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Abstract: Vegetation change is one of the most prominent features of terrestrial ecosystems responding
to climate change. Further exploration of vegetation characteristics in this context is essential for
accurately understanding and predicting ecosystem processes. Xinjiang, an arid region, is highly
sensitive to slight climate changes, which can significantly affect vegetation dynamics. Therefore,
determining the relationship between climate and vegetation is of paramount importance. Based
on this, this study focused on Xinjiang, selecting remote sensing data (including NDVI, LAI, and
GPP) as evaluating indices, and the spatiotemporal characteristics of vegetation response to climate
from 1991 to 2018 were analyzed using synchronized meteorological data, examining the relationship
between vegetation and climate. The results indicated that NDVI, LAI, and GPP all increased during
the period, with slopes of 0.52, 0.14 m2/m2, and 1.19 g C m−2 yr−1, showing significant spatial
heterogeneity in distribution. The net vegetation area increased by more than 20,000 km2, with
cropland experiencing the largest increase. Vegetation in northern Xinjiang showed a more significant
positive response to increased precipitation and temperature, while vegetation in southern Xinjiang
responded more complexly and exhibited negative correlations with climatic factors. The results
emphasized the varied responses of vegetation to climate variables, with temperature having a
more complex effect on vegetation change, while precipitation showed more distinct differences
between the various vegetation indices. These findings provide important insights into the ecological
sustainability of Xinjiang under warming and humidification.

Keywords: normalized difference vegetation index; leaf area index; gross primary productivity;
climate change; Xinjiang

1. Introduction

Vegetation, as a vital component of biodiversity and ecosystems on the Earth, plays a
crucial role in water conservation, soil water retention, windbreak, and sand fixation, as
well as biodiversity protection [1–4]. Climate significantly influences vegetation growth,
particularly in terms of precipitation and temperature [5–9]. Firstly, increasing tempera-
tures may advance and prolong the growth season of the region [10], which contributes to
biomass accumulation. More humid environments will promote photosynthesis and the
growth of vegetation [11]. Under the context of global warming, vegetation has become in-
creasingly sensitive to climate change. In addition, human activities exert both positive and
negative impacts on vegetation [12,13]. Under the combined influence of both factors, once
the vegetation in a region is damaged, it not only loses ability to regulate the local climate
and maintain ecological balance but may also lead to desertification, becoming a source
of dust storms. Therefore, in the context of climate change, analyzing the spatiotemporal
characteristics of vegetation and understanding its response mechanisms to both climate
change and human activities are crucial for providing a scientific basis for vegetation
protection and restoration and essential for assessing the ecological health of vegetation.
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In recent years, vegetation dynamics monitoring has primarily relied on remote sens-
ing techniques. Typical indicators of plant growth include the Normalized Difference
Vegetation Index (NDVI), Leaf Area Index (LAI), Net Primary Productivity (NPP), and
Gross Primary Productivity (GPP) [12,14–16]. Many researchers have utilized long-term
remote sensing data to thoroughly examine the spatial and temporal patterns of these
indicators, exploring the underlying driving mechanisms. Analytical techniques such as
residual analysis, Pearson correlation, Theil-Sen trend analysis, and Mann-Kendall tests
have been commonly applied [17–20]. Piao et al. [21], for instance, demonstrated that the
partial correlation coefficient (RNDVI-GT) between the year-to-year variability of NDVI
during the growing season and temperature in regions above 30◦ N latitude notably de-
creased between 1982 and 2011. Similarly, Shi et al. [22] determined that from 2000 to 2016,
45.78% of NDVI changes in China’s Loess Plateau were attributed to climate change, with
the effect of climate on NDVI becoming more pronounced over longer timescales. Using
the Empirical Orthogonal Function (EOF) method, Zhang et al. [23] analyzed vegetation
changes in Xinjiang from 1982 to 2021, identifying five climatic factors, including tempera-
ture and precipitation, that positively influenced vegetation growth. Research by Mekonnen
et al. [24] simulated GPP and indicated that rising temperatures and lower precipitation
contributed to decreased GPP across much of the southwestern northern United States due
to water stress. Collectively, these findings emphasize that climate, particularly tempera-
ture and precipitation, plays a critical role in influencing the growth and distribution of
vegetation. Diverse regional features lead to pronounced spatial and temporal variations in
how different vegetation types respond to climate factors [25–28]. For instance, in arid and
semi-arid zones, various plant types, from desert shrubs to mountain forests, illustrate the
differing impacts of climate on vegetation, which is essential for understanding ecosystem
responses to climate change. Furthermore, ecosystems show marked sensitivity to climate
fluctuations, especially regarding temperature and precipitation, making these areas ideal
for studying how climate change influences vegetation dynamics. This context underscores
the importance of grasping vegetation responses within specific environmental setting.

