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Abstract: In the context of global climate warming, climate change is subtly reshaping the patterns
of wildfires. Therefore, it is particularly urgent to conduct in-depth research on climate change,
wildfires, and their management strategies. This study relies on detailed fire point data from 2001 to
2020, skillfully incorporating a spatial autocorrelation analysis to uncover the mysteries of spatial
heterogeneity, while comprehensively considering the influences of multiple factors such as climate,
terrain, vegetation, and socioeconomic conditions. To simulate fire conditions under future climates,
we adopted the BCC-CSM2-MR climate model, presetting temperature and precipitation data for
two scenarios: a sustainable low-development path and a high-conventional-development path. The
core findings of the study include the following: (i) In terms of spatial heterogeneity exploration,
global autocorrelation analysis reveals a striking pattern: within the southern forest region, 63 cities
exhibiting a low-low correlation are tightly clustered in provinces such as Hubei, Anhui, and Zhejiang,
while 48 cities with a high—high correlation are primarily distributed in Guangxi and Guangdong.
Local autocorrelation analysis further refines this observation, indicating that 24 high-high correlated
cities are highly concentrated in specific areas, 14 low-low correlated cities are located in Hainan,
and there are only 3 sparsely distributed cities with a low-high correlation. (ii) During the model
construction and validation process, this study innovatively adopted the LR-REF-SVM ensemble
model, which demonstrated exceptional performance indicators: an accuracy of 91.97%, an AUC
value of 97.09%, an F1 score of 92.13%, a precision of 90.75%, and a recall rate of 93.55%. These figures,
significantly outperforming those of the single models SVM and RF, strongly validate the superiority
of the ensemble learning approach. (iii) Regarding predictions under future climate scenarios, the
research findings indicate that, compared to the current fire situation in southern forest areas, the
spatial distribution of wildfires will exhibit a noticeable expansion trend. High-risk regions will
not only encompass multiple cities in Hunan, Hubei, southern Anhui, all of Jiangxi, and Zhejiang
but will also extend northward into southern forest areas that were previously considered low-risk,
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suggesting a gradual northward spread of fire risk. Notably, despite the relatively lower fire risk in
some areas of Fujian Province under the S5585 scenario, overall, the probability of wildfires occurring
in 2090 is slightly higher than that in 2030, further highlighting the persistent intensification of forest
fire risk due to climate change.

Keywords: global climate warming; wildfires; spatial heterogeneity; ensemble model (LR-RF-SVM);
future climate scenarios

1. Introduction

Forests, which are among the planet’s most essential ecosystems, offer critical habitats
for biodiversity and are indispensable for human economic growth, ecological stability,
and climate regulation [1-4]. However, wildfires, a highly destructive natural disaster,
pose a significant threat to forest conservation [5-7]. Particularly in southern China, where
a complex interplay of climate, topography, vegetation structure, and human activities
increases both the frequency and severity of wildfires, the ecological and economic chal-
lenges are mounting. With the intensification of global climate change, the incidence of
and areas affected by wildfires have significantly risen. Notably, the proportion of major
and catastrophic fires is progressively increasing, exacerbating global environmental chal-
lenges [8-10]. The exacerbation of forest fire risks due to global warming and the El Nifio
phenomenon has altered fire occurrence patterns and behavior [11,12].

In the past century, global warming has become a widely accepted phenomenon.
According to the latest Fifth Assessment Report from the Intergovernmental Panel on
Climate Change (IPCC), both the land and oceans have experienced significant average
temperature increases over the past 100 years, with this warming trend expected to continue
in the future [13]. This rise in temperatures has led to an extended growing season in
forested areas, resulting in more vigorous vegetation growth. However, it has also made
these areas drier and increased the accumulation of fuels [14]. This drier environment
provides favorable conditions for wildfires, making them more likely to ignite and spread
during warmer seasons. Changes in precipitation also significantly impact forest fire
occurrence. On the one hand, reduced rainfall exacerbates soil and vegetation dryness,
increasing fire risk. On the other hand, alterations in precipitation patterns, such as an
increase in extreme rainfall events, can have complex effects on fire occurrence and spread.
For example, the rapid drying of forests following extreme precipitation events can create
highly flammable conditions [15,16].

