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Abstract: Forest–steppe ecosystems represent a heterogeneous small-patch landscape important as a
biodiversity hotspot and habitat for many endangered species. In this work, we examine threatened
forest–steppe communities using structural indices, browsing intensity and indices that consider
herbivorous game preferences. The study aims to assess the abundance of natural regeneration
and the browsing intensity in relation to different stand structures and to identify woody species
threatened by selective browsing at three study sites on the Krupina Plateau in the southern part
of central Slovakia. At each study site, three circular permanent research plots (PRPs), each 500 m2

in size, were established for stand structure analysis. Within each PRP, nine circular subplots with
a radius of 2 m were established for detailed analysis of natural regeneration. The results of this
study suggest that forest patches in the forest–steppe mosaic suffer from a long-term lack of natural
regeneration, which is induced mainly by increasing aridity and ungulate pressure. Positive effects on
the amount of natural regeneration were noted in association with the aggregated structure of forest
patches and the presence of dead wood. Differentiated stand structure influenced the regeneration
number in a negative way and at the same time significantly increased browsing intensity. In
relation to a more advanced regeneration, shrubs had a protective effect against browsing. The
feeding preferences of the animals can positively modulate the species composition and eliminate the
imbalances in the regeneration in favor of the increasingly rare Quercus pubescens Willd.

Keywords: extreme drought; game browsing; selectivity; Quercus pubescens; Quercus cerris

1. Introduction

The forest–steppe represents a mosaic of broadleaf deciduous forest patches and
meadow–steppe or steppified meadows extending from the Carpathians to the Ural Moun-
tains [1]. The distribution of forest–steppe communities is strongly determined by aridity,
which in the temperate climate of Central Europe is mainly determined by edaphic factors,
topography and wild herbivores [2]. The fragile interplay of all the factors allows the
existence of a heterogeneous small-patch landscape, which provides important habitats for
many endangered species and represents a biodiversity hotspot [3].

In the Pannonian ecoregion, which also includes the southern regions of Slovakia, pro-
cesses of forest and shrub expansion at the expense of grassland have been observed [4,5].
However, climate change scenarios predict a considerable increase in mean annual temper-
ature and summer drought in this zone [6], which might lead to the opposite process—an
increase in the cover of grassland in the future. Negative impacts of drought are observed
in many aspects of forest health including seedling recruitment, productivity and mortality
of mature trees, susceptibility to pathogen or insect attack, and vulnerability to damage
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from fire, see, e.g., [7–9]. In addition, generally milder climatic conditions and less intensive
game management lead to an overabundance of herbivorous game, which greatly amplifies
the effect of climate change on tree species distribution [2,10–12]. Plant removal and erosion
have a direct effect on the microclimate, which tends to become drier, warmer and less
buffered against climatic extremes on grazed sites [13]. What is more, selective brows-
ing on woody species can modify the interactions between competing species and thus
change overall patterns of plant diversity in the forest–steppe. A less intensively browsed,
more drought-tolerant tree species may have an opportunity for expansion to other areas
currently dominated by tree species suffering from both drought- and ungulate-induced
damage [14]. The strongly influenced structure, composition, growth, and succession of
forest patches may lead not only to tree species loss but also to wide-ranging indirect effects
on the entire biota [15,16]. Browsing may also affect human interests by reducing species di-
versity and productivity of commercially used plants or by limiting the protective functions
of the forest or other social demands [12]. Understanding the drivers of ungulate browsing
is of outmost importance from both ecological and forestry-management standpoints.

The relationship between ungulate density and browsing intensity is well known,
but other factors such as food availability and animal preferences cause plant biomass to
have a stronger relationship with browsing intensity than with ungulate density [12,16].
Browsing intensity perfectly illustrates temporal and spatial changes in herbivory pressure,
but it needs to be complemented by information on the tree species preferred among the
available vegetation. One of the widely used indicators which expresses the imbalance
between usage and availability is the Jacobs selectivity index [17].

Existing forest communities also significantly modify their environment and may
favor establishment, growth and survival of tree seedlings [4]. For example, dense thorny
shrubs or a high abundance of more palatable species may shield tree seedlings against
browsing [18]. The importance of positive species interactions for plant community struc-
ture and dynamics has been increasingly recognized, especially in stress-exposed and
low-productivity habitats [19,20]. Biodiversity and variety of growth patterns in forest
ecosystems are closely related to structural complexity, which is conveniently described
by structural indices [21,22]. Structural indices are commonly used to describe the vertical
and horizontal shape of a forest [23,24]. Their undeniable advantages, which are important
for our study, include, for example, equal emphasis on horizontal and vertical diversity,
insensitivity to tree size and insensitivity to tree distribution [21].