Xinjiang is located in the northwest region of China, with significant climate differ-
ences between the north and south and a fragile ecosystem. Studies had indicated that
northwest China is experiencing warming and humidification under climate change [29,30],
and Xinjiang, the largest arid area in this region, is also facing climate transition [31,32].
This trend has led to significant vegetation changes in Xinjiang, drawing increasing atten-
tion from scholars [33–37]. Currently, research on vegetation change in Xinjiang primarily
focuses on analyzing the spatiotemporal variations of a single vegetation index (NDVI or
LAI) and its relationships with climate factors, including air temperature, precipitation,
soil moisture, and evapotranspiration. Duan et al. [38] used partial correlation analysis to
examine the relationship between the NDVI of grasslands and climate factors, indicating
that precipitation during the growing season and summer had the most significant impact
on grassland changes. Zhang et al. [39] compared NDVI datasets of typical arid lands,
Xinjiang and Arizona, which have similar landscapes, to study the response of arid ecosys-
tems to climatic factors. The results showed that Xinjiang had a higher NDVI anomaly
growth rate, and similar types of natural vegetation exhibited responses to climate change
that were controlled by temperature and humidity. Hao et al. [40] analyzed the impact of
climate change on Xinjiang’s vegetation using NPP data, suggesting that NPP increased
for most vegetation types, with precipitation and soil moisture being the most influential
climate factors.

Although these studies all indicate that vegetation cover in Xinjiang is increasing,
discrepancies exist in the relationships derived between vegetation and climate factors.
For example, Zhao et al. [41] argued that NDVI variation was unrelated to temperature,
suggesting that precipitation may be the key factor for vegetation growth in the arid
regions of northwest China. In contrast, Jiapaer et al. [32] obtained results from analyzing
NDVI data in Xinjiang that were inconsistent with Zhao et al.’s findings. Furthermore,
most studies primarily focus on the spatiotemporal changes of a single vegetation index.
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Differences between various vegetation indices and their relationships with climate factors
can lead to uncertainty in vegetation driving mechanisms. Therefore, this study used
NDVI, LAI, and GPP as vegetation indices to analyze the characteristics of vegetation
changes in Xinjiang from 1991 to 2018, and to compare the differences in spatial distribution
among these indices. Additionally, the response of vegetation in Xinjiang to climate
change was explored by integrating the spatiotemporal variations of temperature and
precipitation during the study period. The correlation distributions between different
vegetation growth indices and climate factors were also compared. The spatiotemporal
distributions of different vegetation growth indices in Xinjiang and their correlations
with temperature and precipitation were also compared to understand the spatiotemporal
differences in vegetation change (Figure 1), thus providing a more realistic reflection of
vegetation dynamics and potential driving mechanisms under warming and humidification,
offering support for land use management, optimizing land use planning, and reducing
ecological impacts.
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Figure 1. Flowchart of research for vegetation dynamics and its climate response.

2. Materials and Methods
2.1. Study Area

Xinjiang is located in northwest China, covering an area of 1.66 million km2 (34◦25′ N–
48◦10′ N, 73◦40′E–96◦18′ E) (Figure 2). The region features unique topography, with three
major mountain ranges (Altai Mountains, Tianshan Mountains, and Kunlun Mountains),
two major basins (Junggar Basin and Tarim Basin), and numerous oases arranged from
north to south, forming an alternating pattern of mountains, basins, and oases.
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Figure 2. Location and land use of the research area.

Xinjiang has a temperate continental climate, characterized by arid conditions and
large temperature differences between day and night. From 1991 to 2018, the average
annual temperature was 11.6 ◦C, and the average annual precipitation was 147.0 mm. The
unique natural geographic environment results in significant spatiotemporal differences in
water and heat distribution. The north of the Tianshan mountains has higher precipitation
and lower temperatures, while the south experiences less precipitation and higher temper-
atures. The vegetation in Xinjiang is diverse, with significant regional differences, and is
characterized by low coverage and fragile habitats under the influence of these climatic
and topographic conditions. Vegetation in Xinjiang is highly susceptible to climate change
and drought stress.

2.2. Data Sources and Preprocessing
2.2.1. Meteorological Data

Near-surface air temperature (Ta) and precipitation (P) series were used to characterize
the influence of climatic factors on vegetation. Daily–scale near–surface air temperature
data were derived from a reconstruction model based on in situ observations and re-
analysis data (https://zenodo.org/records/5502275; accessed on 6 September 2024) [42].
Monthly precipitation data were derived by combining monthly anomaly surfaces with
baseline climatology surfaces (ChinaClim-baseline) using Climate-Assisted Interpolation
(CAI) (https://zenodo.org/records/5919442; accessed on 6 September 2024) [43]. All
meteorological data have a spatial resolution of 5 km and have been post-processed for
direct use.

