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Abstract: Compound drought and heat events (CDHEs) and forest cover change influence regional
forest carbon dynamics. Changes in regional vegetation biomass and soil carbon storage induced
by forest cover change often exhibit considerable uncertainty, and previous research on the im-
pacts of CDHEs on forest carbon dynamics is limited. To accurately quantify the specific effects
of forest cover change and CDHEs on forest carbon dynamics in different regions, we employed a
combined algorithm of the Carnegie–Ames–Stanford Approach (CASA) and bookkeeping empirical
models to examine the impact of regional forest cover changes on forest carbon dynamics during
2000–2022 in Nanjing and Shaoguan, Southern China. Using the Geographical Detector model, we
then analyzed the effects of CDHEs on forest carbon dynamics. Next, we used the photosynthesis
equation and the optimal response time of forests to drought (heat) events to calculate the changes in
forest carbon sequestration caused by CDHEs in both regions during 2000–2022. The results indicated
that afforestation and deforestation led to +0.269 TgC and +1.509 TgC of carbon sequestration and
0.491 TgC and 2.802 TgC of carbon emissions in Nanjing and Shaoguan, respectively. The overall
effects of CDHEs on the change in forest carbon sequestration were manifested as net carbon loss.
In Nanjing, the net carbon loss caused by CDHEs (0.186 TgC) was lower than the loss due to forest
cover change (0.222 TgC). In Shaoguan, the net forest carbon loss caused by CDHEs (3.219 TgC) was
much more significant than that caused by forest cover change (1.293 TgC). This study demonstrated
that forest carbon dynamics are dominated by different factors in different regions, which provides a
scientific basis for local governments to formulate targeted forest management policies.

Keywords: compound drought and heat events; forest cover change; bookkeeping model;
geographical detector; carbon storage

1. Introduction

Extreme weather events and land cover change significantly impact global terrestrial
ecosystem carbon cycling [1–4]. Drought and heat events, as typical extreme climate events,
directly weaken vegetation photosynthesis through water and heat stress, potentially
leading to vegetation mortality and reducing ecosystem carbon uptake, further releasing
large amounts of forest carbon [5–7]. Land cover change leads to shifts in terrestrial
carbon stocks [8]. Forest is the largest carbon reservoir of the terrestrial ecosystem, and
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frequent afforestation and deforestation activities change the land cover and affect the
carbon balance, which deserves attention [9,10]. Therefore, precisely quantifying the effects
of forest cover change and compound drought and heat events (CDHEs) on forest carbon
dynamics is vital for understanding how human activities and extreme climate events
influence the forest carbon balance.

Over the past few decades, numerous studies have been undertaken to enhance our
comprehension of the effects of CDHEs on forest carbon dynamics. For instance, Zhao
et al. [11] found that during the 2022 CDHEs in the Yangtze River Basin, low soil moisture
(SM) and a high vapor pressure deficit (VPD) were the primary factors contributing to
reduced forest productivity. Li et al. [12] showed that high temperatures significantly
impacted gross primary productivity (GPP) reduction, followed by low soil moisture. VPD
contributed the least through multiple linear regression analysis of the impact of various
indicators on GPP during July–October 2022. Nevertheless, most research investigating
the effects of CDHEs on forest carbon dynamics relies on correlation, regression, and trend
analysis methods. These studies presume notable linear relationships between related
factors and vegetation growth [13–15]. Yet, the responses of terrestrial vegetation to various
influences can be intricate, and relying solely on linear statistical methods may not suffice
to portray these relationships accurately [13]. While copula-based models have been used
to study the interaction of CDHEs and vegetation, they may not precisely distinguish the
specific interactions of CDHEs [13–15]. Geographical Detector (GD) is a model for exploring
spatial heterogeneity in vegetation and its relevant factors, pinpointing the importance
and degree of diverse driving factors (meteorological, geographical, and human activities,
etc.) and elucidating the interplay between these factors and vegetation [16,17]. However,
these models have not gained widespread application in analyzing the effects of CDHEs on
forest carbon dynamics. Simultaneously, few efforts have been made to quantify changes
in regional forest carbon sequestration due to CDHEs.

In recent years, optical, radar, and LiDAR remote sensing observations have facili-
tated the understanding and monitoring of land cover changes and vegetation dynamics
worldwide and on regional scales. They have refined carbon flux models and enhanced
quantitative predictions of ecosystem carbon balance impacts [9,18]. In recent decades,
numerous approaches and models have been utilized to assess forest carbon fluxes and
reservoirs. Observing changes in atmospheric CO2 concentrations can help to infer forest
carbon sources and sinks [19], albeit with significant uncertainties. Inventory methods
relying on forest survey data, such as Zeng et al. [20], used the National Forest Inventory
(NFI) to assess changes in forest carbon stocks in China over 70 years (1948–2018). How-
ever, the uncertainty is significant on a regional scale. Process-based ecosystem models
can simulate changes in forest carbon stocks but often operate at coarse spatial resolutions,
leading to significant discrepancies between simulated and observed values [21,22]. For
example, Zhao and Zhuang [23] utilized the Peatland version of the Terrestrial Ecosystem
Model (PTEM) to estimate carbon dynamics in peatlands across northern high latitudes,
encompassing the timeframe from 1990 to 2300. However, the model’s spatial resolution of
0.5◦ is insufficient to capture the effects of regional-scale forest cover changes.