In light of all the above-mentioned facts, the development of the forest–steppe commu-
nities is highly uncertain. Study concerning tree seedling abundance, browsing intensity
and their interconnections with the compositional and structural characteristics of the forest
patches are highly requested for the development of reliable management and above all,
conservation strategies for the near future [2–5,21]. In this work, we therefore decided to
comprehensively evaluate threatened forest–steppe communities using structural indices,
browsing intensity and the Jacobs selectivity index, which consider herbivorous game
preferences. We aim to combine these approaches to (i) evaluate the natural regeneration
abundance and the browsing intensity depending on different stand structures; (ii) deter-
mine which woody species are seriously threatened by selective browsing; and (iii) forecast
the development of the woody species composition based on the research results.

2. Material and Methods
2.1. Study Area

The study was conducted at three study sites—Medovarce (MED), Plášt’ovce (PLA) and
Drienovo (DRI), all located on the Krupina Plateau, situated in the southern part of central
Slovakia with altitudinal range from the lowland to the sub-mountain level (300–650 m a. s. l.)
(Figure 1). The plateau has been inhabited and extensively used by humans since the
Neolithic time. The original plant cover has been unevenly preserved, mainly as forest–
steppe communities in the southern and south-western parts. These habitats occur on steep
andesitic rocky slopes (50–70%) and ridges with clay to clay-loam soils. The study sites are



Forests 2024, 15, 2057 3 of 14

under the influence of the dry and hot Pannonian climate. Relatively low rainfall, relief
and permeable subsoil make these habitats very dry, which is the main limiting factor for
woody and herbaceous plants [25]. The investigated part of the plateau belongs to the warm
region with a mean annual air temperature of 10.7–12.3 ◦C (Figure 2) and precipitation of
560–580 mm [26]. More detailed information on the course of climatic indicators is available
in Figure 2.
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Local forest–steppe communities predominantly consist of thermophilic and xerother-
mic plant species. Forest patches are composed mainly of oak species (Quercus pubescens
Willd., Quercus cerris L., Quercus dalechampii Ten.) and other tree species—maples (Acer
campestre L., Acer tataricum L.), European hornbeam (Carpinus betulus L.), wild pear (Pyrus
communis L.), service tree (Sorbus domestica L.) and wild service tree (Sorbus torminalis L.).
There is usually a well-developed shrub layer with typical shrubby species (Cornus mas L.,
Ligustrum vulgare L., Prunus spinosa L., Rosa canina L., Crataegus species) (according to
our survey).

Currently, the most common species of wild ungulate in the Krupina Plateau are red
deer (Cervus elaphus), roe deer (Capreolus capreolus), fallow deer (Dama dama), mouflon (Ovis
musimon) and wild boar (Sus scrofa). According to the annual state-wide game census, the
abundant amount of all the mentioned species greatly exceeds the model population of the
game (in order: 1.94; 1.15; 3.21; 1.6; 2.0 times) [27].

2.2. Data Collection and Analysis

The identification of relevant ecological factors affecting the state of natural regen-
eration requires knowledge of the site’s climatic characteristics. For microclimate mea-
surements, at each study site, a weather station was established (using Environmental
Measuring Systems®, Brno, Czech Republic). The weather stations recorded the air tem-
perature and the air humidity at a height of 1.3 m above the ground, and the soil moisture
and soil temperature at a depth of 35 cm. Data were measured every hour and recorded
by data loggers from 1 April 2020 to 31 October 2023. Soil moisture was measured as the
soil water content (SWC %). The permanent wilting point was approximately determined
according to water-holding capacity of the clay-loam soil type (SWC 17%) [28] (Figure 2).

Analysis of the stand structure of each study site was based on the data from three per-
manent research plots (PRPs). PRPs had a circular shape with an area of 500 m2 (r = 12.6 m).
The centers of the PRPs were stabilized by a ground anchor and geolocated using a GPS
device. In the PRPs, all living stems and standing deadwood (snags) with diameter at
breast height 1.3 m (dbh) ≥ 2 cm were recorded. For all standing stems, we registered
their exact location within the plot (using Field Map® technology, IFER—Monitoring and
Mapping Solutions, LTD., Jílové u Prahy, Czech Republic), tree species, dbh, height and
status (living or dead). For living stems, we also recorded crown base height.