Machine learning has demonstrated significant advantages in forest fire prediction.
It efficiently processes large volumes of meteorological, geographical, and environmental
data, continually improving prediction accuracy and providing robust support for disaster
prevention and mitigation [7,17,18]. However, machine learning also faces challenges, such
as a limited ability to recognize complex patterns, the need for extensive training data,
and poor model interpretability [19-21]. Ensemble models significantly enhance overall
prediction accuracy and robustness by combining the predictions of multiple base learners.
Different models often excel at capturing various aspects of the data, and ensemble methods
integrate these strengths to reduce the risk of overfitting associated with individual models
and decrease prediction variance. This approach not only improves adaptability to diverse
data but also effectively handles complex prediction tasks, delivering more stable and
reliable results.

In response to the anticipated increase in the frequency and intensity of wildfires
in southern China’s forest regions due to climate change, this study aims to develop an
accurate prediction model for fire risk zoning and early warning. By integrating detailed fire
point data from 2001 to 2020, meteorological data, historical fire records, and GIS technology,
we hypothesize that the model will effectively capture the spatial heterogeneity of wildfires,
comprehensively assess the impacts of climate, terrain, vegetation, and socioeconomic
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conditions on wildfire occurrence, and simulate fire scenarios under various future climate
conditions. The ultimate goal is to formulate targeted fire prevention strategies to support
sustainable regional management and mitigate threats to ecological safety and biodiversity.
This hypothesis provides a clear focus for the study and outlines the expected relationships
or outcomes being investigated, enhancing the clarity and direction of the research.

2. Materials and Methods
2.1. The Study Area

As illustrated in Figure 1, the southern forest region of China includes the provinces
of Hubei, Hunan, Guangdong, Fujian, Guangxi, Jiangxi, Anhui, Zhejiang, and Hainan.
Spanning approximately 1.386 million km?, this vast area is located in central and eastern
China. This region is characterized by a warm and humid climate with ample rainfall,
influenced by temperate and subtropical monsoon climates, providing optimal conditions
for plant growth. The terrain is diverse, featuring plateaus, mountains, hills, and plains,
which offer varied site conditions for forest development. The region also has a range of soil
types, including red soil, yellow soil, and brick-red soil, which supply essential nutrients
for forest growth. Additionally, the region benefits from an extensive water network, with
numerous rivers and lakes providing adequate moisture and promoting material cycling
and energy flow. Despite these favorable conditions, the southern forest region faces severe
forest fire threats. Fires can have devastating impacts on the fragile ecosystem and pose
significant risks to local socio-economic conditions, including potential casualties, property
damage, and long-term challenges in ecological restoration.
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Figure 1. The map of the southern forest regions (The blue line represents the coastline, and the
dashed line represents the Nine-Dashed Line).

2.2. Data and Methods

In our analysis, we utilized twenty years of MODIS fire data alongside forest type data,
current and future climate data, population data, and GDP data. The Moderate-Resolution
Imaging Spectroradiometer (MODIS), aboard NASA's Terra and Aqua satellites, is a pivotal
tool for monitoring environmental phenomena, including fire events, providing near-daily
global coverage with a high spatial resolution (https://firms.modaps.eosdis.nasa.gov/
active_fire/, accessed on 10 May 2022) [22-24]. Regarding the utilization of MODIS fire
data for each specific fire event, it is important to clarify that MODIS captures various
data points for each fire, contingent on its duration. To ensure precision and relevance,
we did not consider all recorded MODIS data for each fire incident. Instead, we focused
on fire points with a confidence level exceeding 80%, as this threshold guaranteed the
data were accurate. Additionally, to maintain the reliability of the data, fire points located
outside forest cover areas were excluded from our analysis. The selected fire data were then
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divided into training and validation sets in a 70:30 ratio to facilitate model development
and validation. This approach allowed us to harness the valuable insights offered by the
MODIS fire data into fire dynamics and their environmental impacts, while ensuring the
accuracy and reliability of our analysis.

