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Abstract: Forest fires are a frequent and destructive phenomenon in Southwestern China, posing
significant threats to ecological systems and human lives and property. In response to the growing
need for effective forest fire prevention, this study introduces an innovative method for predicting
and assessing forest fire risk. By integrating multi-source data, including optical and microwave
remote sensing, meteorological, topographic, and human activity data, the approach enhances the
sensitivity of risk models to vegetation water content and other critical factors. The vegetation
water content is derived from both Vegetation Optical Depth and optical remote sensing data,
allowing for a more accurate assessment of changes in vegetation moisture that influence fire risk. A
time series prediction model, incorporating attention mechanisms, is used to assess the probability
of fire occurrence. Additionally, the method includes fire spread simulations based on Cellular
Automaton and Monte Carlo approaches to evaluate potential burn areas. This combined approach
can provide a comprehensive fire risk assessment using the probability of both fire occurrence and
potential fire spread. Experimental results show that the integration of microwave data and attention
mechanisms improves prediction accuracy by 2.8%. This method offers valuable insights for forest
fire management, aiding in targeted prevention strategies and resource allocation.

Keywords: forest fire risk prediction; potential spread; vegetation optical depth (VOD); remote sensing

1. Introduction

Forest fires are significant natural disasters that have emerged as a major global
concern. These fires present substantial threats to ecological environments, economic
development, and human life and property, posing challenges for many countries in recent
decades. Forest fire risk assessment is instrumental in mitigating these risks and plays
a crucial role in forest fire management [1,2]. By evaluating forest fire risk, managers
can implement fire prevention measures such as fire risk zoning and fuel management to
reduce fire losses [3–5].

Risk assessment can use probability to express the uncertainty of the occurrence or
the intensity of hazardous events [6]. Predicting the probability of forest fires in a region
requires identifying factors influencing fire occurrence, such as climate, topography, and
fuel conditions [7–10], and determining the connection between these factors and the
probability of fire occurrence [11]. These factors, commonly designated as driving factors,
affect the occurrence and spread of forest fires. Vegetation, as the primary fuel source
in forest fires, plays a pivotal role as a driving factor and has therefore been extensively
studied. Jiang et al. [12] studied the application of vegetation water content (VWC) in
forest fire risk assessment, and Luo [13] explored forest fire risk using the MODIS Leaf Area
Index (LAI) and Live Fuel Moisture Content (LFMC) data as vegetation driving factors. All
these indices aim to represent vegetation’s role as a combustible material in fires, where its
internal moisture and carbon content significantly impact fire behavior. However, in dense
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forests, optical vegetation indices saturate with canopy quality [14]. Optical remote sensing
primarily detects the canopy fuel moisture content, which limits its ability to sense surface
fuel moisture content in dense forests. In fire risk assessment, the surface fuel moisture
content is more critical. Microwave remote sensing technology has unique advantages in
acquiring vegetation water content because the dielectric constant of vegetation is primarily
influenced by moisture content information, which in turn determines the absorption and
scattering of microwave signals [15,16]. Microwave remote sensing signals can penetrate
the canopy to sense the moisture content of ground fuels. Wang et al. [17–19] utilize
microwave remote sensing technology to retrieve fuel moisture content (FMC), employing
different microwave remote sensing data and models to enhance the accuracy of FMC
estimation. The results demonstrate that microwave remote sensing has advantages over
traditional optical methods for monitoring FMC under all-weather conditions, confirming
its effectiveness for FMC retrieval in grassland and forest environments. Mei [20] used
RADARSAT-2 dual-polarization Synthetic Aperture Radar (SAR) data combined with the
water cloud model and bare soil scattering model to retrieve the fuel moisture content of
forest margin grassland. These studies demonstrated the model’s feasibility for moisture
retrieval. However, fewer studies have used data from microwave remote sensing to assess
forest fire risk. The Vegetation Optical Depth (VOD), a microwave index derived from
microwave remote sensing data, has been shown to be proportional to the water content
of above-ground vegetation [21]. Leveraging this relationship, we attempt to improve the
model’s sensitivity to the vegetation water status by combining optical and microwave
remote sensing data.