Bookkeeping models track carbon fluxes generated by land use change and forest
disturbance and perform well in regional or global ecosystem assessments [24,25]. However,
they lack spatially distributed carbon flux data and assume that carbon density remains
constant over time, resulting in significant differences from observational data. Due to
classification errors and other factors in regional land use/land cover change data, there is
considerable uncertainty in estimating ecosystem carbon budgets at finer local and regional
scales [26,27]. The CASA model is a light energy utilization model combined with the
principle of photosynthesis, and its parameters are small and easy to obtain, making it
easy to apply [28]. It can be combined with remote sensing data to obtain different spatial
scale net primary productivity (NPP) data for small-scale regions. Therefore, we intend to
incorporate the CASA model with the bookkeeping model to assess forest carbon dynamics
due to forest cover change at the regional scale.
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So far, numerous scholars have employed diverse methods and models, successfully
quantifying the impacts of forest cover changes and CDHEs on the forest carbon cycle
within the Yangtze River Basin and across China [29–31]. However, few studies accurately
quantify regional forest cover change and its effects on forest dynamics with high spatial
resolution. Both Nanjing and Shaoguan have subtropical monsoon climates (Table 1).
However, the former belongs to the North subtropical zone, and the latter belongs to the
Middle subtropical zone. The primary land use type in Shaoguan is forest, while it is
farmland in Nanjing. Shaoguan, as a typical forest city in Guangdong Province, has a low
level of urbanization and slow economic development. Nanjing is a major financial city
in the Yangtze River Delta, with a high level of urbanization and a developed economy.
Meanwhile, the forest coverage rate ranks first in Jiangsu Province, China. Since 2000, forest
cover changes and CDHEs have occurred more frequently in these two regions. Therefore,
quantitatively comparing and exploring the difference between forest cover change and
CDHEs on forest carbon dynamics in these regions is of particular social, economic, and
ecological value. Furthermore, it is crucial to contrast the disparities in forest carbon
dynamics attributed to forest cover changes and CDHEs between Nanjing and Shaoguan
from 2000 to 2022 to evaluate the impacts of human activities and climate change on forest
carbon dynamics across different regions.

Table 1. The background of social, economic, and ecology in two regions.

Region Climate Main Land Type Forest Cover Rate
(2022) GDP (2022) Urbanization Rate

(2022)

Nanjing North Subtropical
Monsoon

Farmland and
Impervious Surface 25.86% CNY 1.742 Trillion 86.8%

Shaoguan Mid-Subtropical
Monsoon Forest 74.43% CNY 0.162 Trillion 44.9%

Specifically, this research aims to (1) quantify the carbon budget due to forest cover
change in two regions from 2000 to 2022 using CASA and bookkeeping models; (2) quantify
the changes in forest carbon sequestration due to CDHEs in two regions from 2000 to
2022 using Geographical Detector and the photosynthesis equation; and (3) compare the
difference in forest carbon dynamics caused by forest cover change and CDHEs in two
regions during 2000–2022. For the first time, this study proposed an evaluation framework
to illustrate the dynamic response of regional forest carbon to forest cover change and
extreme climate events to determine the leading factors of forest carbon dynamics between
the high economic and high forest cover regions and carry out targeted forest management
and climate response policies according to regional characteristics.

2. Materials and Methods
2.1. Study Area

Nanjing (31◦14′~32◦37′ N, 118◦22′~119◦14′ E) and Shaoguan (23◦53′–25◦31′ N, 112◦53′–114◦45′ E)
are both located in southern China, not only in geographical coordinates but also as critical
economic and forestry hubs in Guangdong and Jiangsu Province (Figure 1). Shaoguan, for
instance, boasts the wealthiest forest resources in Guangdong Province. However, it suffers
from the adverse effects of climate change, rapid urban sprawl, and unscientific forestry
management strategies, leading to a decline in forest cover and quality [32]. Human
activities markedly influence the urban thermal environment of Nanjing, and the quantity
of heat wave days has increased [33].
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Figure 1. Locations of the study area. The background image shows the elevation in two regions
based on the digital elevation model (DEM).

2.2. Data Sources and Processing

We used the Gap Filling and Savitzky–Golay filtering (GF-SG) method [34,35], synthe-
sizing NDVI data from Landsat and MODIS products (Table 2) with a spatial resolution of
30 m. Meteorological data, including monthly average temperature, monthly total precipi-
tation [36,37], and solar radiation data [38], were sourced from the Third Pole Environment
Data Center (http://data.tpdc.ac.cn, accessed on 7 January 2024) (Table 2). Due to the
lack of solar radiation data for 2022, the 2021 data are taken as the solar radiation data for
2022. We interpolated these datasets to a 30 m spatial resolution using Kriging and Inverse
Distance Weighting (IDW) methods (Figure 2). We selected the first-order trend removal
method to remove linear trends and used the Gaussian kernel function to implement Krig-
ing interpolation. Meanwhile, we used the IDW of two power functions for interpolation,
whose searching radius is 12 neighboring points. The land use/cover data were obtained
from the annual China Land Cover Dataset (CLCD) (Table 2), which has a spatial resolution
of 30 m [39]. The accuracy verification results based on 5463 independent reference samples
show that the overall accuracy of the CLCD reaches 79.31% [39]. In Nanjing and Shaoguan,
the main seven land types are farmland, forest, grassland, shrub, water, barren land, and
impervious surface. We imported the processed data into the CASA model to obtain the
study area’s net primary productivity (NPP) from 2000 to 2022.

Table 2. Summary of datasets used in this study.

Dataset Type Selected Band Resolution Period

CLCD Land Cover 30 m, Yearly [39] 2000–2022
Landsat 5 TM NDVI Band 3 and Band 4 30 m, 16-day 2000–2011

Landsat 7 ETM NDVI Band 3 and Band 4 30 m, 16-day 2012–2013
Landsat 8 OLI NDVI Band 5 and Band 4 30 m, 16-day 2014–2022

MOD09Q1 NDVI Band 1 and Band 2 250 m, 8-day 2000–2022
Average Temperature Temperature 0.833◦, Monthly [36] 1901–2022

Total Precipitation Precipitation 0.833◦, Monthly [37] 1901–2022
Total Solar Radiation Solar Radiation 2473 Stations [38] 1960–2021

Soil Type Distribution Data Soil 1:1,000,000 1995

http://data.tpdc.ac.cn
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Figure 2. The workflow of this study.

Carbon density data were derived from land use/cover data, soil type distribution
data, the literature, and field measurements. Soil type distribution data came from China’s
Second National Soil Survey (1:1,000,000), which we converted to a 30 m spatial resolution
through vector-to-raster conversion. Vegetation average carbon density (Table S1) and soil
average carbon density data (0–20 cm) (Table S2) were estimated from various literature
sources [40–42]. To verify the accuracy of the CASA model in calculating carbon density,
this research used forest sub-compartment survey data from the Guangdong Provincial
Center for Forest Resources Monitoring, China, as validation data in the Shaoguan region
in 2020 (Figure 2).