Data on forest types, digital elevation models, and GDP were obtained from the
Chinese Academy of Sciences Resource Environment and Data Center (http://www.resdc.
cn/, accessed on 8 October 2023), featuring a resolution of 1000 m [25,26]. Datasets for
roads and residential areas were retrieved from the National Geographic Information
Resource Catalog Service System (https:/ /www.webmap.cn, accessed on 23 October 2023).
Temperature data came from He et al. [27], who based their study on meteorological station
data, categorizing them into monthly mean temperatures, maximum temperatures, and
minimum temperatures. A high-resolution monthly temperature dataset, with a resolution
of 1 km, was created using Gaussian Process Regression (GPR). Precipitation data were
sourced from Qu et al. [28], who performed an interpolation using precipitation data
from over 2400 meteorological stations to produce a monthly precipitation dataset with a
resolution of 1 km.

Data for various carbon emission scenarios were sourced from the WorldClim research
website (https://www.worldclim.org/, accessed on 5 May 2021). The BCC-CSM2-MR
climate model, which has a resolution of 2.5 min, was employed. It demonstrated a
correlation coefficient of 0.86 for temperature and 0.73 for precipitation when compared
to observed values from 1850 to 2005, indicating its strong simulation capabilities [29].
The BCC-CSM2-MR model’s two future scenarios, SSP126 (sustainable low-development
pathway) and SSP585 (high-conventional-development pathway), were used to simulate
forest fire scenarios for the periods 2021-2040 and 2081-2100. The data were resampled to
a spatial resolution of 1 km to accommodate different future climate scenarios.

2.2.1. Technical Workflow

The detailed technical workflow of this study is outlined in Figure 2 and involves the
following steps:

(i) Analysis of spatial heterogeneity characteristics: Advanced spatial autocorrelation
methods are employed to analyze forest fire data from the past 20 years. This step
aims to reveal the spatial distribution patterns, clustering characteristics, and potential
spatial association patterns of fire activities, laying a solid foundation for subsequent
comprehensive analysis and prediction.

(ii) Integration of multisource data and spatial distribution analysis: Using MODIS fire
data from 2001 to 2020, this study integrates various data dimensions, including
meteorological conditions (temperature, humidity, wind speed, etc.), vegetation types
and coverage, topographical features (elevation, slope, aspect, etc.), and human
activity factors (population density, agricultural activities, tourism development, etc.).
A comprehensive analysis of the spatial distribution of wildfires under the current
climatic conditions in China is conducted, and a predictive model is developed to
better understand future fire occurrence trends.

(iii) Ensemble learning model development and performance evaluation: To enhance
prediction accuracy, an optimal ensemble learning model is designed and constructed.
This model integrates various influencing factors to accurately predict forest fire
occurrences. Its performance is thoroughly assessed using internationally recognized
metrics, including recall, F1 score, accuracy, and AUC (Area Under the Curve), to
ensure reliability and effectiveness in practical applications.

(iv) Forecasting forest fires based on future change scenarios: Utilizing the advanced BCC-
CSM2-MR climate model, two representative greenhouse gas emission scenarios—
SSP126 (low-emission scenario) and SSP585 (high-emission scenario)—are selected.
The optimal ensemble learning model is employed to predict and map the distribution
of forest fire risks in the southern forest region under future climatic changes across
various timeframes. This approach provides a scientific foundation for forestry man-
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agement and fire prevention, offering essential decision support for tackling forest
fire challenges amid global climate change.

Research Design Flowchart
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Figure 2. Technical roadmap of this study.