To enhance the accuracy of forest fire prediction, many scholars have proposed dif-
ferent methods. Eskandari and Miesel [22], for the high-risk areas of forest fires in Iran,
proposed that knowledge-based hierarchical analysis (AHP) and fuzzy set methods can
effectively identify the locations where forest fires are likely to occur. Nami et al. [23]
employed the Evidential Belief Function (EBF) method to predict fire occurrence probability
in northern Iran’s Hyrcanian ecological zone, showing significant effectiveness with an
area under the curve (AUC) of 84.14%. Farahmand et al. [24] developed the Fire Danger
from Earth Observation (FDEO) algorithm to predict fire danger in the contiguous United
States with a lead time of up to two months, achieving an overall accuracy of up to 75%
during the fire season. In recent years, machine learning techniques have been widely used
to analyze complex environmental data and predict fire occurrences [25,26]. Specifically,
the application of deep learning models in forest fire occurrence probability research has be-
come increasingly common. For instance, Abdollahi and Pradhan [27] utilized deep neural
networks (DNNs) in conjunction with an explainable artificial intelligence (XAI) to develop
predictive models to map wildfire susceptibility and identify key contributing components
within them. Lin et al. [28] applied the long-term and short-term time series network
(LSTNet) model, incorporating convolutional and recurrent layers, for forest fire prediction.
This method captures long-term patterns missed by traditional models, recognizing that
the occurrence of forest fires is influenced by both short-term and long-term data variations,
thereby achieving high accuracy (ACC 0.941) and demonstrating effectiveness in spatial
predictions of forest fire susceptibility using time series data.

In natural disaster research, risk is defined as the expected loss or benefit, including the
probability and potential impact of natural disaster events [29]. Fire occurrence and spread
require a certain amount of time, and, if quickly extinguished after the initial occurrence,
severe consequences can be avoided. However, in large-scale or severe forest fires, rapid
spread and expansion accompany fire occurrences [30]. Simulating fire spread can reflect the
combined influence of factors on forest fires, thereby comprehensively reflecting regional
fire risks [31,32]. To predict and simulate forest fire situations, various model techniques
with different predictive variables have been developed. Cellular Automaton (CA) models
and Monte Carlo (MC) simulations are widely used in fire spread modeling and forest fire
research. CA models simulate fire spread by representing the landscape as a grid of cells,
each of which can be in different states (e.g., unburned, burning, burned). The state of
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each cell evolves based on predefined rules and the states of neighboring cells [33]. MC
simulations add a probabilistic element to this process, allowing for the incorporation
of randomness and uncertainty in fire behavior, making the models more realistic and
robust [30]. Xuezheng et al. [32] used the Burn-P3 model to simulate burn probability,
potential fire intensity, spread speed, and fire occurrence types at the landscape scale and
calculate fire exposure, using the AHP to assess forest fire risk. Carmel Y et al. [34] used
the FARSITE model for Monte Carlo simulation of fire spread, generating high-resolution
forest fire risk maps in Mount Carmel, Israel.

To address the complex and dynamic nature of forest fires, many studies have devel-
oped various methods for assessing fire risks and predicting occurrences. Building on these
advances, this paper seeks to further improve the accuracy and comprehensiveness of forest
fire risk assessments by integrating multi-source data. This paper integrates multi-source
remote sensing, meteorological, topographic, and social data through deep-learning-based
time series predictions and potential fire spread simulation techniques to establish a forest
fire risk assessment method. The innovation of this work lies in the following: (1) merging
the microwave index VOD with optical remote sensing data to obtain vegetation water
information, (2) predicting forest fire occurrence probability using time series methods and
incorporating an attention mechanism to better focus on and weigh driving factors in the
input data, learning key features from data during the week before the fire and captur-
ing trends and changes in meteorological and vegetation factors before fire occurrences,
(3) assessing forest fires through an integrated assessment that includes both the probability
of fire occurrence and the potential fire spread probability to provide an overall measure of
the fire risk.