2.3. Impact of Forest Cover Change on Forest Carbon Dynamics
2.3.1. Inversion of NPP Data with 30 m High Spatial Resolution

Utilizing a refined CASA model [43–45], this study integrated processed meteorologi-
cal data, the NDVI, and land use/cover data at a 30 m spatial resolution to estimate the net
primary productivity (NPP) of Shaoguan and Nanjing. The model’s output was primarily
influenced by two parameters: photosynthetically active radiation and light energy use
efficiency, which are critical factors in determining vegetation photosynthesis. Photosyn-
thetically active radiation reflects the ability of vegetation to absorb solar radiation, while
light energy use efficiency demonstrates the efficiency of vegetation in converting absorbed
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light energy into organic matter. CASA models only need meteorological and land data
to simulate and predict vegetation productivity at different times and spatial scales. This
model’s specific formula and principle are detailed in the paper of Zhu et al. [43].

2.3.2. Estimation of Vegetation Carbon Storage

Forest vegetation carbon density is typically calculated using the forest’s average
biomass and a carbon content coefficient of 0.5. We derived the average carbon density
of forest vegetation based on the literature data (Table S1). Utilizing the positive linear
relationship between forest biomass and NPP [46], we calculated the forest vegetation
carbon density for each year in the study area, as shown in Equation (1). Combining these
yearly forest vegetation carbon densities with the average vegetation carbon density data
for other land types, we generated the vegetation carbon density data of the study area,
with a spatial resolution of 30 m.

Ci =
Ct × Ni × nt

∑i∈t Ni
(1)

where i denotes a specific pixel; t represents the forest in a region; Ct represents the average
forest carbon density in a region; Ni represents the net primary productivity of the pixel i;
Ci represents the vegetation carbon density of the pixel; nt represents the total number of
pixels occupied by the regional forest; and ∑i∈t Ni represents the total value of pixels of net
primary productivity occupied by the regional forest.

2.3.3. Estimation of Soil Carbon Storage

The root–shoot ratio affects the distribution of the net primary productivity of above-
ground and below-ground material [47]. All plant organs ultimately undergo senescence
and enter the litter pool. Once in the soil, the litter produces carbon dioxide or forms
organic matter. Each decomposition and transformation rate of litter is different due to the
differences in the properties of litter, soil temperature, and moisture [48]. A fixed first-order
decomposition rate was adopted to simplify the litter decomposition process. Based on the
soil average carbon density (Table S2) and soil type distribution data, the product of litter
productivity and turnover rate [31] was used to obtain the change in soil carbon density, as
shown in Equations (2) and (3).

∆Litter = TAB ·
n

∑
i=1

NPPAB · (1 − TAB)
n−i + TBE ·

n

∑
i=1

NPPBE · (1 − TRBE)
n−i (2)

∆SOC = ∆Litter × TL (3)

where n represents the nth year of each cycle. ∆Litter denotes the total litter productivity
in n year. NPPAB represents above-ground NPP, while NPPBE refers to below-ground NPP.
TAB and TBE represent the rates of biomass turnover for above-ground and below-ground
material. The ratio of NPPAB to NPPBE was estimated at 1:3 for grasslands and impervious
surfaces. For forests and shrubs, the ratio is 1:4 [49,50]. The reap index of farmland is
0.3 [51]. The root turnover rate was also calculated as 0.15 per year for all vegetation
types. The above-ground biomass turnover rate of the forest is 0.10 per year. Grasslands,
farmlands, and impervious surfaces are 1.0 per year. TL is the litter biomass turnover rate.
The specific parameters are detailed in Cai et al. [52].

2.3.4. Bookkeeping Model

The bookkeeping model is extensively utilized to calculate the carbon budget by land
use and cover change (LUCC). The model utilizes two types of data for its calculations:
LUCC and carbon density. The model considers the total amount of carbon per unit area,
including living organisms, soil, disturbed plant residues, and wood products [53]. This
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model was used to calculate the carbon budget caused by forest cover change, as shown in
Equation (4).

M =
m

∑
n=1

∆SCn + ∆VCn (4)

where M denotes the carbon budget that arises from forest cover change; m represents
the years of study; ∆SCn denotes variations in soil carbon storage during the nth year;
and ∆VCn denotes variations in vegetation carbon storage during the nth year. ∆SCn was
calculated using Equation (5).

∆SCn =
m

∑
a=1

m

∑
b=1

m

∑
n=1

La,b,n × ∆SOCa,b,n (5)

where La,b,n denotes the area where land type a was converted to b during the nth year;
∆SOCa,b,n denotes the change in soil carbon storage where land type a was converted to b
during the nth year.

The alterations in vegetation carbon storage resulting from forest cover change be-
tween 2000 and 2022 encompass two primary facets: the carbon dioxide emissions from
deforested vegetation and the spontaneous regeneration of forest vegetation post-removal.
Consequently, the vegetation carbon budget associated with these forest cover changes was
computed based on Equation (6).

∆VCn = ∆VCRS − ∆VCRM (6)

where ∆VCRS and ∆VCRM signify the alterations in vegetation carbon storage that occur
during the nth year as a result of recovery and vegetation removal, respectively. They can
be calculated according to Equations (7) and (8).

∆VCRS = ∑m
n=1 (La,b,n×VDa) (7)

∆VCRM =
m

∑
a=1

m

∑
b=1

t

∑
n=1

La,b,n × VDa × αk × xk (8)

where αk represents the proportion of vegetation carbon storage to total carbon storage
at xk oxidation rates; xk represents the oxidation rate of removed vegetation in k forms; k
denotes the oxidation forms of the removed vegetation, which include burning as fuelwood
(within 1 year), paper oxidation (within 10 years), and the oxidation of building materials
and furniture (within 100 years); and VDa represents the vegetation carbon density of land
type a. The bookkeeping model parameters (Table S3) were derived from Yang et al. [54].