In two cases, species were pooled together within a genus or species because their
individual identification was not reliable enough, which could lead to confusing interpreta-
tions and conclusions. Quercus virgiliana Ten. is closely associated with Quercus pubescens
Willd., considered as its ecomorphotype [29]. Young individuals in particular were difficult
to distinguish, so we decided to pool this species under one, Quercus pubescens Willd.
Similarly complicated was the identification of species belonging to the genus Crataegus.
Their taxonomic identification was extremely complicated due to extensive hybridization
and introgression among all native species [30]. Crataegus oxyacantha L., Crataegus monogyna
Jacq. and their hybrids were pooled under Crataegus species.

As additional characteristics of stand structure, we calculated for all PRPs the following
structural indices: distance-independent (also non-spatial)—Gini coefficient for heights [31]
and standardized diversity [32]; as well as distance-dependent (also spatial)—aggregation
index [32,33], diameter-differentiation index [34] and structural complexity index [35].

The Gini coefficient (G) is one of the vertical structural characteristics that characterizes
the inequity in the distribution of tree heights and ranges from 0 (maximum uniformity, all
trees have the same height) to 1 (maximum non-uniformity). The standardized diversity
(E) reaches a maximum value of 1 in the case of equal representation of tree species in
the stand and decreases to 0 with increasing differences. The aggregation index (R) is a
measure of the spatial distribution of stems on the plot. The index indicates the deviation
from random (value 1) to regular (>1) or aggregated (<1) distribution. The diameter
differentiation index (T) is a measure of the size differentiation (dbh) between the three
nearest neighbors. T ranges from 0 to 1 (highly differentiated stands). The structural



Forests 2024, 15, 2057 5 of 14

complexity index (SCI) incorporates tree size differentiation (h, dbh) and horizontal spatial
positioning. The SCI is based on a spatial tessellation that creates a triangular irregular
network of non-overlapping triangles of tree neighbors that are as equilateral as possible.
The lowest SCI value is 1 (all trees are of the same size), with no upper limit [22].

The density of natural regeneration (dbh ≤ 2 cm) was registered on a series of 9 circular
subplots with a radius of 2 m distributed over each PRP. One plot was in the center of
the PRP and the next two plots were situated at distances of 5 and 10 m in four radii
in two perpendicular directions (gradient and contour line). Each individual of natural
regeneration was assigned a tree species and height category (height ≤ 10 cm and > 10 cm)
and was assessed for damage. Damage was recorded as no damage and damaged. Damage
was defined as the loss of the terminal bud during the current growing season.

For each subplot, two indices determining the competitive effect of the surrounding
trees on natural regeneration were calculated. The index of canopy closure (C) [36] can
be calculated for any point within the forest. It is based on the three-dimensional stereo
geometry of trees in the vicinity of a focal individual or point. The modified diameter-
distance index (D) [37] is a sum of the ratios of the diameters of a subject tree and its
competitors weighted by the distance from the subject tree. In our case, we used the heights
of trees, as we considered very young individuals of natural regeneration.

Plant–herbivore interactions were analyzed by browsing intensity and Jacob’s selec-
tivity index. Browsing intensity is the percent proportion of browsed vegetation among
available vegetation. Jacob’s index of selectivity [17,38] is a quantity of imbalance between
availability and consumption of a given species in total available regeneration. The index
ranges from −1 to 1, with a negative value indicating that the taxon is avoided and a
positive value indicating that the taxon is selected. The value 0 indicates consumption in
equal proportion to its availability.

To assess the differences between PRPs for the key indicators, one-factorial analysis of
variance was performed. Correlation analysis (Spearman’s rank correlation) was performed
to reveal the connections of stand characteristics with the amount of natural regeneration
and browsing intensity. Since it was not appropriate to calculate some structural indices
for subplots (required minimal area), they were calculated for PRPs and analyzed only
within the Krupina Plateau, to ensure a sufficient number of cases entering the analysis.
All statistical analyses were performed using STATISTICA 12 software.

3. Results

PRPs of all study sites are situated on steep slopes (50%–70%) with a predominantly
southern orientation with shallow soil and locally protruding parent rock. These factors
determine the extreme climatic conditions, which are summarized in Figure 2. Air and
soil temperatures are comparable between localities with almost identical annual courses.
According to air humidity, PLA and DRI are more arid, which is even more reflected in
soil moisture. The average soil water content at the depth of 35 cm declines below the
permanent wilting point in summer months, which can cause permanent damage due to
vegetation rooting shallower. Extremely low values of water content were achieved mainly
in the locality PLA in the months May–July.