2. Materials and Methods
2.1. Study Area and Fire Data

The study area (98◦ E–104◦ E, 24◦ N–30◦ N) is located at the border of Sichuan Province
and Yunnan Province in the southwest region of China, covering Liangshan Prefecture,
Panzhihua City in Sichuan Province, and Diqing Prefecture, Lijiang City, Dali City, Chux-
iong City, and Kunming City in Yunnan Province (Figure 1a).
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Figure 1. (a) Study area showing the historical (2015–2018) fire point extracted from the NASA
website and the DEM (Digital Elevation Model) as the background image. (b) Land classification in
the study area extracted from MCD12Q1.
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The terrain in this region is characterized by complex topography, steep mountains,
and elevations ranging from 350 to 6400 m. The forests are primarily composed of subtropi-
cal forests, and the main vegetation types are shown in Table 1 and Figure 1b. The climate
belongs to a subtropical monsoon climate, characterized by distinct wet and dry seasons.
The annual average temperature is 15–20 ◦C, and the annual temperature varies between
15 ◦C and 25 ◦C. The annual average precipitation is 800–1000 mm, with 75%–85% of the
annual precipitation occurring from May to October. The precipitation in winter is scarce,
and temperatures rise quickly, leading to severe drought and dry vegetation during winter
and spring.

Table 1. The main vegetation type in the study area.

Fuel Class IGBP Coverage Area (km2)

Forest

Evergreen Needleleaf Forests 35,641.75
Evergreen Broadleaf Forests 5977.50

Deciduous Needleleaf Forests 3.75
Deciduous Broadleaf Forests 5339.00

Mixed Forests 31,276.75

Grassland

Woody Savannas 55,528.75
Savannas 54,512.50

Grasslands 17,862.50
Permanent Wetlands 228.00

Croplands 12,663.50
Cropland/Natural Vegetation

Mosaics 2373.50

Shrubland
Closed Shrublands 70.50
Open Shrublands 1.00

Other

Snow and Ice 48.50
Barren or Sparsely Vegetated 530.00

Water Bodies 719.75
Urban and Built-Up Lands 1970.50

The coverage area was calculated based on the IGBP (International Geosphere-Biosphere Programme) classification
scheme of the MODIS product MCD12Q1.

The study area is a high-fire-risk zone in China, where forest fires mainly occur in
winter and spring [35]. Our analysis of the data reveals a similar seasonal pattern, where the
forest fire occurrence frequency across different months exhibits a clear trend (Figure 2a),
with peak occurrences particularly from December to May (Figure 2b). In contrast, the fire
frequency from June to November is lower and more concentrated.
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In the study, forest fire data were collected through the NASA Fire Information for
Resource Management System (FIRMS) (https://firms.modaps.eosdis.nasa.gov/, accessed
on 16 December 2023) using the Moderate Resolution Imaging Spectroradiometer (MODIS).
Based on the main vegetation types shown in Table 1 and Figure 1b, forest fire incidents
within forest areas were selected. A total of 783 forest fire incidents were gathered from
2015 to 2018, including notable fires such as the forest fire in Lijiang City in March 2015;
the forest fire in Miyi County, Panzhihua City, in February 2016; and the forest fire in Muli
County, Liangshan Prefecture, in November 2016.

2.2. Fire Point Unbalanced Data Preprocessing

A significant challenge in forest fire prediction is the data imbalance between fire
point and non-fire point. Fire events are relatively rare, leading to far fewer fire point data
compared to non-fire point data, which can affect the model’s accuracy and predictive
performance for minority classes [36,37]. In this study, non-fire point data were selected
based on the semi-variogram function method [38]. A buffer zone was established for each
fire point using a semi-variogram function based on a spherical model (Equation (1)). The
distance at which the model first flattens is called the range, i.e., the buffer radius. Sample
positions separated by distances within the range are spatially correlated, while sample
positions separated by distances beyond the range are not spatially correlated.