2.4. Impact of Compound Drought and Heat Events on Forest Carbon Dynamics
2.4.1. Identification of Compound Drought and Heat Events

This study used monthly standardized precipitation index (SPI) and standardized
temperature index (STI) data to identify CDHEs during 2000–2022 [55]. The principle of the
SPI is to calculate the probability of Gamma distribution of precipitation in the specified
period based on the total monthly precipitation, then carry out normalization processing,
and finally use the standardized precipitation accumulation frequency distribution to
classify the drought grade [56]. The SPI and STI were calculated following the same
procedure. According to China’s standardized precipitation drought grade, this study
defines regions with an SPI ≤ −1.5 as experiencing the occurrence of drought events.
Similarly, we defined areas with an STI ≥ 1.5 as experiencing the occurrence of heat
events [57,58]. To alleviate the impacts of forest cover changes, we focused on the period
from 2000 to 2022, during which forests were stable. During this time, we identified all
occurrences of drought (heat) events and selected simultaneous events for combination
(SPI ≤ −1.5 and STI ≥ 1.5). We termed this combination of two events CDHEs.
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2.4.2. Identification of Carbon Dynamics

NPP is widely utilized in quantitatively analyzing vegetation carbon dynamics. We
calculated the variation in NPP under CDHEs at a monthly scale, denoted as VNPP, serving
as a short-term indicator of forest carbon dynamics, representing the increase or decrease
in forest carbon sequestration efficiency. The forest vegetation displays a delayed response
of 1–3 months to precipitation and temperature [59,60]. Therefore, we computed the forest
VNPP response under CDHEs with lags ranging from one to three months according to
Equations (9) and (10):

VNPP0 = NPPi − NPPi−1 (9)

VNPPm = NPPi+m − NPPi (10)

where VNPP0 denotes the change in forest NPP when forests do not exhibit a lagged
response to CDHEs, i represents the year of occurrence of CDHEs, and VNPPm signifies
the change in forest carbon storage with a lag of m months under CDHEs. Furthermore,
we conducted a correlation analysis between each drought (heat) event and forest VNPP to
reflect the directional impact of drought (heat) events on carbon sequestration efficiency.
Previous studies have suggested that human activities and climate change jointly influ-
ence forest carbon sequestration capacity [29,61]. Therefore, this study eliminated the
disturbance of human activities on forest carbon dynamics by selecting unchanged forest
vegetation. We utilized a created 1 km × 1 km grid covering the study area to generate
effective sampling points and extracted corresponding VNPP, SPI, and STI attribute values
as spatial data sources for further analysis. We employed Pearson correlation tests and
a 95% significance level test for statistical analysis. The SPI exhibited a positive spatial
correlation with VNPP, indicating that VNPP decreases with increasing drought event in-
tensity, suggesting a suppressive effect of drought events on carbon sequestration efficiency.
The STI showed a negative spatial correlation with VNPP, indicating that VNPP decreases
with increasing heat event intensity, also suggesting a suppressive effect of heat events on
carbon sequestration efficiency.

2.4.3. Quantifying Single and Interactive Effects of CDHEs on Carbon Dynamics

GD is a statistical method to detect spatial differentiation and reveal the driving
factors [17]. We used GD to analyze the effect of CDHEs on forest carbon dynamics
quantitatively. GD requires discretizing input data; hence, discretizing drought (heat)
events is necessary. We used the natural breakpoint method to divide the samples (SPI and
STI) into seven categories (assigning these categories to 1–7, with a higher value indicating
a higher intensity). We then imported these discrete SPI, STI, and VNPP data into GD for
interpretation and interaction analysis. Next, an analysis of the explanatory power (q value)
of the STI and SPI on VNPP and their interaction with VNPP was generated. The value
of q ranges from 0 to 1. The larger the q value, the stronger the explanatory power. The
principles of the model and related calculations are presented in paper [17]. Interaction
detection in GD was used to identify the interactions between factors, i.e., to identify
whether the effect of CDHEs on forest carbon dynamics would be stronger or weaker than
that of single drought events (heat events) or whether the impact of drought events and
heat events on forest carbon dynamics were independent of each other. The evaluation
method involved comparing the single effect (q(drought), q(heat)) and the interaction effect
(q (drought ∩ heat)) based on q values (Table S4). Detailed evaluation criteria are shown
in Table S4.

2.4.4. Quantifying Changes in Forest Carbon Sequestration Caused by CDHEs

Droughts and heat events change the amount of carbon sequestration in forests by
affecting vegetation photosynthesis [12]. This study quantified the changes in forest carbon
sequestration caused by CDHEs from 2000 to 2022. In addition, the delayed response of
forests to drought and heat cannot be ignored. Therefore, using GD, this study obtained
the optimal response time of forests to drought (heat) for CDHEs in the two regions during



Forests 2024, 15, 2048 9 of 23

2000–2022. We considered its maximum value as the duration of CDHEs and calculated the
changes in forest NPP during this period. The change in forest NPP is calculated according
to Equation (11):

NPPC =
i+n

∑
A=i

NPPA −
i+n

∑
B=i

NPPB (11)

where NPPC represents the change in forest NPP caused by CDHEs; NPPA represents the
NPP during the period from the occurrence to the optimal lag time of the CDHEs; NPPB
represents the average NPP in the same period during which no CDHEs occurred; i represents
the month when CDHEs occurred; and n represents the month of the optimal response time.
Then, the chemical formula of vegetation photosynthesis, 6CO2 + 6H2O − C6H12O6 + 6O2,
was used to calculate the forest carbon sequestration change caused by CDHEs [29]. The forest
carbon sequestration change was calculated according to Equation (12):

CFSC =
NPPC

0.45
× 1.62 (12)

where CFSC represents the amount of forest carbon sequestration change caused by CDHEs.

3. Results
3.1. Effects of Forest Cover Change on Forest Carbon Dynamics
3.1.1. Spatiotemporal Dynamics of Primary Land Area Change from 2000 to 2022

CLCD-based main land type area change from 2000 to 2022 was estimated. As shown
in Figure 3, we found that forest is the primary land use type in Shaoguan, and its impervi-
ous surface area takes up a small proportion. In Nanjing, farmland and impervious surfaces
are the primary land types, and their area is larger than forests. From 2000 to 2022, the area
of forest and farmland in Nanjing decreased by 9040.6 ha and 61,746.9 ha, respectively. In
contrast, the areas of impervious surfaces increased significantly by 71,143.2 ha (Figure 3).
The forest area in Shaoguan decreased by 59,049.9 ha. In contrast, the areas of farmland
and impervious surfaces increased by 46,946.6 ha and 13,868.5 ha, respectively.
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3.1.2. CASA Model Performance