2.2.2. Spatial Autocorrelation

Spatial autocorrelation is a core concept in spatial statistics, used to examine the
interdependencies of geographic phenomena or attributes of their spatial distribution.
Specifically, it refers to the statistical correlation between observed values at different loca-
tions within a geographic space, indicating whether the value at one location is influenced
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by values at nearby locations [30,31]. The global Moran’s index was computed for each
year from 2001 to 2020 to assess this spatial correlation [30,32].

nxyl oy wijx(xi—x)(xj—x)

(Z? xy wij) x TP (% — %)

, 1)

In the context of calculating the global Moran index, “I”, represents forest fire point
samples, where “n” denotes the total number of such samples, and “w;;” represents the
weights assigned to the forest fire points from i to j. The expressions x; — % and x; — ¥
signify the deviations of the forest fire points i and j from the mean deviation of all forest
fire points, respectively.

The standardized Z value featured in Equation (2) serves as a metric to quantify the
degree of spatial autocorrelation present in the dataset. It measures the strength of the
spatial correlation or clustering among the forest fire points, indicating the level of spatial
autocorrelation between them. - E(D

£ = STD(I)’ @

In this context, E(I) represents the expected value of I. When the absolute value of
the standardized Z score, denoted as |Z|, equals 2.54, it corresponds to a confidence level
of 0.01. Similarly, a |Z| value of 1.96 corresponds to a confidence level of 0.05. These |Z|
values, whether 1.96 or 2.54, indicate the presence of a significant spatial autocorrelation
among forest fire occurrences. Specifically, if | Z| is greater than 1.96 or 2.54, this suggests
that the forest fire points indicate a pattern of spatial concentration. Conversely, if |Z| is
less than —1.96 or —2.54, it indicates that the forest fire points in the study area are discrete,
suggesting a pattern of spatial dispersion.

Local indicators of spatial association (LISA) play a crucial role in quantifying the
degree of spatial correlation between neighboring regions and assessing the statistical
significance of these correlations through significance testing. Essentially, LISA serves as a
local version of the global Moran’s I index, providing a valuable tool for analyzing spatial
data at a finer resolution [33,34].

2.2.3. Construction of Predictive Models

Logistic regression is a widely used statistical method for binary classification prob-
lems. By combining a linear regression model with the Sigmoid function, it maps input
features to the [0, 1] interval, thereby estimating the probability of an event occurring. This
method is straightforward and efficient, with strong interpretability [35,36]. The formula
for logistic regression is as follows:

LogitP = In [P/ (1 — P)], 3)

Logistic regression establishes a specific mathematical relationship (a monotone dif-
ferentiable function) to link the actual classification results with the predicted values of a
linear model. In this example, we focus on the probability P of a forest fire occurring. By
calculating LogitP, we can understand how likely a fire is to occur relative to the likelihood
of it not occurring. The value of LogitP increases as P increases, indicating a positive
correlation between them.

The random forest model, an efficient learning method, is based on the construction of
multiple decision trees and incorporates dual randomness in both its samples and features.
This design not only effectively reduces the risk of model overfitting but also significantly
enhances prediction accuracy. During the prediction process, random forests aggregate the
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predictions from each decision tree, using methods such as voting or averaging to derive the
final decision. This approach ensures robustness and reliability in the predictions [37-39].

hx) = 2 X0 (00, @

where T denotes the number of decision trees, 6; represents an independent and identically
distributed random vector, and x is the input vector. The final prediction is obtained by
calculating the mean of the outputs from each regression subtree, denoted as {h(x,6;)}.
The predictive strength of the model ultimately hinges on the number of random features
selected and the total number of trees, T, as these factors collectively determine the model’s
capacity to generalize and make accurate predictions. In essence, the interplay between the
quantity of random features and decision trees is crucial in shaping the overall predictive
power and effectiveness of the random forest model.

