between remote sensing factors
may also cause insignificant differences in indicators between models.

In summary, it is difficult to get a significant change in model metrics based on the
same data sources, but the improvement in model indicators from the models based on
source I and II to the models based on source III when adding annual precipitation is more
significant. We also demonstrated that, in some regions, climate factors have a positive role
in AGB or AGCS estimation. In future studies, local climate factors can be considered to
get higher accuracy of AGB and AGCS estimation.

Topographic factors are often used in studies estimating forests AGB and AGCS [24–32].
However, considering only topographic factors is not comprehensive enough. Without
major natural disasters, the topography of these areas remains unchanged for long peri-
ods [82]. Therefore, the effect of topography on the AGCS is relatively constant. However,
the light and rainfall that the trees receive are affected by topography [80]. It also affects
the climatic conditions where the trees are located.

At present, climate change is occurring on Earth. Therefore, we added some climatic
factors to the estimation of Pinus densata AGCS and obtained satisfactory results. As is
known to all, forest ecosystems have a certain degree of influence on the global climate.
However, climate does not unilaterally affect the forest ecosystem. Instead, the two influ-
ence each other. A study [83] has shown that the carbon density of Larix principis-rupprechtii
is affected by temperature and precipitation. Moreover, mean annual temperature and
annual precipitation are essential factors affecting carbon stock in forest ecosystems [42].
Another study [84] has shown that mean annual temperature and annual precipitation
have different degrees of influence on the growth and carbon sequestration capacity of
five primary planted forests (Larix. spp., Pinus massoniana, Cunninghamia lanceolata, Populus
spp., Eucalyptus spp.) in China. Regarding carbon stock, the carbon stock changes of the
Atlantic forest biome are more sensitive to mean annual temperature and annual precip-
itation [85]. This is why we think that under certain conditions, the topographic factors
are not so important. We believe that if climate change is evident in a region, it is more
important to consider climatic factors when estimating the AGCS in that region.

From Equation (1) [52], we can know the direct relationship between the AGB of Pinus
densata and DBH and tree height, which are important reference indexes for tree growth.
The effects of temperature and precipitation on the growth of Pinus densata have been
studied by some scholars. One of the studies stated that climate warming and drying and
uneven seasonal precipitation lead to growth limitation of Pinus densata [86]. There are
also studies indicating that the relationship between Pinus densata growth and climate is
variable [62] and that Pinus densata in different places respond differently to climatic factors
but are all affected by temperature and moisture [87]. There are also studies indicating
that Pinus densata growth is mainly limited by water availability early in the growing
season [88].

It is easily understood that climatic factors are significant for AGCS estimation and
should be considered in relevant studies. We also hope that more accurate climate data will
contribute to the future estimation of forest carbon stock.

5. Conclusions

This study is based on Landsat 8 OLI and Sentinel-2A images. We added topographic
or climatic factors to the selected remote sensing factors and modeled by RF, and then
compared model prediction accuracy to select the optimal model. The optimal model is
used to estimate the AGCS. The following conclusions were obtained: (1) texture factors
are more important for AGCS modeling and estimation than vegetation indices (2) adding
topographic or climatic factors can improve the prediction accuracy of the AGCS; (3) adding
climatic factors improves the model accuracy more than adding topographic factors; and
(4) of all the climatic factors, the addition of the annual precipitation factor provided the
greatest improvement in model prediction accuracy. We developed a more accurate AGCS
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estimation method based on Landsat 8 OLI data, Sentinel-2A data, and annual precipitation
data. This research’s results can provide a reference for forest AGCS estimation based on
Landsat 8 OLI and Sentinel-2A data. Higher-resolution climate data will be needed in
future AGCS estimation studies.
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