To assess the precision of vegetation carbon density estimates obtained from the CASA
model, we compared these estimates with field-observed forest vegetation carbon density
data acquired from forest sub-compartments of Shaoguan in 2020. This demonstrated
a notable correlation between the vegetation carbon density originating from the CASA
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model’s NPP results and the sub-compartment survey carbon density values, with an R2 of
0.64 (Figure 4). This suggested that the vegetation carbon density estimated from the CASA
model’s NPP results had a good fit and high correlation with the field-measured vegetation
carbon density values, confirming that the CASA model-derived vegetation carbon density
values were suitable for subsequent analysis.
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3.1.3. Forest Cover Change in Different Regions and Its Resulting Carbon Budget

The study area’s forest cover change from 2000 to 2022 was estimated using the CLCD.
Figures 5 and 6 indicate significant forest cover change. The forest area of Nanjing and
Shaoguan showed a decreasing trend. The main reason for the decrease in forest area in the
two cities is the conversion of forest into farmland. They had 93.8% and 96.6% of the forest
loss area, respectively (Tables S5 and S6). However, they differed in the trend in forest
cover change types and regions. For example, the farmland returned to forest in Shaoguan
showed an increasing trend, while the farmland returned to forest in Nanjing showed a
decreasing trend (Tables S5 and S6).
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Combining CASA with the bookkeeping model, we obtained the carbon budget
caused by forest cover change in the two regions (Figure 7). The two regions’ carbon flux
caused by forest cover change showed significant spatial differences. The carbon flux in
Shaoguan was predominantly observed in the western, central, northeastern, and southern
zones, exhibiting a relatively dense pattern. Specifically, the carbon flux was primarily
manifested as carbon loss in the west and central areas. The northeast region showed
carbon sequestration. In the southern region, both carbon loss and carbon sequestration
were present. Nanjing’s central and southern areas are concentrated areas of carbon flux
caused by forest cover change. The carbon flux in the central region was mostly carbon
loss, while that in the south region was carbon sequestration.
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To study the carbon flux caused by different types of forest cover change, we identified
two land use patterns based on forest cover change: afforestation and deforestation (Table S7).
Figure 8 shows that afforestation in the two regions led to a net carbon accumulation in
vegetation biomass and soil, increasing forest carbon storage by 0.269 TgC in Nanjing and
1.509 TgC in Shaoguan from 2000 to 2022. The total carbon loss caused by deforestation
was 0.491 TgC in Nanjing and 2.802 TgC in Shaoguan. The results showed that afforesta-
tion increased forest carbon storage, while deforestation caused forest carbon loss. The
deforestation area was much larger than the afforestation area in both regions, and the
carbon budget caused by forest cover change showed a net carbon loss, with 1.293 TgC in
Shaoguan and 0.222 TgC in Nanjing from 2000 to 2022.
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3.2. Effects of CDHEs on Forest Carbon Dynamics
3.2.1. Spatial Distribution of CDHEs

Using the monthly SPI and STI, we pinpointed drought and heat occurrences during
the vegetation growth period from 2000 to 2022. Drought events occurred for 13 months,
and heat events for 21 months. We then identified three CDHEs during 2000–2022 in each
region (Figures 9 and 10). Most CDHEs in the two regions occurred between July and
September (Figure S1). Nanjing and Shaoguan have frequent summer and autumn heat in
southern China. The geographical spread of drought exhibited more significant variability
than heat. Furthermore, variations in the intensity of drought and heat were observed across
different CDHEs within the same region. We found the highest intensity and coverage of
CDHEs in July 2003 and August 2022 in Shaoguan and Nanjing, respectively (Figure S1).

3.2.2. Impact of Drought and Heat Events on Forest Carbon Dynamics in Different Regions

Figure 11 shows the effects of drought and heat events on forest carbon dynamics in
the two regions, with the CDHEs occurring during 2000–2022. The single-factor average
explanatory power (q value) of the heat events in September 2021 in the Shaoguan region
was only 0.101, which was lower than that of the drought events (0.110) (Figure 11). The
average explanatory power (q value) of the heat events (0.112) was greater than that of
drought events (0.109) during 2000–2022. This indicated that heat events substantially
impacted forest carbon dynamics in Shaoguan compared to drought events.
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Based on three instances of CDHEs in Nanjing, the q value of the impacts of the heat
events on forest carbon sinks was smaller than that of drought events. The average q
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value of the effects of the heat events on forest carbon sinks during 2000–2022 was 0.142,
which was lower than that of drought events (0.156). This indicated that drought events
significantly impacted forest carbon dynamics more than heat events in Nanjing.

The correlation analysis between the drought (heat) event index and VNPP in CDHEs
of the two regions from 2000 to 2022 pointed out that the drought events were positively
correlated with VNPP, while the heat events were negatively correlated with VNPP (Figure 11).
The more severe the drought (heat) event, the smaller the VNPP, and the lower the forest
carbon sink capacity. Overall, drought and heat events affected forest carbon dynamics by
inhibiting forest carbon sink capacity.

3.2.3. Delayed Effects of Drought and Heat Events on Forest Carbon Sequestration

We used GD to calculate the effects of drought (heat) events on short-term forest
carbon sequestration capacity (VNPP) in three CDHEs in each of the two regions and
obtained their average q value with a lag of one, two, and three months (Table 3). It was
evident that the maximum average q value of the effects of drought events on forests was
0.129 for Shaoguan and 0.174 for Nanjing, while heat events exhibited q values of 0.149 and
0.169. This suggested a delay in the impact of drought and heat events on forests in these
two regions, with a lag time of two months.

Table 3. Lagged effects of drought and heat events in Nanjing and Shaoguan.

Region q No Lag 1-Month Lag 2-Month Lag 3-Month Lag

Nanjing q (drought) 0.140 0.147 0.174 0.165
q (heat) 0.112 0.140 0.169 0.149

Shaoguan q (drought) 0.083 0.106 0.129 0.118
q (heat) 0.089 0.098 0.149 0.111

3.2.4. Impact of CDHEs on Forest Carbon Dynamics

Based on GD, we found that the average interaction impacts of CDHEs on forest carbon
sequestration efficiency in Shaoguan and Nanjing were 0.224 and 0.318, respectively (Table 4).
These q values were notably above the average ones observed for single events (0.109 and
0.112 for Shaoguan; 0.156 and 0.142 for Nanjing, Figure 11). The impacts of CDHEs on
VNPP showed bi-factor-enhanced or nonlinear-enhanced modes. For example, CDHEs in
Shaoguan (q (drought ∩ heat) = 0.206) (Table 4) had a more significant impact on forests
compared to the single effects of drought (q(drought) = 0.110) and heat (q(heat) = 0.101) in 2021
(Figure 11), with the interaction showing a synergistic enhancement. CDHEs in Nanjing
(q (drought ∩ heat) = 0.361) had a more significant impact on forests compared to the single
effects of drought (q(drought) = 0.174) and heat (q(heat) = 0.158) in 2022 (Figure 11), with
the interaction displaying a nonlinear synergistic enhancement.