SVM (Support Vector Machine) is rooted in statistical learning theory and functions
as a generalized linear classifier for binary classification within the framework of super-
vised learning [40,41]. Its decision boundary is determined by the maximum-margin
hyperplane derived from the learning samples. When dealing with linearly inseparable
problems, SVM utilizes a mechanism to transform data from a low-dimensional space into
a high-dimensional space, relying on suitable kernel functions for this mapping process.
Frequently employed kernel functions in SVM include the linear kernel, polynomial kernel,
and sigmoid kernel, among others [42].The formula is as follows.

Linear kernel:

K(xi,xj) = < x3, %) >; ®)
Polynomial kernel (poly):
K(xi,%) =(< x> +1)7; ©)
Radial basis function (RBF):
il
K(xj,xj) =e 20" . )

Figure 3 outlines the detailed process. In the training phase, predictions are generated
for each training sample (i.e., the i-th sample) using several base models, such as random
forest (RF) and Support Vector Machine (SVM). The predictions are then combined, with
the prediction from the j-th base model assigned as the j-th feature for the i-th sample in
a new training set. This transformation creates a new feature space where each sample’s
features consist of the outputs from the various base models. Subsequently, a logistic
regression model is trained on this newly constructed training set.

During the prediction phase, predictions for each sample in the test set are also made
using all base models. These predictions serve as new features that are input into the
logistic regression model to yield the final prediction results. This methodology represents
an ensemble learning strategy that merges predictions from multiple base models, thereby
improving the overall model’s predictive performance and stability.



Forests 2024, 15, 2029 8of 17

Dataset
i | ¥
Training set Test set
Training folds Validati()n fold
A A
EEEEEEEEEE
N\ v J )
Training
4 4 4
1 2 eeseee n
P Predictive|jmodel
4 4 4
Pl P2 eev oo Pn

A 4
( Evaluate each classifier and return the top n classifiers )

v
( Prediction values of the top level-0 # classifiers )

Training

\ 4
( Meta-classifier F )

A 4

P; | Ensemble model prediction

Figure 3. Schematic diagram of the model used in this study.

2.2.4. Evaluation of Model Performance

In forest fire risk prediction, commonly used evaluation metrics include accuracy,
precision, recall, F1 score, and AUC (Area Under the Curve). These metrics quantify the
performance of classification models from different perspectives, helping to comprehen-
sively assess and understand the strengths and weaknesses of the model [43-45]. The
formulas are presented as follows [46]:

Accuracy = (TP +TN)/(TP +FP + TN +FN), (8)
Recall = TP/(TP +EN), )
Precision = TP/ (TP + FP) (10)
F1 = 2 (Precision x Recall)/ (Precision + Recall) (11)

Accuracy measures the proportion of correct predictions made by the model, reflecting
its overall average performance across all predictions. However, in imbalanced datasets
like forest fire risk prediction, accuracy may not be a reliable metric. This is because a
model that correctly predicts most non-fire samples might still achieve high accuracy, even
if it fails to accurately predict fire events. Precision refers to the proportion of predicted fire
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cases that are actually fires. This metric is crucial for assessing the reliability of the model
in predicting fires. Recall indicates the proportion of true fire incidents that the model
successfully identifies, highlighting its sensitivity to fire occurrences. The F1 score, which
represents the harmonic mean of precision and recall, effectively balances the trade-off
between these metrics. In the context of predicting forest fire risks, the F1 score serves as a
valuable performance indicator that takes into account both the model’s reliability and its
sensitivity. Finally, AUC (Area Under the Curve) represents the area under the Receiver Op-
erating Characteristic (ROC) curve, which assesses the model’s overall performance across
different thresholds. A higher AUC value signifies that the model effectively differentiates
between fire and non-fire samples across different thresholds. In this context, TP (True
Positives) refers to the correctly identified fire instances, TN (True Negatives) indicates the
accurately identified non-fire instances, FP (False Positives) represents the instances incor-
rectly classified as fires, and FN (False Negatives) denotes the cases mistakenly identified
as non-fires.