To evaluate the joint effects of stand structure and large herbivores on abundance,
composition and browsing damages of natural regeneration, we must focus in detail on
the structure of the forest patches. All study sites were of relatively low tree height and
basal area, consisting mainly of deciduous oak species (92%–99%) (Table 1). Other woody
species were represented as other tree species in lower dbh classes (up to 18 cm) and shrubs
(Figure 3). The shrub layer was better developed in the localities MED and PLA, which
significantly increased the stand density and the number of species in the lower dbh classes
(Figure 3, Table 1). The amount of regeneration and the number of species in regeneration
were by a large margin the highest at study site MED, where browsing intensity was the
lowest. Nevertheless, low upper-tree height (H10%), which was achieved by almost all
individual trees, and the predominant representation of trees in the middle dbh classes
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caused considerable uniformity and insignificant differences in vertical and horizontal
stand structure (T, SCI, G) (Table 1, Figure 3). Significant differences were visible in a
number of species and their even representation in stands according to basal area (EBA).
Other tree species and shrubs in PLA were represented in higher dbh classes than in the
other study sites and the range of classes was narrower. In DRI, the number of species was
by a large margin the lowest, but the species were relatively evenly distributed across the
dbh classes (Figure 3), which in both cases caused higher values of standardized diversity
according to basal area (EBA). Although other tree species and shrubs were quite numerous
in MED and PLA, differences in the standardized diversity derived from tree density (EN)
were insignificant. Regarding the spatial distribution of trees and shrubs on PRPs, the
highest value of the aggregation index (R) was observed in DRI, where it pointed to random
distribution, and aggregation indexes of MED and PLA, in contrast, indicated aggregation
of stems (Table 1).

Table 1. Stand structure characteristics.

Study Site MED PLA DRI

Stand density (psc/ha) 1033.0 ± 296.9 a 1160.0 ± 423.3 a 640.0 ± 60.0 b
Basal area (m2/ha) 25.4 ± 4.2 24.7 ± 2.1 19.6 ± 3.4

Q. cerris * 62.0 ± 5.3 52.0 ± 18.5 35.3 ± 17.5
Q. pubescens * 35.0 ± 5.5 34.2 ± 11.9 48.6 ± 14.9

Q. dalechampii * 0.9 ± 1.3 b 5.7 ± 3.4 ab 15.0 ± 8.8 a
Other tree species * 1.5 ± 0.8 4.9 ± 3.8 0.9 ± 1.2

Shrubs * 1.2 ± 1.7 3.3 ± 3.6 0.2 ± 0.4
Snags (m2/ha) 1.3 ± 2.0 1.6 ± 0.5 1.3 ± 1.4

H10% (m) 14.4 ± 2.5 15.8 ± 4.0 13.9 ± 4.3
Number of species (pcs) 8.0 ± 2.0 a 6.7 ± 0.6 ab 5.3 ± 0.6 b

Regeneration (thous. pcs/ha) 57.18 ± 32.6 a 13.4 ± 3.9 b 16.5 ± 6.2 b
Number of species in

regeneration (pcs) 5.9 ± 2.1 a 3.4 ± 1.2 b 3.1 ± 1.3 b

Browsing intensity (%) 51.2 ± 28.8 b 68.9 ± 27.9 a 56.2 ± 28.8 ab
G 0.3 ± 0.0 0.3 ± 0.0 0.2 ±0.0

EN 0.7 ± 0.1 0.8 ± 0.1 0.8 ± 0.1
EBA 0.5 ± 0.1 b 0.7 ± 0.1 a 0.7 ± 0.1 a

R 0.8 ± 0.0 b 0.8 ± 0.1 b 1.0 ± 0.0 a
T 0.4 ± 0.1 0.3 ± 0.1 0.4 ± 0.1

SCIdbh 7.1 ± 1.8 4.7 ± 0.5 4.7 ± 0.9
SCIh 2.7 ± 0.6 2.4 ± 0.2 1.9 ± 0.3

Study sites: MED—Medovarce; PLA—Plášt’ovce; DRI—Drienovo; * % of basal area; H10%—height of the top
10% tallest trees; G—Gini coefficient; EN—standardized diversity according to tree density; EBA—standardized
diversity according to basal area; R—aggregation index; T—diameter differentiation index; SCIdbh—structural
complexity index according to dbh; SCIh—structural complexity index according to height, ±standard deviation.
Letters indicate statistically significant differences (ANOVA, p ≤ 0.05).