Table 4. Interaction modes of the impacts of different drought and heat events on carbon dynamics.

Year/Month Interaction Modes Nanjing Shaoguan

2003/07 D ∩ H 0.225 ▽
2005/06 D ∩ H 0.298 ▽
2017/07 D ∩ H 0.294 ▽
2021/09 D ∩ H 0.206 3
2022/08 D ∩ H 0.361 ▽ 0.242 ▽
Average 0.318 0.224

Note: ▽ represents a nonlinear-enhanced mode; 3 represents a bi-factor-enhanced mode.

3.2.5. Forest Carbon Sequestration Change Caused by CDHEs

The overall effect of CDHEs on the change in carbon sequestration in the two regions was
manifested as net carbon loss. In Table 5, the CDHEs in Nanjing caused the most significant
carbon loss (−0.0844 TgC) in August 2022 and the most minor (−0.0374 TgC) in June 2005.
The CDHEs in Shaoguan caused the most significant carbon loss (−1.456 TgC) in July 2003
and the most minor (−0.705 TgC) in September 2021. Overall, CDHEs in Shaoguan caused
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a total carbon loss of −3.219 TgC, much more significant than that in Nanjing (−0.186 TgC)
during 2000–2022. Based on Figure 9, Figure 10, and Figure S1, we found that the higher the
intensity of CDHEs, the greater the forest carbon loss.

Table 5. Forest carbon loss caused by CDHEs in two regions (unit: TgC).

Year/Month Nanjing Shaoguan

2003/07 −1.456
2005/06 −0.0374
2017/07 −0.0645
2021/09 −0.705
2022/08 −0.0844 −1.058

Total carbon loss −0.186 −3.219

3.3. Comparisons Between the Impacts of Forest Cover Change and CDHEs on Forest
Carbon Dynamics

In Nanjing, the net carbon loss caused by forest cover change (0.222 TgC) was more
significant than that caused by CDHEs (0.186 TgC) during 2000–2022, indicating that the
carbon loss caused by forest in Nanjing was dominated by human activities (Figure 12).
Conversely, the net carbon loss caused by forest cover change in Shaoguan (1.293 TgC) was
smaller than that caused by CDHEs (3.219 TgC), indicating that extreme climate was the
dominant factor causing forest carbon loss in Shaoguan. Both factors caused the most forest
carbon loss in Shaoguan, especially CDHEs. The effects of CDHEs and forest cover change
on forest carbon dynamics had two sides. Afforestation can increase forest carbon storage,
while deforestation can cause forest carbon emissions. Moderate heat events caused an
increased photosynthesis effect, increasing forest carbon sequestration capacity and forest
carbon storage. In contrast, extreme heat and drought affected vegetation photosynthesis
and even led to vegetation death, decreasing forest carbon storage. However, there are
differences in how forest cover change and CDHEs affect forest carbon dynamics. Forest
cover change directly led to the decrease or increase in forest carbon storage through the
decrease or increase in forest area. The carbon loss caused by CDHEs was mainly due to
the decrease in forest carbon sink capacity.
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4. Discussion
4.1. Impact of Forest Cover Change on Carbon Dynamics

The bookkeeping model effectively estimates carbon stocks and fluxes resulting from
LUCC [9,53]. Although it is extensively utilized for national and global carbon estimations,
it faces challenges when applied to regional scales with spatially detailed carbon accounting.
To address this limitation, we combined the bookkeeping model with the CASA model,
utilizing the linear relationship between forest NPP and forest biomass to estimate forest
vegetation carbon density. Furthermore, we integrated literature-based carbon density
for diverse vegetation and soil categories into the carbon accounting process, generating
spatially detailed carbon flux data. This approach enables the monitoring of forest carbon
dynamics under forest cover changes at fine scales in Shaoguan and Nanjing.

Using the bookkeeping model in Nanjing and Shaoguan, we estimated the carbon
fluxes resulting from forest cover changes from 2000 to 2022. The spatial distribution map
of carbon flux (Figure 7) and statistical map (Figure 8) show that the carbon budget caused
by forest cover change is similar and different in both regions. The similarity is that the
forest area of Nanjing and Shaoguan decreased significantly during 2000–2022, which is
consistent with the conclusion of Zhao et al. [32]. The decreased forest area indicated that
the afforestation area is lower than deforestation’s. Therefore, carbon emissions caused
by forest cover change exceeded carbon sequestration in Nanjing and Shaoguan during
the study period, resulting in net carbon loss. This is consistent with previous research
results [62–64]. However, there is a significant difference in the resulting net carbon loss
between the Shaoguan and Nanjing regions between 2000 and 2022. The net carbon loss in
Shaoguan was 1.293 TgC. In contrast, the net carbon loss from forests in Nanjing was only
0.222 TgC. The main reason for this difference is that the forest area of Shaoguan has been
reduced more than Nanjing’s.