2.2.2. Vegetation Data

The characteristics of vegetation growth in the study area were analyzed using
three remote sensing vegetation products, including GPP, LAI, and NDVI. Consider-
ing that Xinjiang is an arid to semi–arid region with a complex soil background, these
three indices were more suitable, which could help reflect changes in vegetation cover,
biomass accumulation, and leaf area, aligning well with the objectives. The monthly-scale
GPP data were simulated from NIRv (Normalized Difference Vegetation Index and near-
infrared reflectance), with a spatial resolution of 5 km and units of 0.0001 g C/m2 d. The
data are sourced from the Big Data Platform for Spatiotemporal Environmental Studies
in the Three Poles (https://figshare.com/articles/dataset/Longterm_1982-2018_global_
gross_primary_production_dataset_based_on_NIRv/12981977/2; accessed on 2 September

https://zenodo.org/records/5502275
https://zenodo.org/records/5919442
https://figshare.com/articles/dataset/Longterm_1982-2018_global_gross_primary_production_dataset_based_on_NIRv/12981977/2
https://figshare.com/articles/dataset/Longterm_1982-2018_global_gross_primary_production_dataset_based_on_NIRv/12981977/2
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2024) [44]. The LAI data were generated by combining AVHRR and MOD09A1 C6 datasets
(https://zenodo.org/records/4700264; accessed on 2 September 2024) [45], with an 8day
temporal resolution, a spatial resolution of 5 km, and units of 0.01 m2/m2.

NDVI data were derived from the 16day composite product from the Advanced Very
High Resolution Radiometer (AVHRR) (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_
id=2187; accessed on 2 September 2024) [46], with a spatial resolution of 5 km.

All climate and vegetation data were reprojected using the Albers Equal Area Conic
Projection. For further analysis and calculations, all data were processed to monthly
averages at the pixel scale, and spatial matching was achieved through resampling. The
processed climate and vegetation data have a spatial resolution of 5 km and a temporal
monthly scale, covering the period from 1991 to 2018.

2.2.3. Land Use Data

Land use data spanning 1991 to 2018 were obtained primarily through Landsat im-
agery, supplemented with visually interpreted samples from satellite time-series data,
Google Earth, and Google Maps. Temporal metrics from all accessible Landsat images
served as inputs for a random forest classifier to produce classification outputs. To improve
the spatial-temporal coherence of the CLCD, a post-processing approach incorporating
spatial-temporal filtering and logical analysis was applied (https://zenodo.org/records/81
76941; accessed on 22 September 2024). The data have a spatial resolution of 1 km × 1 km,
using the Albers Conic Equal Area projection parameters. The spatial resolution of all data
used in the study is 5 km × 5 km using resampling.

2.3. Method
2.3.1. Trend Analysis

A univariate linear regression analysis was applied to per-pixel vegetation (NDVI, LAI,
and GPP) and meteorological data (P and Ta) from 1991 to 2018. The regression yielded the
slopes of NDVI, LAI, GPP, P, and Ta over multiple years using MATLAB 2018b (MathWorks,
Natick, MA, USA), representing the vegetation change trends in Xinjiang during the study
period. The calculation formula is as follows:

θSlope =

n ×
n
∑

i=1
i × Xi −

n
∑

i=1
i

n
∑

i=1
Xi

n ×
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(1)

where i is the year, and Xi is the value of NDVI, LAI, GPP, P, or Ta for the year i. The
slope calculated for each pixel represents the overall trend of NDVI, LAI, GPP, P, or Ta over
multiple years for that pixel. θSlope > 0 represents an increasing trend for NDVI, LAI, GPP,
P, or Ta, while the negative value indicates a decreasing trend.

2.3.2. Land Use Transfer Matrix

The land use transfer matrix describes the spatial and temporal evolution of land use
in the region by calculating the direction and quantity of transitions between different land
use types over a specific period. The land use transfer matrix in the study was calculated
based on data from 1991 and 2018. This study used ArcGIS 10.2 (Esri, Redlands, CA, USA)
to analyze the land use transfer matrix. The calculation formula is as follows:

Sij =


S11 · · · S1n
S21 · · · S2n

... · · ·
...

Sn1 · · · Snn

 (2)

https://zenodo.org/records/4700264
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2187
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2187
https://zenodo.org/records/8176941
https://zenodo.org/records/8176941
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where S represents the total land area of the study region, n is the number of land use types,
and i and j represent the initial and final land use types during the study period, respectively.

2.3.3. Correlation Analysis

The Pearson correlation coefficient is widely used to measure the degree of linear
correlation between two variables. In this study, the Pearson correlation coefficient was
used to evaluate the correlation between vegetation and meteorological data and to conduct
a quantitative analysis of the relationship through MATLAB 2018b (MathWorks, USA MA).
The calculation formula for the correlation coefficient is as follows:

Rxy =

n
∑

i=1
[(xi − X)(yi − Y)]√

n
∑

i=1
(xi − X)

2 n
∑

i=1
(yi − Y)2

(3)

where X and Y represent the mean values of vegetation data (NDVI, LAI, or GPP) and
climate data (P or Ta). Rxy is the correlation coefficient, indicating the degree of correlation
between vegetation indices and climatic factors. A larger correlation coefficient indicates a
stronger correlation between the two factors at that pixel.