Natural regeneration was registered in 81 subplots evenly distributed over study sites
and permanent research plots (see above). We considered all wooden taxa independent of
their occurrence frequency. A total of 17 species were recorded: 12 tree species (Quercus
cerris L., Quercus pubescens Willd., Quercus dalechampii Ten., Quercus petraea (Matt.) Liebl.,
Quercus polycarpa Schur, Acer campestre L., Acer tataricum L., Carpinus betulus L., Pyrus
communis L., Sorbus domestica L., Sorbus torminalis L., Tilia cordata Mill.) and 5 shrubby
species (Cornus mas L., Ligustrum vulgare L., Prunus spinosa L., Rosa canina L., Crataegus
species). Tilia cordata Mill. and two species of the genus Quercus (Q. polycarpa Schur, and
Q. petraea (Matt.) Liebl.) were detected additionally compared to the species composition
of the mother stands. Nevertheless, the number of species in natural regeneration was in
all study sites lower than the number of species represented in mother stands (Table 1).
For some species, the number of occurrences was low (10 or less) (Quercus polycarpa Schur,
Quercus petraea (Matt.) Liebl., Tilia cordata Mill., Sorbus domestica L., Carpinus betulus L. and
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Cornus mas L.), so the calculation of the Jacob’s index of selectivity for these species was of
no predictive value and therefore we did not include them in further results.
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In Figure 4, it is visible that the only study site with a higher number of regenerated
individuals and a good ability to transition to the category above 10 cm was MED. In PLA,
natural regeneration was strongly limited and almost only shrubs were able to survive
in the category above 10 cm. Regeneration in DRI was also limited, with a higher share
of Quercus cerris in both height categories and with a minimal share of other tree species
and shrubs in the category above 10 cm. In general, it may be stated that insufficient
regeneration of Quercus pubescens was observed in all localities.
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Figure 4. Number and composition of natural regeneration on study sites according to height
categories (MED—Medovarce; PLA—Plášt’ovce; DRI—Drienovo).

The significance of correlation coefficients (Spearman’s R) of indices countable for
subplots provided information about the unequal response of the natural regeneration
number in individual study sites to stand characteristics (Table 2). In general, for the



Forests 2024, 15, 2057 8 of 14

whole investigated locality, we can confirm the positive effect of the occurrence of snags
on the frequency of natural regeneration in the category above 10 cm, which may be
connected to the free space, higher light supply and possible improvement of the ambient
humidity regime. Quite the opposite influence of stumps was visible in MED, where
their significantly negative impact on a category up to 10 cm may be related to a massive
expansion of the shrub layer. The shrub layer influenced natural regeneration in MED
mostly in a negative way, which is significant in the category above 10 cm. The number
of species did not significantly influence the amount of natural regeneration within the
locality, with the exception of the study site PLA, which may be related to the presence of a
dense shrubby layer and a relatively high proportion of other tree species (Figure 3). Indices
related to canopy closure and competition between individuals (tree density, basal area,
C, D) had no effect on the amount of natural regeneration within the investigated locality.
A positive correlation was detected only in study site DRI regarding the competitive
diameter-distance index (D) (Table 2). We assume, that DRI was the most unfavorable study
site, as basal area and upper height were the lowest (Table 1). In such harsh conditions,
young individuals survived more successfully under the cover of parent trees that provided
at least intermittent shade, which significantly enhanced microclimatic conditions. From
these findings, it was concluded that some factors influencing natural regeneration did not
seem to be important within the locality, but in the specific conditions of individual sites,
they played an important role.

Table 2. Correlation analysis of natural regeneration amount and stand structure characteristics.

Krupina Plateau MED PLA DRI
Height category ≤10 cm >10 cm ≤10 cm >10 cm ≤10 cm >10 cm ≤10 cm >10 cm

Tree density −0.015 0.097 0.129 −0.167 −0.288 0.163 0.014 −0.298
Basal area −0.107 0.061 −0.149 0.015 −0.373 0.046 0.183 0.177
Shrubs * −0.118 −0.123 −0.202 −0.514 −0.204 −0.013 −0.228 −0.256
Snags * −0.034 0.275 −0.656 −0.338 −0.076 0.155 0.300 −0.338

Nr. of species −0.121 0.194 −0.025 −0.286 −0.401 0.101 −0.185 −0.213
C 0.005 0.141 0.137 −0.130 −0.302 0.182 0.120 −0.214
D 0.042 0.113 −0.036 −0.065 −0.355 0.092 0.450 0.271

H10% 0.113 0.306 - - - - - -
G −0.058 0.001 - - - - - -

EN 0.347 0.581 - - - - - -
EBA 0.354 0.145 - - - - - -

R −0.185 −0.301 - - - - - -
T −0.360 −0.380 - - - - - -

SCIdbh −0.322 −0.300 - - - - - -
SCIh −0.110 0.157 - - - - - -

Study sites: MED—Medovarce; PLA—Plášt’ovce; DRI—Drienovo; * % of basal area; C—index of canopy clo-
sure D—diameter-distance index; H10%—height of the 10% tallest trees; G—Gini coefficient; EN—standardized
diversity according to tree density; EBA—standardized diversity according to basal area; R—aggregation in-
dex; T—diameter differentiation index; SCIdbh—structural complexity index according to dbh; SCIh—structural
complexity index according to height). Significant correlations (p < 0.05) are indicated by bold font.