3. Results
3.1. Distribution Map of Forest Fire Occurrences Based on Current Climate Conditions

Figure 4 depicts the forecasted risk of wildfires based on current climatic condi-
tions, highlighting key areas where fire incidents are expected to be notably concentrated
throughout the year. These high-risk regions are predominantly found in specific cities,
including Hezhou and Baise in the Guangxi Zhuang Autonomous Region, as well as
Heyuan, Huizhou, and Shaoguan in Guangdong Province. Additional high-risk areas in-
clude Hengyang and Shaoyang in Hunan Province, Ganzhou and Ji’an in Jiangxi Province,
and Fuzhou, Sanming, and Nanping in Fujian Province. These regions are characterized by
complex terrain, variable climate patterns, and a high coverage of flammable vegetation.
Additionally, the frequent human activities in these areas further exacerbate the risk of
natural disasters such as fires. Consequently, it is imperative for these high-risk cities
to implement enhanced fire prevention and control measures throughout the year. This
involves enhancing the management of ignition sources, increasing public awareness about
fire prevention, and refining fire warning and emergency response systems. Implementing
these strategies can substantially mitigate the impact of fire incidents.

Provincial boundary
|| City boundary
. W High :0.9583

B 0w 00338518

5 0 95 190 380
|l

Figure 4. (a) Fire occurrences (2001-2020); (b) forest fire risk mapping using ensemble learning

models under current climate conditions.
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3.2. Evaluation of the Spatial Patterns Associated with Wildfires

Figure 5 depicts a global spatial autocorrelation analysis of the southern forest region,
revealing the distribution traits and spatial configurations of various city types. A total
of 63 cities were classified as the low—-low (L-L) type, predominantly concentrated in the
Hubei, Anhui, and Zhejiang provinces. This clustering suggests a comparatively low level
of similarity or interconnection among the cities within these provinces.

(a)Global autocorrelation

70 140 280 ’—‘ H-H

[ Se—] )

[ ] Insignificant

Figure 5. (a) The global Moran’s I index for forest fire risk and (b) the aggregation chart of local
indicators of spatial association (LISA) for forest fire risk levels.

On the other hand, 27 cities were identified as the low-high (L-H) type, scattered across
Yiyang, Xiangtan, and Changsha in Hunan Province; Quanzhou, Xiamen, and Putian in
Fujian Province; as well as Dongguan and Zhanjiang in Guangdong Province. These cities
demonstrate spatial heterogeneity, displaying marked contrasts in certain characteristics
when compared to their neighboring cities.

Conversely, 48 cities were categorized as the high-high (H-H) type, mainly situated
in Hezhou, Baise, and Hechi within the Guangxi Zhuang Autonomous Region. Other
significant clusters include Qingyuan, Heyuan, Huizhou, and Shaoguan in Guangdong
Province; Fuzhou, Sanming, and Nanping in Fujian Province; and Ganzhou and Fuzhou
in Jiangxi Province, and Shaoyang and Hengyang in Hunan Province. These cities exhibit
a pronounced clustering effect, characterized by relatively high attributes and strong
inter-city correlations.

3.3. Prediction Performance Evaluation

As shown in Figure 6, the study first assessed the predictive performance of the
individual models, SVM and RF, separately. The SVM model demonstrated a reasonable
level of accuracy, achieving an accuracy of 0.73, a precision of 0.70, a recall of 0.80, an F1
score of 0.74, and an AUC value of 0.80. These indicators suggest that while the SVM model
has some strengths in its performance, there is still room for improvement. In contrast, the
RF model showed a significant improvement in predictive performance, with an accuracy
of 0.84, a precision of 0.82, a recall of 0.88, an F1 core of 0.85, and an AUC value of 0.92,
demonstrating the RF model’s stronger ability to handle complex data and classification
tasks. However, by constructing the LR-RF-SVM ensemble learning model, we achieved a
further leap in predictive performance. The ensemble model had an accuracy of 0.92, an
AUC value of 0.97, an F1 score of 0.92, a precision of 0.91, and a recall of 0.94, all of which
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far exceeded the results obtained by the single models. These results fully demonstrate
the significant advantage of ensemble learning in integrating the prediction results of
multiple base models and improving overall performance. This research not only verifies
the effectiveness of ensemble learning methods but also provides strong support and a
reference for subsequent related research and applications. (Note: The accuracy results are
rounded to two decimal places.)