The carbon flux caused by afforestation in Nanjing is mainly concentrated in the cen-
tral and southern areas of Nanjing. The carbon fluxes caused by afforestation in Shaoguan
were focused on the central, northeastern, northwestern, and southern regions. This is
supported by the data on afforestation distribution in the Chinese Forestry Statistical Year-
book [65] (http://202.99.63.178/c/www/tjnj.jhtml, https://cnki.nbsti.net/CSYDMirror/
trade/Yearbook/Single/N2006050899?z=Z010, accessed on 14 March 2024). At the same
time, we found that the carbon loss was mainly concentrated in the central part of Shaoguan
and the central part of Nanjing. These regions are near farmland, indicating that expansion
mostly led to deforestation. This suggests that human activities mainly dominate the
change in forest cover in the two regions. However, according to Figure 3, the farmland
area in Nanjing did not increase but declined, while the farmland area in Shaoguan showed
an increasing trend. This showed that the two regions’ factors driving forest conversion to
farmland differ. This phenomenon may be due to policy differences in the different areas.
Since the early 21st century, Shaoguan has upgraded the scale and quality of its cultivated
land to promote agricultural development. At the same time, Nanjing has strengthened its
Yangtze River protection policy during the urbanization process, focusing on afforestation
and forest protection [66]. In the meantime, Nanjing’s urban expansion took up a lot of
farmland. Nanjing needs to reduce the area of forests converted into farmland to maintain
food security [67]. It also inhibited the afforestation area to a certain extent. As a result, the
afforestation area in Nanjing showed a declining trend.

Indeed, we emphasized the need for equal attention and careful assessment of the
potential negative impacts of deforestation on forest carbon stocks in enhancing forest
carbon stocks through the expansion of afforestation areas. Not only does deforestation
contribute to global climate change by releasing stored carbon back into the atmosphere,
but it can also undermine ecosystem integrity and biodiversity, with long-term adverse
effects on the overall carbon sink function of forests [68,69]. Therefore, when developing
and implementing afforestation and forest management strategies, the double-sided impact
of afforestation and deforestation should be comprehensively considered to ensure that the

http://202.99.63.178/c/www/tjnj.jhtml
https://cnki.nbsti.net/CSYDMirror/trade/Yearbook/Single/N2006050899?z=Z010
https://cnki.nbsti.net/CSYDMirror/trade/Yearbook/Single/N2006050899?z=Z010


Forests 2024, 15, 2048 17 of 23

trend in deforestation is effectively contained and reversed while forest carbon storage is
increased to maintain the positive role of forests as an essential carbon sink of the earth [70].

4.2. Impact of CDHEs on Carbon Dynamics

We utilized the interaction module of GD to assess the precise effect of CDHEs on
forest carbon dynamics. The results indicated that CDHEs had reduced forest NPP, in-
hibiting forest carbon sequestration efficiency. This finding aligned with conclusions from
Li et al. [12], Zhao et al. [11], and Wang et al. [30]. Qu et al. [2] demonstrated that extreme
drought and heat negatively impact vegetation carbon fluxes and ecosystem productivity.
When temperatures exceed the tolerance range of vegetation, enzyme denaturation may
accelerate, thereby suppressing growth [2,71,72]. Drought reduced carbon sequestration
capacity by affecting ecosystem photosynthesis and respiration, fundamentally altering the
functionality and structure of terrestrial ecosystems and potentially transforming them into
carbon sources [2,73].

Our study found that drought events more significantly explained the carbon dynam-
ics in Nanjing forests than heat events. In contrast, heat events played a more significant
role in carbon dynamics in Shaoguan. This variability may stem from the complexity of
environmental factors affecting vegetation photosynthesis during CDHEs. Differences in
study scope, duration, and modeling approaches contribute to varying assessments of
the impact of heat and drought on VNPP. Some studies have emphasized that latitude is
an essential factor that should not be ignored in assessing global or regional CDHEs [74].
This is due to the amount of heat the sun radiates at different latitudes, complicating
the correlation between CDHEs. There is a difference in latitude between Nanjing and
Shaoguan. This regional thermal difference further leads to differences in the ability of
forest ecosystems at different latitudes to adapt to CDHEs [74].

We observed a two-month lagged effect of drought and heat events on forest vegetation
types, indicating that forests have a specific capacity for recovery from extreme weather
conditions. This finding aligns with previous research results [75,76]. Forest vegetation
has efficient water regulation mechanisms, flexible leaf stomatal control, and strong water
absorption from deep root systems [12]. Li et al. [12] suggested that vegetation may
adjust parameters such as photosynthetic rate and water use efficiency in reaction to
environmental pressures following extreme climate events, potentially leading to delayed
forest responses. Therefore, it shows resistance in the face of CDHEs.

Table 4 indicates that CDHEs have a more substantial impact on forest NPP than single
extreme events. Previous studies showed that heat can trigger heat stress in vegetation,
which damages photosynthetic enzymes and inhibits the process of photosynthesis. When
drought coincides with heat, it creates a low-humidity environment that exacerbates the
adverse effects of heat stress and further reduces the trend of decreasing photosynthetic
efficiency [12,77]. This study revealed a pattern of synergistic or nonlinear enhancement
of CDHEs, suggesting that CDHEs have a more severe impact on forest carbon dynamics
than a single event, consistent with prior research findings [2,78]. The results emphasized
the importance of quantifying the effects of CDHEs on forest carbon dynamics. Finally,
using the photosynthesis equation and the optimal response time, we obtained the change
in forest carbon sequestration due to each CDHE in the two regions. The results show that
CDHEs lead to a decrease in forest carbon sequestration. With the increase in the intensity
of CDHEs, the reduction in forest carbon sequestration also increased.

Therefore, in the context of global warming, increased attention must be paid to
CDHEs to enhance the carbon sequestration potential of forest ecosystems. We should
develop targeted coping strategies based on forests in different regions. For example,
adjusting the planting structure of some forest vegetation, as well as timely irrigation and
fertilization, will enhance the adaptability of forests to CDHEs. At the same time, forests
have demonstrated resistance to CDHEs. This discovery has prompted us to develop more
ecosystem conservation and management strategies, especially in ecologically vulnerable
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areas. The adverse impacts of CDHEs on ecosystems can be mitigated by adopting strategies
such as reforestation and fallowing [12].

4.3. Differentiated Impacts of Forest Cover Change and CDHEs on Forest Carbon Dynamics

The net carbon loss due to CDHEs and forest cover changes between 2000 and 2022
showed significant differences in the two regions. The discrepancy might be attributed to
variations in city types. Urbanization would directly affect the forest’s carbon storage [79].
Xu et al. [80] believed that urban expansion caused by urbanization causes the removal
of forest vegetation, and the carbon absorption capacity of carbon sinks rapidly declines.
At the same time, China is undergoing a rapid urbanization process with low vegetation
coverage, and large areas of forest vegetation are cleared to meet the needs of urban
population growth and economic development. As a significant financial center city in
the Yangtze River Delta region, Nanjing’s urbanization process is higher [81]. With the
deepening of this process, the population of Nanjing has shown a sharp growth trend [81].
The surge in population is placing higher demands on food supplies, which in turn is
driving the demand for farmland of a specific size. In this context, the land use pattern
in the Nanjing area has changed significantly, especially since the conversion of forest
to farmland has become frequent [82]. Therefore, the intensification of urbanization in
Nanjing significantly impacts forest carbon storage through population growth and land
use patterns. This also explains why forest cover change has become the main factor leading
to forest carbon loss in Nanjing. This is consistent with Chuai et al.’s [83] belief that urban
sprawl is the leading cause of carbon emissions in the eastern seaboard.