Diversified structure (expressed by T, SCIdbh) negatively correlated with the natural
regeneration amount of both categories within the investigated locality. Positive correlation
with standardized diversity (E), which assesses the evenness of tree species representation
in the stand, was self-evident because its higher values were the result of sufficient and
continuous natural regeneration in study sites. A negative correlation with the aggregation
index (R) followed from the nature of the index, whose decrease to 0 indicated the aggre-
gation of the stand. Aggregate structure provided more varied environmental conditions,
which could increase the frequency (Table 2) and diversity of natural regeneration (Table 1).

Browsing damage was analyzed across the entire Krupina Plateau. Herbivory pressure
intensified with the increasing height of the seedlings and more than 80% of the seedlings
were browsed in the category above 10 cm (Table 3). Calculation of the availability, con-
sumption and Jacob’s selectivity index was based on total available regeneration regardless
of species and category. According to Jacob’s selectivity index, individuals of regeneration
up to 10 cm were less sought after than individuals of a higher category (Table 3). In the
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category above 10 cm, three species were avoided by herbivorous game (Quercus pubescens
Willd., Quercus dalechampii Ten., Acer tataricum L.). The other species were preferred by
game at different levels. The most selected were Quercus cerris L., Acer campestre L. and
Pyrus communis L.

Table 3. Browsing intensity (BI %), availability (A), consumption (C) and Jacob’s selectivity index (S).

BI A C S
Height category ≤10 cm >10 cm ≤10 cm >10 cm ≤10 cm >10 cm ≤10 cm >10 cm

Quercus cerris 38.5 79.0 0.229 0.226 0.182 0.357 −0.372 0.333
Q. pubescens 30.0 58.7 0.004 0.014 0.002 0.015 −0.598 −0.175

Q. dalechampii 25.0 66.7 0.003 0.001 0.002 0.001 −0.728 −0.017
Rosa canina 38.8 81.8 0.158 0.006 0.088 0.006 −0.524 0.003

Crataegus sp. 37.3 97.6 0.034 0.030 0.031 0.042 −0.527 0.203
Prunus spinosa 7.7 88.8 0.010 0.003 0.005 0.004 −0.648 0.119

Ligustrum vulgare 50.1 98.6 0.123 0.052 0.103 0.063 −0.370 0.226
Acer campestre 41.9 96.4 0.045 0.012 0.030 0.026 −0.461 0.376
Acer tataricum 8.0 56.3 0.009 0.003 0.003 0.002 −0.859 −0.197

Sorbus torminalis 12.9 72.6 0.017 0.013 0.011 0.020 −0.577 0.144
Pyrus communis 66.7 100.0 0.003 0.003 0.004 0.007 −0.225 0.317

BI—the proportion of browsed individuals among total natural regeneration of the plot in percentage terms;
A—the proportion of species in the total natural regeneration of the plot; C—the contribution of species to the
total browsing in the plot; S—ranges between −1 to 1, a negative value indicates that the taxon is avoided, a
positive value that the taxon is selected.

Browsing intensity was negatively influenced by the appearance of shrubs (Table 4).
On the other hand, a significant positive relationship was found between diameter differen-
tiation of stand (T, SCIdbh) and browsing.

Table 4. Correlation analysis of browsing intensity and stand structure characteristics.

Krupina Plateau
Height Category ≤10 cm >10 cm

Tree density 0.010 −0.209
Basal area 0.060 −0.013
Shrubs * −0.118 −0.253
Snags * −0.071 −0.084

Nr. of species −0.062 −0.216
C 0.002 −0.223
D 0.147 0.018

H10% −0.043 0.030
G 0.041 0.197

EN −0.333 −0.433
EBA −0.223 −0.247

R 0.170 0.121
T 0.330 0.305

SCIdbh 0.346 0.443
SCIh 0.005 0.104

* % of basal area; C—index of canopy closure; D—diameter-distance index; H10%—height of the top 10% tallest
trees; G—Gini coefficient; EN—standardized diversity according to tree density; EBA—standardized diversity
according to basal area; R—aggregation index; T—diameter differentiation index; SCIdbh—structural complexity
index according to dbh; SCIh—structural complexity index according to height. Significant correlations (p < 0.05)
are indicated by bold font.