3. Results
3.1. Temporal and Spatial Variations of Vegetation Characteristics
3.1.1. NDVI Change Trend

The annual average NDVI value of vegetation in Xinjiang generally indicated a charac-
teristic of being higher in the north and lower in the south, ranging from 0 to 0.48 (Figure 3).
The high-value areas of annual NDVI (>0.23) were primarily located in the western and
northern Tianshan Mountains, Altai Mountains, Ili River Valley, mountainous areas around
the Junggar Basin, and regions surrounding the Tarim Basin. The distribution and variation
of the annual NDVI values were mainly influenced by vegetation conditions during the
growing season (May to October). The maximum NDVI value reached 0.78, mainly dis-
tributed in the western Tianshan Mountains and Ili River Valley during the growing season.
The high-value NDVI (>0.12) areas during the non-growing season were similar to those of
the growing season, mainly distributed in the western and northern Tianshan Mountains
and areas surrounding the Tarim Basin. Influenced by topography and meteorological
factors, vegetation in the arid southern Xinjiang region was primarily distributed around
the Tarim Basin and in high-altitude mountainous areas during different seasons. The
agricultural areas in southern Xinjiang were concentrated in areas with high NDVI values.

Overall, the multi-year average NDVI value was 0.28, ranging from 0.04 to 0.78.
Vegetation showed a gradually increasing trend during the study period (slope = 0.52,
R2 = 0.58), indicating an improvement of ecological conditions. In terms of NDVI trend
distribution, the NDVI values of desert vegetation mostly showed a decreasing trend
(>−0.05). Areas with a significant declining trend (<−0.2) were mainly located in the
central Tianshan Mountains, Ili River Valley, and Junggar Basin. Regions with an increasing
NDVI trend greater than 0.2 were mainly distributed in the northern Tianshan Mountains
and areas around the Tarim Basin. These regions were mainly dominated by grasslands
and croplands.
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3.1.2. LAI Change Trend

In different seasons, the overall distribution of LAI was similar to NDVI, showing sig-
nificantly higher values in northern Xinjiang compared to southern Xinjiang (Figure 4). The
annual average LAI ranged from 0 to 2.52, with high-value areas (>1.0) primarily located in
the western Tianshan Mountains and the northwestern part of the Altai Mountains. The
highest LAI values during the growing and non-growing seasons reached 3.82 and 1.56,
respectively. Due to the alternating distribution of mountains and basins, as well as the
influence of climatic factors such as temperature and precipitation, vegetation predomi-
nantly grew in the more humid mountainous areas. As a result, some mountainous areas
experienced active vegetation growth even during the non-growing season. In southern
Xinjiang, the annual average LAI did not exceed 0.4. LAI values between 0 and 0.2 were
mainly distributed in the Kunlun Mountains and Pamir Plateau, where alpine meadows
and tundra dominated.

The multi-year average LAI in Xinjiang was 0.34, ranging from 0.06 to 3.8. During the
study period, the annual average LAI showed an increasing trend (slope = 0.14, R2 = 0.82),
indicating healthy vegetation growth in Xinjiang. However, in the high LAI areas of
western Tianshan and some scattered regions in northwestern Xinjiang, the annual LAI
trend showed a decline (Figure 3d). Areas where the annual LAI trend value decreased
by more than −1.0 were mainly grassland regions. Areas with an annual LAI trend value
greater than 1.0 were mainly distributed in the Altai Mountains, parts of northern Tianshan,
and the areas surrounding the Tarim Basin. Areas with increasing trend values were mainly
grasslands and croplands. The overall trend distribution of LAI in Xinjiang was similar to
NDVI, but there were slight variations in the Junggar Basin and its northwest region.
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3.1.3. GPP Change Trend

As an effective indicator of ecosystem productivity, GPP also showed significant spatial
and temporal distribution characteristics in Xinjiang. Figure 5 indicates the distribution
of GPP during the growing season, non-growing season, and annual average. It can be
seen that the spatial distribution of GPP in Xinjiang vegetation varied greatly, with higher
values in northern Xinjiang and lower values in southern Xinjiang. The annual average
GPP ranges from 0 to 1285 g C m−2 yr−1, with the highest GPP values during the growing
and non-growing seasons reaching 392 g C m−2 yr−1 and 179 g C m−2 yr−1.

The high-value areas were mainly distributed in northern Xinjiang, specifically in
the western and northern Tianshan Mountains, Altai Mountains, and the northwestern
Junggar Basin. The distribution of annual average GPP was primarily influenced by
growing-season GPP values, particularly in the higher-latitude Altai Mountain region. In
contrast to northern Xinjiang, the annual average GPP in southern Xinjiang did not exceed
500 g C m−2 yr−1. Agricultural areas surrounding the Tarim Basin were the main regions
with relatively high GPP values in southern Xinjiang.