] R-RF-SVM =RF SVM

Accuracy
1

Recall AUC

Precision F1

Figure 6. Evaluation charts for machine learning and ensemble learning.

3.4. Prediction and Zoning of Forest Fire Occurrence in Future Scenarios

Under the severe challenges posed by future climate scenarios, Figure 7 illustrates the
unprecedented changes in the spatial distribution of wildfire occurrences across southern
forest regions. High-occurrence areas persistently encompass numerous cities in Hunan,
Hubei, southern Anhui, Jiangxi, and Zhejiang, and a notable trend emerges: wildfire
occurrences are gradually spreading northward, posing significant threats to previously
low-occurrence areas. In the SS585 scenario, some parts of Fujian Province experience
a relative decrease in wildfire occurrences amidst a general upward trend, highlighting
the complexity and intensification of forest fire threats driven by climate change. This
necessitates a deeper understanding of climate change’s impacts and an urgent reevaluation
and adjustment of existing forest fire prevention strategies.

Figure 8, through detailed data comparisons and scenario simulations, further empha-
sizes the profound impact of climate change on the geographical distribution of forest fire
occurrences, revealing the relative rate of change under different climate scenarios. This
figure serves as a warning that, as climate conditions continue to evolve, areas once deemed
low-occurrence may rapidly transition to high-occurrence zones. Consequently, forest fire
prevention efforts must be increased to address these comprehensive and ever-changing
challenges, ensuring the safety of forest resources and human life and property.
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Figure 7. Predictions of forest fire occurrences in the southern forest region of China, utilizing the
BCC-CSM2-MR scenarios for the years 2030 to 2090 (the lighter the color, the lower the probability of
occurrence; the darker the color, the higher the probability).

In summary, the quantitative analysis presented confirms that the spatial distribution
of forest fires will indeed exhibit a noticeable expansion trend in terms of occurrence. This
trend is manifested not only in the persistence and expansion of high-occurrence areas but
also in the transformation of low-occurrence areas into high-occurrence ones. To effectively
tackle this trend, it is imperative to enhance research on the impacts of climate change on
forest fires, optimize and adjust forest fire prevention strategies, and increase investment in
fire prevention measures.
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Figure 8. Evaluation of relative changes in forest fire occurrences based on current and future climate
scenarios (green represents negative values).

To effectively respond to this challenge, a series of integrated and forward-looking
measures must be adopted. First and foremost, strengthening monitoring and early warn-
ing systems is crucial. Leveraging modern technological tools, such as remote sensing
satellites, drone monitoring, and big data analysis, can help build efficient and precise fire
monitoring and early warning systems, improving the accuracy of early detection and the
timeliness of warnings [47,48].
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Second, optimizing forest fire prevention infrastructure is an urgent priority. This
includes establishing firebreaks, constructing firewater pools, providing advanced firefight-
ing gear, and enhancing the training and capabilities of forest fire brigades, all aimed at
improving the efficiency and effectiveness of fire suppression efforts. Additionally, increas-
ing public awareness of fire prevention is essential. Through education, training, and drills,
public understanding of and involvement in forest fire prevention can be strengthened,
fostering a culture of collective responsibility for fire safety [49].

Lastly, establishing cross-regional forest fire prevention mechanisms is key to achieving
resource-sharing and coordinated responses to large-scale fire events. Strengthening re-
gional cooperation and coordination can help form an interconnected forest fire prevention
network, enabling swift, effective firefighting and post-disaster recovery.