4. Discussion

Forest–steppe communities form the southern distribution boundary of the temperate
deciduous forest biome. Their occurrence is conditioned by aridity, which prevents the
formation of a closed forest. The investigated forest–steppe area falls within the range of
temperatures and precipitation totals that determine the occurrence of the forest–steppe in
Central Europe (8.25–13.5 ◦C, 420–600 mm) [2,5], but as the distribution of precipitation
within the year fluctuates considerably, arid phases of different length occur regularly.
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The Pannonian Basin is periodically exposed to droughts during the late summer and
early autumn months [6], which in combination with local soil or topographic conditions
limits the occurrence of deciduous trees, as their distribution is strictly determined by soil
moisture availability [39,40]. As the amount of natural regeneration was strongly limited
by aridity (Figure 2, Table 1) and on arid sites the transition to a higher category (>10 cm)
(Figure 4) decreased, low soil moisture seems to be the most serious cause of poor seedling
emergence and growth. The soil water content reached the permanent wilting point in the
months of July, August and September simultaneously with culmination of temperatures
in July and August (Figure 2). Evidence of longer outages in natural regeneration was also
seen in the small number of trees in the lowest DBH classes (Figure 3).

It is well documented that tree species adapted to arid climatic regimes generally have
higher root-to-shoot ratios and deeper, more rapidly developing root systems because the
topsoil dries faster [8,9,41]. Rapid and deep rooting has been shown to be beneficial for
plant growth and survival under water-limited conditions. In investigated study sites,
the shallow rocky soils and steep slopes limited deep rooting, and the permeable subsoil
did not guarantee higher soil moisture in deeper layers. As the aggregated structure of
forest patches significantly increases the frequency of natural regeneration (Table 2), we
assume that this is due to the provision of more varied environmental conditions. Young
individuals could survive mostly in posts with locally better soil conditions, and/or in
better microclimatic conditions created by the structure of the forest patches. According
to our findings, the presence of dead wood may also significantly improve microclimatic
conditions. Soil-attached deadwood is characterized by humid conditions and can serve as
a water supply for the surrounding area [42].

In general, indices related to canopy closure and competition between individuals
had neither positive nor negative effects on the amount of natural regeneration within
the investigated locality. Species of the genus Quercus are light-demanding to semi-shade-
tolerant, but at the seedling stage they can tolerate shady conditions under trees [43].
In arid climates, canopy cover improves the soil water balance, so seedlings may find
optimal conditions for establishment and growth under canopies, where the water status
of seedlings is improved as a result of increased shading and soil moisture availability [44].
Indeed, the positive effect of canopy, expressed as a diameter-distance index (D), was
observed in the study site with the lowest annual water content (DRI) (Table 2, Figure 1).
In contrast, in the study site with the highest water availability (MED), a particularly
negative effect of shrubs was observed, mainly in relation to more developed seedlings. As
water supply is a crucial factor during oak germination and seedling development, shady
conditions may be compensated by higher moisture, but the line between the positive and
the negative influence of shading is narrow, and depends on microclimatic conditions,
species mixture or developmental stage of regeneration [2,18,40].

Indices of diversified structure (T, SCI) were negatively correlated with the natural
regeneration amount of both categories within the investigated locality. In a highly struc-
tured system, occupation of both above- and below-ground space causes strong competing
pressures on natural regeneration, similar to the ingrowth stage of a forest-development
cycle, where natural regeneration no longer succeeds, see, e.g., [22,24]. In the arid habitat
of the study site PLA, even the number of tree species in the parent stand had a significant
negative effect on the abundance of natural regeneration (Table 2). Mixed species with
contrasting resource-use strategies can reduce forest vulnerability to extreme events. Indi-
vidual species can distinctively modulate the effect of heat and drought on their hydraulic
traits. However, some studies have documented that species mixture can mitigate the
adverse drought impact for some species, but enhance them for others [20,45]. Species mix-
tures therefore have the potential to shape drought impacts in unpredictable ways, which
may result in the persistence of some species and the vulnerability of others. These negative
interactions are prominent under extreme drought, where even trees with complementary
resource-use strategies compete for water resources [7,19,46].
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In contrast, differentiated stand structures with the presence of shrubs may facilitate
natural regeneration in cases of heavy browsing pressure [18,47,48]. According to our
findings, shrubs protected young individuals from browsing, but differentiated structure
without the appearance of shrubs significantly increased browsing intensity. In heteroge-
neous, semi-open landscapes, such as forest–steppe, ungulates prefer to graze in open areas
and seek shelter in the shade of compact forest patches [2]. These sites are severely affected
by biomass removal through grazing and trampling with subsequent erosion and by dam-
age to old trees through bark abrasion. In addition, the preference for south-facing slopes in
winter significantly increases ungulate concentration and browsing probability [12]. Long-
term exposure to browsing can lead to a strong reduction in canopy cover, which may allow
grassland species to invade forest patches and eventually convert them to steppe [40,49].