Overall, the multi-year average GPP of Xinjiang vegetation was 274.0 g C m−2 yr−1,
with values ranging between 236.9 g C m−2 yr−1 and 316.1 g C m−2 yr−1 from 1990 to
2018. There was an overall increased trend (slope = 1.19, R2 = 0.52), indicating a continuous
improvement in ecosystem status. However, areas where the GPP trend decreased by
more than 15 were mainly found in the Tianshan Mountains, Altai Mountains, and the
northwestern part of the Junggar Basin in northern Xinjiang. In contrast, agricultural areas
around the basins and low-altitude areas in the mountains were the main regions of GPP
increase. Compared to the trend distribution of NDVI and LAI, GPP trend values suggested
a decline in the Altai Mountains, the area around the Junggar Basin, the southern Tianshan
Mountains, and high-altitude regions in the mountains. Regions showing an increasing
GPP trend were similar to the distribution of the other two indicators.
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3.2. Temporal and Spatial Variations of Vegetation Types and Areas

From 1991 to 2018, the vegetation area in Xinjiang increased by 165,669.8 km2, with
grassland accounting for the largest share of this enhancement (88.7%), followed by crop-
land (9.7%). Grassland also represented the largest portion of vegetation loss at 92.9%,
followed by cropland, which decreased by 4.2%. During the study period, the net increase
in vegetation cover was 24,345.8 km2. Except for cropland, the areas of forest and shrub land
decreased, while the grassland area remained relatively stable. In southern Xinjiang, the
main region of grassland expansion was in the Kunlun Mountains, while in northern Xin-
jiang, it primarily occurred at higher elevation around the Junggar Basin (Figures 6 and S1).
The increase in natural forest mainly occurred in the Altai and Tianshan Mountains of
northern Xinjiang, while other vegetation types like orchard and tea plantation expanded
around the Tarim Basin in southern Xinjiang. In both southern and northern Xinjiang, the
expansion of cropland mainly occurred around the basin edges. Many areas of cropland
expansion overlapped with regions of grassland decline. Human demand for food and
cash crops led to the conversion of more natural vegetation into cropland.

The land use transfer matrix indicated a net increase of 33,062.8 km2 in cropland,
mainly from the conversion of grassland (61.2%) and bare/desert (26.0%). The net re-
duction in natural forest area was 7993.0 km2, with grassland conversion accounting for
87.4% of this reduction, followed by bare/desert for 6.6%. Shrubland saw a net decrease
of 1540.9 km2, with 66.6% of this area converted to grassland, 20.5% from bare/desert,
and 7.8% from natural forest. The net change in grassland area was −246.1 km2, with
76.7% of new grassland coming from bare/desert and 9.6% from natural forest. It was
evident that between 1991 and 2018, the increase in natural vegetation mainly resulted
from the conversion of bare/desert, predominantly converted into grassland, which was
distributed in mountainous areas. The expansion of natural forests was mainly concen-
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trated in mountainous areas, extending into lower elevations. Cropland expansion was
mainly concentrated in the plains and largely resulted from the conversion of grassland.
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3.3. The Response of Vegetation to Climate Change
3.3.1. The Changing Trend of Climate Factors

The unique topography led to great regional differences in the distribution of temper-
ature and precipitation in the study region. The long-term annual average temperature in
the region ranged from −18.2 ◦C to 17.9 ◦C, with an average of 11.6 ◦C. The temperature
distribution showed a pattern of higher temperatures in basins and lower temperatures
in mountainous areas (Figure 7). The areas with high temperature were mainly located
in the Tarim Basin, Hami Basin, and other areas, with the highest temperatures found in
the Turpan Basin in eastern Xinjiang. Low-temperature areas were primarily distributed
in the Altai, Tianshan, and Kunlun Mountain ranges. Areas in Xinjiang with increasing
temperatures were mainly located in lower-elevation basins and valleys, with significant
warming observed in the Junggar Basin, Hami Basin, and the northern Tianshan region
(p < 0.05). Regions with decreasing temperatures were mainly distributed in higher-altitude
mountainous areas and the central part of the Tarim Basin. Although the central Tarim
Basin showed a cooling trend, its annual average temperature remained relatively high.
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During the study period, the long-term average annual precipitation ranged from
108.3 mm to 183.4 mm, with an average of 147.0 mm. The spatial distribution of precipitation
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showed a pattern of more precipitation in the north and less in the south (Figure 8). In
northern Xinjiang, the Altai and Tianshan Mountains were the main areas with high
precipitation values (>450 mm). In southern Xinjiang, areas with higher precipitation
values (>15 mm) were mainly distributed in the southern Tianshan and eastern Kunlun
Mountains. Precipitation in the Altai Mountains, Turpan Basin, eastern Tarim Basin, and
the eastern Kunlun Mountains showed a decreasing trend, while other areas experienced
increasing precipitation. Regions with the most significant decrease in annual precipitation
were concentrated in the Altai Mountains, where the decline was statistically significant
(p < 0.05). Annual precipitation in the western and southern Tianshan Mountains increased
by more than 1.2 mm/year.
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Figure 8. Annual characteristics of spatial distribution (a) and trend (b) of precipitation from 1991
to 2018.