γ(h) =

{
C0 + C

(
1.5 h

a − 0.5 h3

a3

)
0 ≤ h < a

C + C0 h ≥ a
(1)

where γ(h) is the semi-variogram function value, C0, C, a are model parameters, and h is
the spatial distance.

Due to seasonal variations in vegetation and meteorological conditions, conditions at
the same time each year are similar. Therefore, positions with high fire risk at a particular
time are also likely to have high fire risk at similar times in adjacent periods and years.
Using multi-temporal data, a fire buffer overlay image was established, selecting only data
outside any buffer zones as the range for non-fire point data selection. Within this range,
typical non-fire points were randomly generated at a ratio of 1:1.2 to fire points. Then, the
influencing factor data corresponding to these typical non-fire points were extracted for the
corresponding dates.

2.3. Driving Factors

The damage caused by forest fires is influenced by various factors, including types of
vegetation, fuel characteristics, topography, weather and climatic conditions, and human
activities [39]. In this study, we considered 11 important parameters for the years from
2015 to 2017 from four categories (meteorological, topographic, vegetation factors, and
anthropogenic factors). Figure 3 illustrates these factors, spatially mapped across the
study area.

Vegetation Factors: The rates of forest fire occurrences are heavily affected by land
cover and types of vegetation [12]. We used the 500 m spatial resolution MODIS Normalized
Difference Vegetation Index (NDVI) dataset to analyze the vegetation status in the study
area. Additionally, to gain a more comprehensive understanding of vegetation factors,
we supplemented with microwave data VOD. VOD data were sourced from the VODCA
product provided by the University of Texas, Vienna [40], which integrates and reprocesses
VOD data from multiple microwave sensors. Bilinear interpolation was used to resample
VOD data to the 500 m spatial resolution consistent with the NDVI in this study.

Meteorological Factors: These factors include temperature, precipitation, humidity,
and wind speed, and play key roles in the occurrence and spread of forest fires, impacting
forest fire differently under varying conditions. In conditions of low precipitation, low
relative humidity, and high temperatures, forest surface fuels are more likely to ignite [41].
Wind not only accelerates the evaporation and drying process of soil and surface fuels before

https://firms.modaps.eosdis.nasa.gov/
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fires, but also injects fresh fuel for flames after forest fire occurrence, influencing the spread
speed. When wind speeds increase, and dry and hot conditions occur simultaneously, forest
fires can be ignited quickly and spread rapidly [42]. All meteorological data in this study
were from the European Centre for Medium-Range Weather Forecast (ECMWF) global
atmospheric reanalysis dataset. Relative humidity data were calculated using the dew
point and air temperature, while wind speed data were obtained by combining meridional
(U) and zonal (V) wind speeds to calculate horizontal 10 m wind speeds. All factors were
adjusted to match the resolution of the MODIS vegetation indices.
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(k) highway.

Topographic Factors: Topography significantly influences local climate conditions
such as wind and precipitation, which in turn affect forest fire behavior. For example, vari-
ations in elevation and slope can alter wind flow and humidity levels, making certain areas
more susceptible to be ignited. Mountain regions are often more sensitive to temperature
changes at higher elevations, which can intensify fire behavior by altering local temperature
and precipitation patterns [43]. In this study, we considered slope, aspect, and elevation.
The derived variables such as slope and aspect were calculated from the Digital Elevation
Model (DEM). The DEM data used were sourced from the Shuttle Radar Topography Mis-
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sion (SRTM) and accessed via the NASA Earth Data platform (https://earthdata.nasa.gov/,
accessed on 17 December 2023.), with a resolution of approximately 90 m.