Shaoguan, as a typical forest city in Guangdong Province, has a low urbanization
level and a high forest cover. Human activity is relatively minimal. China has rolled out a
series of policies aimed at ecological conservation in the south, such as the South China
Timber Production Plan, which somewhat offset the carbon loss caused by forest cover
change in Shaoguan [84]. Shaoguan is in the northern region of Guangdong, south of
the Nanling Mountains. The Nanling Mountains block precipitation formation, partly
leading to drought. Additionally, the karst geology in the northern Guangdong region
exhibits significant ecological fragility, frequently encountering problems of soil and water
loss [85,86]. This unique geological structure lacks good water storage and precipitation
replenishment capabilities, which may reduce surface water flow and limit evaporation
during the growth process of young forests and artificial forests. This also helps explain
why forest carbon loss in the Shaoguan area is mainly affected by CDHEs. It should
be noted that there is a strong link between deforestation in low latitudes and climate
warming [87,88]. Global warming has further promoted the frequent occurrence of CDHEs,
forming a vicious circle [89]. It is suggested that the importance of forest cover changes
together with CDHEs in low-latitude regions needs to be considered.

Forest management policies should be developed for different urbanization levels
and geological conditions [90]. In highly urbanized areas, supervision of land use change
should be strengthened to prevent forest carbon loss caused by overdevelopment [91]. In
areas with high forest coverage, the control of human disturbance should be strengthened
to reduce forest carbon loss. We will improve the protection of ecologically fragile areas to
prevent soil erosion and ecological degradation [92,93].

4.4. Uncertainties and Future Works

On the one hand, we combined the bookkeeping model with the CASA model to
achieve spatially detailed carbon budget estimates due to forest cover change [9,25]. Exper-
imental intervals of 10 and 12 years were used to simplify forest cover change in the model.
However, due to uncertainties in predicting when transitions occur, there is a possibility
of overestimating the duration of forest cover change, leading to increased carbon bud-
gets [31]. At the same time, the input data of the CASA model include the remote sensing
vegetation index, air image data, land cover data, and so on [94]. These data’s quality,
resolution, and spatiotemporal coverage affect the model’s accuracy [94]. The bookkeeping
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model parameters do not fully represent vegetation across an entire climatic zone [9]. This
involves the accuracy of the model and the uncertainty of the experimental results to
some extent.

On the other hand, we quantified the response of forest carbon dynamics to CDHEs
using GD and the photosynthesis equation [13,29]. This provided new insights into the
influence of CDHEs on forest carbon dynamics. However, the spatial scale of meteorological
data was relatively coarse, and small-scale spatial resolution meteorological data were
mostly obtained through interpolation methods, which led to a certain degree of error in the
accuracy of the meteorological data. Hence, incorporating higher-resolution meteorological
datasets into future research can significantly enhance data accuracy. In addition, this
research used monthly time scale results, mainly focusing on the short-term effects of
CDHEs on forests. At the same time, this study also considers the delayed response of
forests to drought (heat) events and vegetation [30]. The cumulative effects of drought
and heat events on forest carbon fixation were ignored. Furthermore, we lacked specific
experimental studies to explore the biophysical and biochemical mechanisms underlying
regional differences in forest carbon dynamics, especially those closely related to key
environmental variables such as soil properties, water status, and water availability.

Future studies should reduce the experimental interval to ensure that forest cover
changes can be captured in the short term to more accurately assess the process and
influencing factors of the forest carbon cycle. Given the parameter accuracy of the CASA
and bookkeeping models, we should focus on optimizing model parameter settings. By
introducing higher-quality datasets to improve the prediction accuracy and reliability of the
models, we can ensure that the meteorological data can more genuinely reflect the actual
state of the forest ecosystem. Finally, because of the lack of discussion on the dynamic
influencing mechanism of forest carbon in different regions in current studies, we should
focus on soil characteristics, water status, climate change, human activities, and other
factors and thoroughly analyze how these factors affect the storage, absorption, and release
of forest carbon through field observation, experimental operation, model simulation, and
other means. And the mechanism of their interaction should also be studied. At the same
time, we will supplement the cumulative effect of extreme weather events on forest carbon
dynamics [13,95].

5. Conclusions

In this study, the bookkeeping and CASA models were combined to quantify the
carbon budget caused by forest cover change, and the forest carbon sequestration change
caused by CDHEs was estimated using GD and photosynthesis equations. The forest
carbon dynamics caused by forest cover change and CDHEs in the two regions were
comprehensively compared. On the one hand, forest cover change in both cities resulted in
net forest carbon loss. The net carbon loss caused by forest cover change was 0.222 TgC and
1.293 TgC in Nanjing and Shaoguan, respectively. On the other hand, drought and heat
events inhibited the efficiency of forest carbon sequestration. Forest carbon sinks showed a
typical two-month lag response to drought (heat) events. The effect of CDHEs on forest
carbon sinks is more significant than that of single extreme events, showing nonlinear
enhancement and a two-factor interaction mode. We found that CDHEs dominated forest
carbon loss in Shaoguan. CDHEs caused a net carbon loss of 0.186 TgC and 3.219 TgC
in Nanjing and Shaoguan, respectively. In Nanjing, forest cover change dominated the
forest carbon loss. CDHEs dominated forest carbon loss in Shaoguan. This study provided
an evaluation framework for quantifying the effects of forest cover change and CDHEs
on forest carbon dynamics. This finding contributes to a deeper understanding of the
mechanisms of climate change’s impact on forest carbon sinks. It shows that relevant
departments need to consider the effects of forest cover change and extreme climate events
to protect and enhance the carbon sink function of forests more effectively.
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