Overall, from 1991 to 2018, both temperature and precipitation in Xinjiang showed an
upward trend, with slopes of 0.02 and 0.21, respectively. These findings confirmed that, in
recent decades, Xinjiang had been gradually shifting towards a warmer and wetter climate,
which was expected to have a significant impact on variations in vegetation in study area.

3.3.2. The Correlation Between Vegetation and Precipitation

Figure 9 illustrated the correlations between NDVI, LAI, GPP, and precipitation,
revealing significant spatial heterogeneity in the relationships between these indices and
precipitation. The proportions of positive and negative correlations varied significantly
across the different indices. The proportions of positive and negative correlations between
NDVI and precipitation were nearly equal, at 50.3% and 49.8%, respectively. However,
regions with positive correlations were mainly located in northern Xinjiang, particularly
in the southern Altai Mountains, the northwestern Junggar Basin, the Ili River Valley,
and parts of northern Tianshan, with correlation coefficients greater than 0.4. In southern
Xinjiang, negative correlation areas dominated, mostly located in basins and high-altitude
regions of the Kunlun Mountains. Precipitation in high-altitude mountainous areas mainly
fell as snow, which was unfavorable for vegetation growth; thus, regions with correlation
coefficients below −0.4 were concentrated in the Kunlun Mountains. Positive correlation
areas in southern Xinjiang were mainly concentrated around the Tarim Basin and the
southern Tianshan, where land types were predominantly cropland and grassland. These
regions received ample sunlight, and increased precipitation promoted the growth of crops
and herbaceous plants.

Compared to NDVI, LAI had a higher proportion of positive correlations with pre-
cipitation, reaching 85.5%. Of this, 17.5% of the correlations had a coefficient greater
than 0.4. Positive correlation areas were mainly distributed in mountainous regions and
around basins, especially in the northwestern Junggar Basin and Ili River Valley, where
the correlation coefficient exceeded 0.6. The predominant land type in these regions was
grassland. Negative correlation areas were mainly located in regions where precipitation
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was decreasing, whereas in most areas with increasing precipitation, the correlation was
positive. The areas where correlation between LAI and precipitation exceeded 0.4 were
similar to the regions where NDVI presented a positive correlation in northern Xinjiang.
However, the proportion for NDVI exceeding 0.4 in this region was only 5.3%. While both
indices led to the same conclusion, that precipitation promoted vegetation growth, the
specific correlation coefficients and distribution of correlations differed notably.
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The correlation between GPP and precipitation was also primarily positive, account-
ing for 74.3%. Among them, 4.2% of the correlations had a coefficient greater than 0.4.
Compared to NDVI and LAI, GPP showed a weaker correlation with precipitation, with
most regions having correlation coefficients between −0.4 and 0.4, accounting for 95.5%.
The spatial distribution of correlations was less distinct for GPP compared to the other
two indices, showing an interwoven pattern of positive and negative correlations. There
was a negative correlation in areas with high precipitation, which may be due to cloud
cover blocking sunlight during rainfall and lowering environmental temperatures at that
time, which hindered plants from photosynthesis. However, this should be analyzed in
conjunction with temperature variations. Compared to the other two vegetation indices,
the impact of precipitation on GPP was smaller than its effect on NDVI and LAI.

Using NDVI, LAI, and GPP as reference indices, the vegetation in the study area
exhibited significant spatial heterogeneity, with the greening trend in northern Xinjiang
being stronger than in southern Xinjiang. This spatial pattern may be attributed to dif-
ferences in precipitation availability, as northern Xinjiang received more water resources,
particularly in mountainous areas like the Tianshan and Altai ranges, which enhanced veg-
etation productivity. In contrast, southern Xinjiang was characterized by arid deserts and
lower precipitation, resulting in less vegetation improvement, highlighting the importance
of water availability in controlling vegetation growth. Our study hypothesized that in-
creased precipitation due to climate change enhanced water supply, favoring plant growth.
However, in southern Xinjiang, variations in vegetation responded less to precipitation,
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suggesting that even with additional precipitation, water availability remained a limiting
factor due to high evapotranspiration rates and the arid climate.