Anthropogenic Factors: Human activities significantly impact forest fires, with areas
near transportation infrastructure experiencing frequent human activities, increasing fire
risk [44]. In our study, we selected the distance to railways and highways as anthropogenic
driving factors. Euclidean distances to railways (Figure 3j) and highways (Figure 3k) were
calculated using buffering tools.

2.4. Training and Testing Datasets

The training samples in our experiment included 5078 labeled locations, consisting of
2308 fire event data points and 2770 non-fire event data points. Each data point included
a 7-day record of relevant driving factors for the respective area. Time series information
was extracted from these labeled locations, with data combinations every 7 days forming a
forest fire dataset with time series influences. To train the forest fire occurrence probability
model, we used two sets of labels 0 and 1, with 1 indicating fire events and 0 indicating no
fire events. During training, data from 2015 to 2017 were split into 80% for model training
and 20% for validating the model’s performance, while the data from 2018 were used for
prediction.

2.5. Forest Fire Occurrence Prediction Models

In this study, the Long Short-Term Memory (LSTM) algorithm, augmented with an
attention mechanism, was presented to develop a predictive model for forest fire occurrence
probability. LSTM is a type of Recurrent Neural Network (RNN) specifically designed
to overcome the limitations of traditional RNNs in handling long-term dependencies. It
achieves this goal through a special gating mechanism, which helps retain important infor-
mation over longer periods while reducing the risk of vanishing gradients. The method’s
structure is built on a multi-layer neural network, combining the LSTM’s time series pro-
cessing capability and the attention mechanism’s feature focusing ability, providing a
powerful solution for binary classification tasks. This model captures dependencies in
time series data through LSTM layers and enhances prediction performance by focusing
on key features with the attention mechanism. As shown in Figure 4, the architecture
was composed of an input layer Li, an output layer Lo, and LSTM layers Xi (where i ∈ {1,
2,. . ., 6}), with an Attention Module between the input and output layers. The input layer
Li received time series data with multiple features at each time step. The LSTM layers,
each employing the tanh activation function (as defined in Equation (2)), processed the
input and returned the complete output sequence. Following this step, a Dropout layer
was applied to prevent overfitting. The Attention layer focused on important features by
calculating attention weights for time steps, enhancing the model’s learning ability. The
output from the Attention layer was flattened and passed into the dense layer using the
tanh activation function for subsequent processing. The Sigmoid function is advantageous
for binary classification due to its smooth gradient and output range of (0, 1) [45]. Therefore,
the output layer Lo used the Sigmoid activation function to convert the output to binary
classification probability values.

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x (2)
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2.6. Fire Risk Combined Assessment

In this study, we considered forest fire risk as the combined result of forest fire oc-
currence probability and potential burn probability. Using fire occurrence probability and
potential burn probability, forest fire risk was estimated using Equation (3), as follows:

Fire Risk (%) = OP × BP (%) (3)

where OP is the fire occurrence probability (0 < OP < 1), and BP is the fire potential burn
probability (0 < BP < 100%).

The potential burn probability (BP), calculated based on the outcomes of fire spread
simulations according to Equation (4), represents the proportion of times a given location
burns out of the total number of simulations. To determine the BP, we randomly selected
points from the high and very-high forest fire occurrence probability areas predicted by
the forest fire occurrence probability model as fire points. This random selection is an
inherent feature of the Monte Carlo simulation, which relies on stochastic sampling within
a defined range to account for variability and uncertainty in fire spread. These points
were then utilized for Cellular Automaton-Monte Carlo simulations, excluding locations
in non-combustible areas like roads, residential zones, and water bodies. The inputs for
the Cellular Automaton model included temperature, humidity, wind speed, and NDVI
data. Monte Carlo simulations were used to randomly select ignition points within the
high and very-high forest fire occurrence probability areas, simulating potential fire spread
behavior. In this study, the total number of simulations was 100, which ensures a good
balance between statistical stability and computational efficiency, meaning that 100 fire
spread simulation experiments were conducted.