There was an alarming decrease in the amount and species diversity of regeneration
with transition to the high category above 10 cm (Figure 4, study sites PLA and DRI).
Under the investigated conditions, the most resilient species persisting under extreme
drought in advanced regeneration were Quercus cerris L. and mainly some shrubby species
such as Crataegus species and Ligustrum vulgare L. (see Table 3). Diversity loss and an
insufficient number of young individuals can alter or completely disrupt the life cycles
of forest patches in favor of shrub occurrences, as was also documented in other studies,
e.g., [2,44]. The situation is particularly alarming for Quercus pubescens Willd., generally rare
in the regeneration (Figure 4, Table 2), which, in connection with its deteriorating health
(expressed by total defoliation) and unfavorable sociological position [50], predisposes its
representation in the species composition to decline.

The situation of insufficient natural regeneration amount and low biodiversity is
further complicated by the pressure of herbivorous game. Plant communities in areas
with high browsing intensity used to have lower species richness and cover, and exhibit
reduced stem heights, increased mortality, reduced abundance and a lack of mature in-
dividuals, which can alter successional trajectories [16]. In the investigated locality, the
intensity of browsing increased dramatically as the wood species grew into higher cat-
egories (Table 3). In the category above 10 cm, more than 80% of the individuals had
observable feeding traces, or even severely altered shape. Although competition strongly
influences seedling survival, dense herbaceous cover and the high abundance of other,
more palatable species can effectively protect seedlings from browsing [4,17,40,46]. When
seedlings emerge above the herbaceous layer and, more importantly, above the winter
snow cover, they are fully exposed to herbivorous game. In winter conditions, woody
plants such as trees and shrubs make up the majority of the browsed species, although only
a small number of browsed species normally make up the bulk of the food [51]. According
to the selectivity of woody species estimated by Jacob’s selectivity index, only three species
were avoided—Quercus pubescens Willd., Quercus dalechampii Ten. and Acer tataricum L.
Among the most selected species, Quercus cerris L., Acer campestre L. and Pyrus communis L.
were represented. Boulanger et al. (2009) [17] also recorded a global increase in the selectiv-
ity of the mentioned species, as an increase in the deer population forced the animals to
feed more on species that were previously avoided or that they were indifferent to. The
palatability of species is often related to the density of trichomes, the presence of thorns or
specific substances such as tannins, see, e.g., [52,53]. Leaves of Quercus pubescens Willd. are
green-greyish and densely pubescent at the beginning of their development, soon after, all
hairs on the upper side fall off, and the leaves become leathery and dark green [29]. On the
other hand, the lower tannin content and high edible quality of relatively large acorns (51%
less tannin and 35% less fiber than Quercus cerris L.) are probably responsible for their signif-
icant feeding preference and consequently low availability for regeneration [53]. Severely
damaged Quercus cerris L. sprouts in coppice forests in central Italy show that it is not even
possible to rely on vegetative renewal in times of ungulate overpopulation [54–56].
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5. Conclusions

The results of this study suggest that forest patches in the forest–steppe mosaic suffer
from a long-term lack of natural regeneration, mainly due to increasing aridity and ungulate
pressure. A significant decrease in the amount and diversity of natural regeneration is also
manifested in the absence of the lower stem sizes in forest patches, indicating the long-
term persistence of the problem. Taking into account the deteriorating health condition
of adult Quercus pubescens Willd. individuals, we can suppose the opening of the closed
forest patches in favor of shrub or grass communities, which means that the future of the
forest–steppe is at least doubtful.

Based on our results, we can highly recommend retention of deadwood within the
forest patches, in extreme cases even active deadwood-enrichment strategies in the sense of
an increase in its quantity. Partial reduction of heavily diversified stands, especially in places
with more advanced regeneration, also seems to be advisable. In any case, the adjustment
of the browsing pressure to sustainable levels is certainly a critical measure. This appears
to be the most important factor with respect to facing the mentioned threats and effectively
solving the problem of woody species regeneration. Reducing animal numbers would not
only reduce browsing, but also eliminate secondary damage such as trampling, erosion
and subsequent aridization. Under more favorable conditions for natural regeneration, the
feeding preferences of animals can positively modulate the species composition of forest
patches and to some extent eliminate the imbalances in the regeneration of woody species,
for example, in favor of the increasingly rare Quercus pubescens Willd.
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