3.3.3. The Correlation Between Vegetation and Temperature

The proportion of positive and negative correlations between temperature and the
three indices showed little variation. The positive correlation proportions for NDVI, LAI,
and GPP were 55.5%, 54.6%, and 51.2%, respectively. However, the spatial distribution of
correlations for each index exhibited remarkable heterogeneity (Figure 10). Regions with
negative correlations between NDVI and temperature were mainly located in basin areas,
including the Junggar Basin and its surroundings (the Turpan Basin, the Hami Basin, and
the Tarim Basin). The dominant vegetation type in these regions was desert vegetation.
In the eastern Tarim Basin and parts of the central areas of other basins, the correlation
coefficient was less than −0.4. As temperatures increased, plants enhanced transpiration to
minimize water loss. However, excessively high temperatures could easily cause plants
to die due to water stress. Therefore, these regions exhibited moderate to strong negative
correlations. In high-altitude areas, rising temperatures made conditions more suitable
for vegetation growth, leading to positive correlations. Areas with correlation coefficients
greater than 0.6 were all distributed in high-altitude mountainous regions. In contrast, the
cultivated areas around basins, which had sufficient water and sunlight, presented weak
positive correlations.
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The correlation between temperature and LAI showed an interactive distribution of
positive and negative correlations. Areas with positive correlations were mainly in regions
with increasing temperature, while negative correlation areas were primarily located in
high-altitude mountainous regions and regions with decreasing temperature. Regions
with correlation coefficients greater than 0.4 accounted for 10.5%, mainly distributed in
grasslands and parts of cropland. Regions with correlation coefficients less than −0.4
accounted for 7.4%, primarily distributed in the Kunlun Mountains.
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The spatial distribution of the correlation between GPP and temperature was similar to
that between LAI and temperature; however, it showed a weaker correlation on the whole.
Areas with correlation coefficients between −0.4 and 0.4 accounted for 95.8%. Regions
with rising temperatures were still the main areas with positive correlations. Compared
to the correlation with precipitation, the spatial distribution of the correlation between
temperature and GPP in the Kunlun Mountains was reversed. Different types of vegetation
responded differently to changes in temperature and precipitation, particularly alpine
vegetation, which was more sensitive to climate change. Therefore, in high-altitude areas,
opposite correlations between GPP and climate indicators may occur. In the Ili River Valley,
negative correlations dominated, as rising temperatures were unfavorable for vegetation
growth. Positive correlation areas around the Tarim Basin and southern Junggar Basin
were mainly regions where crops and economic plants were grown. These areas were more
severely affected by human activities.

The response of vegetation to rising temperatures was more complex. In high-altitude
regions like the Tianshan and Altai Mountains, higher temperatures prolonged the growing
season, promoting vegetation growth. However, in desert regions like the Tarim Basin,
higher temperatures may exacerbate water stress, leading to negative correlations between
temperature and vegetation indices. These findings indicated that while rising temperatures
may benefit vegetation activity, they could also pose challenges for arid regions where
water resources were already limited.

4. Discussion

From 1991 to 2018, vegetation in Xinjiang exhibited significant dynamic changes char-
acterized by large differences in distribution between the north and south Xinjiang and
temporal variations. The study findings revealed that northern Xinjiang had experienced
a noticeable greening trend, which aligned with the overall warming and humidification
in arid regions, as previously reported by Zhang et al. [6]. The spatial distribution of high
NDVI and LAI values concentrated in the Tianshan and Altai Mountain ranges indicated
that these regions, with relatively higher precipitation and suitable temperatures, were con-
ducive to vegetation growth and demonstrate greater resilience to climate variations. The
findings emphasized how regional climate change, manifested in increasing temperature
and precipitation, had positively influenced vegetation. Similar to other arid regions, the
relationship between climate variables and vegetation characteristics displayed a consistent
pattern [22], with climate explaining significant changes in vegetation in arid regions [6].
Contrastingly, southern Xinjiang, dominated by arid desert landscapes, showed lower
values and limited improvements in vegetation growth over the study period. Vegetation
growth here remains constrained by the region’s high evapotranspiration rates, which
hinder the effectiveness of any increase in precipitation. Similar findings were reported by
Zhao et al. [41], who noted that desert vegetation often exhibited a reduced response to cli-
matic fluctuations due to inherent water limitations [47]. The results further illustrated the
uneven spatial distribution of vegetation dynamics within Xinjiang, where mountainous
regions benefit more from climate-induced greening [32,48], while desert and basin areas
remain sensitive to drought and water scarcity. Additionally, the multiple indices (NDVI,
LAI, and GPP) highlighted that different metrics capture unique aspects of vegetation
health and productivity [49]. For instance, the NDVI and LAI trends displayed ongoing
vegetation growth in northern Xinjiang, while GPP, though showing an increase, indicated
more moderate gains, suggesting that factors beyond photosynthetic activity played critical
roles in vegetation productivity [50], which corresponded with findings from Hao et al. [40].
The results documented similar spatial patterns of vegetation productivity linked to water
accessibility in arid regions.