BP(%) =
Number of burns

Total number of simulations
× 100% (4)

2.7. Evaluation Metrics

To validate the accuracy of the proposed forest fire occurrence prediction models, three
common metrics were applied in our study: Accuracy, F1 score, and the AUC, as shown in
Table 2.

Table 2. The evaluation metrics and the formulas.

Evaluation Metrics Formula

Accuracy Accuracy = TP + TN
TP + TN + FP + FN

F1 Score F1 Score = 2 × Precision × Recall
Precision + Recall

AUC AUC =
∫ 1

0 TPR(FPR)d(FPR)

Accuracy is an indicator of the model’s overall prediction accuracy, defined as the
ratio of correctly predicted cases, True Positive (TP) and True Negative (TN), to all cases,
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). The F1
score is the harmonic mean of precision and recall, used to comprehensively evaluate the
model’s performance. It balances precision and recall and is commonly used when there is
class imbalance. A high F1 score (typically above 0.8) indicates good performance in both
precision and recall.

The AUC is used to evaluate the performance of classification models, where an AUC
value close to 0 indicates random prediction, while an AUC value close to 1 indicates
high prediction accuracy. The AUC is derived from the Receiver Operating Characteristic
(ROC) curve, which illustrates the trade-off relationship between the false positive rate
(FPR = FP

FP+TN ) and the true positive rate (TPR = TP
TP+FN ), quantifying the model’s overall

performance.



Forests 2024, 15, 2028 9 of 14

3. Results

In the study, we established and optimized a forest fire occurrence probability model
to evaluate its predictive capabilities for fire occurrence. As mentioned above, to better
assess the effectiveness of the forest fire occurrence probability model, Table 3 presents the
quantitative results of different evaluation metrics for five different models. The Multi-
Layer Perceptron (MLP) model serves as a baseline for comparison in this study, to highlight
the effectiveness of using LSTM for a time series data analysis.

Table 3. Quantitative results of the proposed model.

Model Accuracy (%) AUC F1 Score

MLP 84.46 0.9603 0.8613
LSTM 86.02 0.9456 0.8640
LSTM+Attention 87.27 0.9537 0.8779
LSTM+VOD 87.04 0.9579 0.8735
LSTM+VOD+Attention 88.82 0.9608 0.8869

As shown in Table 3, the forest fire occurrence probability model combining microwave
remote sensing data and the attention mechanism performed the best, achieving a predic-
tion accuracy of 88.82%, an AUC of 0.9608, and an F1 score of 0.8869. Compared to the
model without VOD data, the prediction accuracy increased by 1.55%, and the inclusion
of the attention mechanism enhanced the model’s generalization ability, improving the
prediction accuracy by 1.78%. Using time series for prediction, the model significantly
outperformed models without such data, with an accuracy of 84.46%. Time series played
a crucial role in capturing trends and changes in meteorological and vegetation factors
shortly before fire occurrences, significantly enhancing the model’s predictive performance.
The ROC curve for the best-performing model, which achieved a prediction accuracy of
88.82%, is depicted in Figure 5. This ROC curve illustrates the model’s excellent ability
to distinguish between different classes, demonstrating its robustness and reliability in
practical applications.

Forests 2024, 15, x FOR PEER REVIEW 10 of 15 
 

 

Table 2. The evaluation metrics and the formulas. 

Evaluation Metrics Formula 

Accuracy Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

F1 Score F1 Score = 2 × 
Precision×Recall

Precision+Recall
   

AUC AUC = ∫ TPR(FPR) 𝑑(𝐹𝑃𝑅)
1

0

 

3. Results 

In the study, we established and optimized a forest fire occurrence probability 

model to evaluate its predictive capabilities for fire occurrence. As mentioned above, 

to better assess the effectiveness of the forest fire occurrence probability model, Table 3 

presents the quantitative results of different evaluation metrics for five different mod-

els. The Multi-Layer Perceptron (MLP) model serves as a baseline for comparison in 

this study, to highlight the effectiveness of using LSTM for a time series data analysis.  