4. Discussion

The integration of machine learning, particularly ensemble learning, with detailed
climate change scenario analysis represents a significant advancement in the field of forest
fire prediction. Our study demonstrates how this combined approach can effectively tackle
the complexities and uncertainties associated with forest fire risks under climate change. By
leveraging the strengths of multiple models within an ensemble framework, we achieved
enhanced prediction stability and accuracy, echoing findings from similar studies that
highlight the benefits of ensemble methods in environmental forecasting [29,50,51].

A notable strength of our research lies in the comprehensive consideration of climate
change’s impacts on forest fire risk through detailed scenario analyses. This approach
provided the model with rich, dynamic input data, enabling it to capture the nuances
of climate—fire interactions. As a result, we not only identified key drivers of wildfires
but also significantly improved prediction accuracy compared to traditional methods.
This aligns with recent research that emphasizes the importance of incorporating climate
change projections into fire risk assessments to ensure the relevance and effectiveness of
management strategies [31,52]. However, it is crucial to acknowledge that while our study
contributes to the understanding of forest fire risks, it is not without limitations. Spatial
autocorrelation analysis, for instance, revealed the clustering and heterogeneity of cities in
the southern forest region, highlighting potential interactions and influences. Yet, as noted
in the literature, spatial autocorrelation may not fully explain the specific mechanisms
underlying these relationships, necessitating further exploration through complementary
research methods and field investigations [31,52].

In comparison to other recent studies on forest fire prediction, our work stands out in
its innovative use of ensemble learning combined with detailed climate scenarios. While
some studies have focused on the application of individual machine learning models [53],
or the integration of remote sensing technologies [54], our approach goes a step further by
combining multiple models within an ensemble framework and incorporating detailed
climate change projections. This holistic approach not only improves prediction accu-
racy but also provides a more robust framework for decision-making in the context of
climate change.

The significance of our findings is further underscored by the urgent need to adapt and
optimize fire management strategies in the face of climate change. Our research highlights
the importance of designing dense vegetation and open forest ecological belts in high-
risk areas, establishing comprehensive fire alarm systems, and repairing and improving
existing fire prevention infrastructure. These measures are crucial for ensuring timely
responses to fires and for minimizing damage, as evidenced by their effectiveness in other
regions [49,54,55].

Moreover, our study emphasizes the need for innovative solutions in fire detection
and response. Advanced detection systems, such as those integrating IoT technology
and WSNs, have shown promise in providing early fire warnings and accurately locating
fires [54,55]. These technologies complement traditional methods and enhance our ability
to respond rapidly and effectively to fire events.
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Our research contributes to the growing literature on forest fire prediction under
climate change by demonstrating the potential of combining ensemble learning with
detailed climate scenario analyses. While our findings are promising, they also highlight
the need for continued research and innovation in this field. By adopting a comprehensive
and forward-thinking approach, we can effectively reduce fire risks, protect valuable forest
resources, and ensure a greener, safer, and more sustainable planet for future generations.

5. Conclusions

This research has made significant strides in understanding the intricate relationship
between climate change, wildfires, and their management strategies.

(i) By leveraging detailed fire point data spanning two decades and incorporating spatial
autocorrelation analysis, we uncovered notable patterns of spatial heterogeneity in
forest fire occurrences.

(ii) Our findings reveal distinct clusters of cities with varying levels of fire risk within the
southern forest region. Furthermore, the innovative use of the LR-RF-S5VM ensemble
model proved highly effective, surpassing the performance of individual models in
predicting wildfires. This underscores the advantages of integrating multiple machine
learning techniques to enhance prediction accuracy.

(iii) Looking to the future, our predictions based on two climate change scenarios indicate
a concerning trend of expanding forest fire risk, particularly in previously low-risk
areas. This highlights the urgent need for proactive management strategies to mitigate
the impacts of climate change on forest fire occurrence.

Overall, this study provides valuable insights for decision-makers and researchers
working to address the challenges posed by climate change and wildfires.
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