The drivers of vegetation change in Xinjiang are multi-faceted, with both climate vari-
ability and anthropogenic influences contributing to observed patterns. Previous studies
identified precipitation as a limiting factor that directly enhanced vegetation growth in arid
and semi-arid regions [6,38,51]. Increased precipitation benefited areas with existing vegeta-
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tion cover, such as grassland and forest in the mountainous regions, where additional water
inputs could alleviate drought stress and support growth. In southern Xinjiang, however,
temperature has shown complex effects on vegetation, particularly in low-elevation desert
areas. Rising temperature exacerbated water stress in these areas, leading to a negative
correlation between temperature and vegetation, which aligned with another study [52]. In
arid ecosystems, elevating temperatures increased evapotranspiration rates, surpassing any
benefits of sporadic precipitation gains [53,54]. Thus, while warming trends may benefit
vegetation in cooler, higher-elevation zones, they pose a challenge to vegetation survival
and productivity in already arid desert environments.

Moreover, the drought index offers a useful framework for understanding these
differential responses to climate drivers. Wang et al. [5] emphasized that regions with
high drought indices often exhibited constrained vegetation responses due to limited soil
moisture, further supporting the finding that aridity remains a key barrier to vegetation
expansion in southern Xinjiang. Although precipitation had increased in recent years,
a high drought index continued to restrict moisture accumulation, resulting in weaker
vegetation responses to rainfall [55]. Additionally, the relationship between drought index
and GPP varied across regions. In southern Xinjiang, prolonged water scarcity significantly
suppresses GPP growth. In contrast, northern Xinjiang’s mountainous areas and surround-
ing basins, with lower drought indices and more stable water supplies, show higher GPP
values. This highlighted the essential role of adequate water availability in supporting
vegetation growth in arid regions [40].

5. Conclusions

This study investigated the spatiotemporal changes in vegetation in Xinjiang from
1991 to 2018 and the vegetation’s response to climate. Using multiple vegetation datasets
(NDVI, LAI, and GPP), the spatial distribution and trends of vegetation during the study
period were analyzed, and the variations in vegetation reflected by each index were
compared. Additionally, land use data from 1991 to 2018 were used to analyze changes in
vegetation types and areas in Xinjiang. Furthermore, temperature and precipitation data
were combined to study the vegetation response to climate change.

From 1991 to 2018, NDVI, LAI, and GPP values in Xinjiang showed a distribution
pattern of being higher in the north and lower in the south, with long-term averages of
0.28, 0.34, and 274.0 g C m−2 yr−1, respectively. The annual average distributions of NDVI,
LAI, and GPP were mainly influenced by vegetation patterns during the growing season.
The high annual average values for all indices were distributed similarly. In northern
Xinjiang, high values were concentrated in the Tianshan Mountains, Altai Mountains,
and the northwest of the Junggar Basin, while in southern Xinjiang, they were mainly
distributed around the Tarim Basin. During the study period, the annual averages of NDVI,
LAI, and GPP all showed increasing trends, with slopes of 0.52, 0.14 and 1.19; however,
the spatial distributions of these trends differed slightly. Areas with consistent upward
trends for all three indices were primarily located in the southern and northwestern parts
of the Junggar Basin and around the Tarim Basin, while areas with consistent downward
trends were mainly in central Tianshan. Overall, vegetation in Xinjiang had gradually
improved. The net increase in vegetation area was 24,345.8 km2. Grassland has the largest
area increase, accounting for 88.7% of the total area increase. The increase in grassland
mainly resulted from the conversion of bare/desert.

During the study period, both precipitation and temperature in Xinjiang showed up-
ward trends, but the correlations between these climate factors and the different vegetation
indices varied significantly. The proportions of positive correlations between NDVI, LAI,
GPP, and temperature were all around 50%, with a less than 5% difference in the positive
correlation proportions among the three indices. In contrast, the proportions of positive cor-
relations with precipitation varied greatly, with 50.3% for NDVI, 85.5% for LAI, and 74.3%
for GPP in detail. Due to the distribution characteristics of vegetation data, the data in areas
without vegetation caused this variation. Especially in desert areas, there was a negative
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correlation between NDVI and climate factors. Increased precipitation favored vegetation
growth. The areas where each index had positive correlations with precipitation were
largely consistent with the regions of high annual averages for these indices. In contrast,
the effect of temperature on vegetation was less pronounced. Among the three indices,
GPP indicated weak correlations with both precipitation and temperature, while NDVI and
LAI generally showed positive correlations with climate factors, though these correlations
were influenced by factors such as vegetation type and elevation. Although all three indices
could represent vegetation conditions, they showed great differences when analyzing the
impact of climate on vegetation, leading to varying results. Therefore, careful selection of
vegetation data was essential when conducting attribution analysis for vegetation changes
in a given region.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/f15122065/s1, Figure S1. Characteristics of land use change during the
study period. (a) represents increased areas from 1991 to 2018, (b) represents decreased areas from
1991 to 2018.
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