Table 3. Quantitative results of the proposed model. 

Model Accuracy (%) AUC F1 Score 

MLP 84.46 0.9603 0.8613 

LSTM 86.02 0.9456 0.8640 

LSTM+Attention 87.27 0.9537 0.8779 

LSTM+VOD 87.04 0.9579 0.8735 

LSTM+VOD+Attention 88.82 0.9608 0.8869 

As shown in Table 3, the forest fire occurrence probability model combining mi-

crowave remote sensing data and the attention mechanism performed the best, 

achieving a prediction accuracy of 88.82%, an AUC of 0.9608, and an F1 score of 

0.8869. Compared to the model without VOD data, the prediction accuracy increased 

by 1.55%, and the inclusion of the attention mechanism enhanced the model’s general-

ization ability, improving the prediction accuracy by 1.78%. Using time series for pre-

diction, the model significantly outperformed models without such data, with an 

accuracy of 84.46%. Time series played a crucial role in capturing trends and changes 

in meteorological and vegetation factors shortly before fire occurrences, significantly en-

hancing the model’s predictive performance. The ROC curve for the best-performing 

model, which achieved a prediction accuracy of 88.82%, is depicted in Figure 5. This ROC 

curve illustrates the model’s excellent ability to distinguish between different classes, 

demonstrating its robustness and reliability in practical applications.  

 

Figure 5. The resulting ROC curve of the proposed mode. Figure 5. The resulting ROC curve of the proposed mode.

To validate the practical application of the model, we used the final optimized model
to predict fire risk in the study area and generated a fire occurrence probability map. We
employed five classes: very-high, high, moderate, low, and very-low, established using the
natural break algorithm [46], a standard method for grouping similar values to classify fire
occurrence probability. The results of the classification are shown in Figure 6.
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Figure 6. (a) The forest fire occurrence probability map using the proposed mode. (b) The forest fire
potential burn probability using simulation. (c) The forest fire risk in the study area.

Analyzing the fire occurrence probability map reveals that most areas within the
study region have a low and very-low probability of forest fire occurrence. The high and
very-high probability areas are mainly concentrated in densely vegetated and dry regions,
particularly near some railways and highways. Conversely, low probability areas are
primarily distributed in sparsely vegetated or moist regions. The high temperatures in
the region have increased the probability of forest fires. Due to the distribution of forests,
the probability of forest fires is relatively high in the areas of Liangshan Prefecture and
Panzhihua. Meanwhile, the probability of forest fires is slightly higher in the areas near the
Sichuan–Yunnan border compared to locations further away.

By applying the fire risk combined assessment method, which integrates the potential
burn probability (Figure 6b) with the fire occurrence probability, the resulting fire risk map
(Figure 6c) shows a significant reduction in the proportion of high and very-high risk areas
compared to the fire occurrence probability alone (Table 4). The very-high risk areas are
more clearly defined, allowing for more targeted fire prevention measures.

Table 4. The area of each forest fire risk class in the study area.

Risk Class
Forest Fire Occurrence Probability Forest Fire Risk

Area (km2) Area (%) Area (km2) Area (%)

Very Low 106,010.25 49.84 197,224.25 92.83
Low 67,475.50 31.72 10,204.50 4.80
Moderate 28,808.50 13.54 3639.00 1.71
High 5872.50 2.76 1223.50 0.58
Very High 4542.75 2.13 169.00 0.08

4. Discussion

In the study, we proposed a new method for forest fire risk assessment by integrating
multi-source remote sensing data (including microwave and optical remote sensing) with
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deep learning models. The results indicate that the method has advantages in predicting
forest fire occurrence probabilities and assessing fire risk. By introducing VOD as a veg-
etation influencing factor, the model’s sensitivity to forest fire occurrence was improved.
Compared to traditional methods relying solely on optical remote sensing data, VOD data
better reflect vegetation water content, enhancing the model’s ability to capture fire occur-
rence conditions. Additionally, the deep learning model combining LSTM networks with
attention mechanisms effectively handled time series data, capturing trends and changes
in meteorological and vegetation factors before fire occurrences. The evaluation metrics,
including accuracy, F1 score, and the AUC, all showed high accuracy, further validating the
model’s effectiveness.

This study comprehensively utilized various data sources, including optical remote
sensing data, microwave remote sensing data, meteorological data, topographic data,
and anthropogenic factors. This diversity enriched the feature dimensions of the model
inputs and enhanced the model’s adaptability to the complex forest fire environment.
Furthermore, the inclusion of distances to railways and highways as anthropogenic factors
allowed the model to reflect the impact of human activities on forest fire risk, highlighting
the significance of human-caused fires in forests.

We utilized a combination of cellular automaton and Monte Carlo simulation methods
to perform fire spread simulations and calculate potential burn probability for points within
the study area with predicted forest fire occurrence probabilities in the high and very-high
regions. Figure 6c shows the results of fire risk assessments based on two different fire risk-
related factors (fire occurrence probability in Figure 6a and potential burn probability in
Figure 6b). The final results indicate that fire risk is significantly influenced by the combined
effects of fire occurrence probability and potential burn probability. The very-high risk areas
show high fire occurrence probabilities and high potential burn probabilities. Medium risk
and low risk areas are characterized by high and moderate fire occurrence probabilities,
but lower potential burn probabilities reduce the overall fire risk. Very-low risk areas are
mainly distributed in sparsely vegetated or moist regions, with both low fire occurrence
probabilities and potential burn probabilities. This comprehensive assessment method
enables us to more accurately identify high fire risk areas, making forest fire prevention
measures more targeted. By comprehensively assessing fire occurrence probabilities and
potential burn probabilities, high fire risk areas within the study region were effectively
identified. It provides scientific support for forest fire management departments to develop
targeted fire prevention measures and resource allocation strategies. Additionally, the
results of fire spread simulations help quick responses in the early stages of fire occurrences,
reducing the damage to ecosystems and human society.

However, our study has some limitations. Firstly, the study area is limited to specific
regions in Southwestern China, and the model’s applicability and generalizability need
further validation. Secondly, for potential burn probability studies, we used a combination
of cellular automaton and Monte Carlo simulation methods, which can be influenced
by initial conditions and rule settings [33]. This model lacks a detailed consideration of
environmental factors and complex terrains, making it difficult to accurately reflect the
interactions of multiple factors during an actual fire spread [47]. Additionally, the impact
of lightning-caused fires has not been adequately accounted for in this study. Although the
proportion of lightning-induced forest fires in Southwestern China, such as in Muli County,
Sichuan (46.7%) [48], is lower compared to northern regions, such as the Greater Khingan
Mountains (68.28%) [49], lightning-caused fires remain a significant factor that should not
be overlooked. Future studies could incorporate more detailed lightning data and consider
its spatial and temporal distribution to improve the accuracy of fire occurrence models
in different regions. Furthermore, training and tuning the deep learning model for forest
fire occurrence probability is complex and requires significant computational resources,
posing potential challenges for practical applications. Future research can improve potential
spread simulations by combining deep learning spread prediction methods to obtain more
accurate potential burn probabilities.
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5. Conclusions

Forest fire risk assessment is a key aspect of forest emergency management. A detailed
fire risk assessment of forest areas can effectively reduce the losses caused by natural
disasters, provide crucial support for firefighters’ emergency response and post-disaster
recovery, and is of great significance for protecting property safety and ensuring human life.
We proposed a forest fire risk assessment method based on multi-source remote sensing
data and deep learning models, establishing a comprehensive evaluation model of forest fire
occurrence probability using vegetation, meteorological, topographic, and anthropogenic
data and potential burn probability, obtained through fire spread simulations. The method
improved the prediction accuracy by 2.8%. The results demonstrate that the method
enhances the accuracy and predictability of fire risk assessments, providing new technical
means for forest fire early warning and management.
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