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Abstract: The study of the forest coverage rate (FCR) is related to the ecological environment and
sustainable development goals (SDGs) of a region. In light of the lack of an organic integration
method of “spatiotemporal evolution, correlation analysis, and change prediction” and the lack of
a methodology that integrates methods of “remote sensing (RS) and GIS, multi-phase LUCC, and
construction of econometric models” in the research methods at present, this study focus on Yunnan,
a typical border province located in China with a relatively fragile “innate” ecological environment,
as the research area. Based on the interpretation of land use/land cover (LULC) data retrieved
from seven periods RS images (1990, 1995, 2000, 2005, 2010, 2015, and 2020), the spatiotemporal
evolution of FCR in 129 counties was analyzed. Complementary research methods, such as the spatial
econometric model, geographically weighted regression (GWR), and the geographic detector (GD),
are used to reveal the influencing factors of FCR. Finally, this study predicts the FCRs of 129 counties
in Yunnan from 2025 to 2050. The FCR in Yunnan presents an increasing trend year by year, increasing
from 28.96% in 1990 to 49.05% in 2020. In addition, it exhibits spatial agglomeration characteristics
with fewer values in the east and more in the west. The analysis of influencing factors show that
the increases in the per capita GDP, land utilization rate, and annual average temperature, and the
implementation of the Conversion of Cultivated Land into Forest Project (CCFP) will significantly
improve the FCR, while the increases in the population density land reclamation rate, the proportion
of construction land area, and the proportion of soil erosion land area will significantly reduce the
FCR. Furthermore, the FCR is influenced by multiple factors, and the relative factors observed not
only show significant spatial differences, but also present complex and diverse patterns, with the
additional characteristics of being interwoven and overlapping. This study contributes to expanding
and improving the methods and pathways of exploring the spatiotemporal evolution characteristics
of FCR in ecologically fragile areas using RS methods, providing a reference for increasing FCR
and improving the ecological environment’s quality in Yunnan Province and other ecologically
fragile areas.

Keywords: forest coverage rate (FCR); remote sensing (RS) image interpretation; influencing factors;
ecological diversity; Yunnan Province
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1. Introduction

Forests are not only important resources for human survival and development, but
also have significant impacts on the economic, social, and ecological aspects (Chen Danlu
et al., 2016; Zheng Yu et al., 2020; Bonan, G.B., 2008) [1–3]. Firstly, the contribution of
forests to ecological protection is extremely significant. With the increase of forest coverage
rate (FCR), it can not only effectively purify the air, but also prevent wind and sand, and
maintain soil and water. According to the statistics, one hectare of forest resources can
consume 1000 kg of CO2 and release 730 kg of O2 (Xiao Yanfei, 2020) [4]. According to a
study conducted by Yang Renyi et al. (2022), under other unchanged conditions, every 1%
increase of the FCR promotes a 0.0077% decrease of the air quality index (AQI) values [5].
In addition, the contribution of forests to economic and social development cannot be
ignored, because forests not only are useful for wood production and processing, but also
provide people with valuable medicinal materials and other material resources, which have
an extremely important economic value and social benefits (Ran Xiaoou, 2016) [6]. It can be
observed that forests are the cradle of human civilization and an indispensable material
foundation for human survival and achieving sustainable development goals (SDGs). The
FCR is a prominent indicator that reflects the richness of forests. Its calculation formula is
the proportion of the forest area to the total land area, usually expressed as the ratio of a
closed forest land area to the total land area (Yang Zisheng, 2011) [7], and some specially
designated shrub forests can also be included in this calculation (Guan Yuxian, 2015) [8].
However, at present, China’s FCR is only 23%, considerably less than the international
average of 31.7%. Therefore, effectively improving the FCR is an urgent practice when
attempting to achieve SDGs (Zhang Jitong et al., 2022) [9].

The research at present on forest coverage mainly includes the methods of dynamic
monitoring (Hansen, M.C. et al., 2008) [10], spatiotemporal evolution analysis (Kennedy,
R.E. et al., 2012; Cohen, W.B. et al., 2010) [11,12], influencing factor analysis (Wang Kai,
2016; Ma Jingjing et al., 2023) [13,14], and prediction (Verbesselt, J. et al., 2009; Pflugmacher,
D. et al., 2012) [15,16], where dynamic monitoring mainly focuses on the detection of
the changing dynamics of the FCR in a region through high-resolution RS satellite data;
spatiotemporal evolution analysis is a method of systematically summarizing the features
of spatial pattern and temporal changes based on FCR data from different years in different
regions; the analysis of influencing factors mainly focuses on exploring the effects and
degrees of various possible related factors on the FCR; and prediction focuses on the
use of relevant modeling techniques based on existing data to predict the future FCR.
Although these studies differ and focus on different aspects overall, in reality, they are all
complementary and interrelated. For example, exploring the spatiotemporal evolution
laws and influencing factors will help predict the future FCR, and the predicted results
can further assist in dynamically monitoring whether the FCR deviates from expectations.
In the past, due to the limitations in the fields of science and technology, the monitoring
methods used to calculate FCR were relatively original. Their limitations mainly lie in the
lack of precise equipment for monitoring the FCR, which may generate relatively coarse
calculation results. With the growth and maturity of “3S” technology (i.e., remote sensing
(RS) technology, geographic information systems (GISs), and global positioning systems
(GPSs)), significant progress has been made in using “3S” technology to study FCR, and
this has gradually become a hot topic in the research; it is evident that increasingly more
abundant research results are emerging in the literature (Li Yang et al., 2018; Zhang Yangjian
et al., 2022; Yin Huiyan et al., 2020) [17–19]. Overall, the existing research conducted on
forest coverage mainly includes the following categories: The first category involves
studying the spatiotemporal changes in FCR from the perspectives of land use/land cover
change (LUCC) (Kennedy, R.E. et al., 2010; Gao Ying et al., 2019; Shi Ruyu et al., 2019;
Zhang Weibo et al., 2022) [20–23]. The advantage of this type of research is the use of
modern technologies, such as RS image interpretation, to accurately monitor the dynamic
changes in FCR or relative indicators, and explore their evolution feature. However, its
shortcoming is the inability to explore the relative factors of FCR. The second category is
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the study of relative factors that affect forest coverage and its indicators (Li Qinling, 2023;
Zhao Xiaodi et al., 2019; Wu Weiguang et al., 2023) [24–26]. The advantage of this type
of research is that it can clearly reveal key indicators that affect FCR. From the existing
research, it can be observed that the relative factors of FCR are quite complex, including
not only economic factors (such as the GDP), but also the multiple impacts of social, policy
(such as the Conversion of Cultivated Land into Forest Project (CCFP) and forest park
constructions), population (such as population density and the natural population growth
rate), and geographical condition (such as terrain slope and climate) (Wang Kai, 2016; Ma
Jingjing et al., 2023; Kirton, J. et al., 2021; Brown, S. et al., 1984; Zhang Xiaodong, 2016;
Deng Huiping et al., 2018; Wang Kai et al., 2016; Zhang Qian, 2016; Jiang Youyan et al.,
2022) factors [13,14,27–33]. In addition, natural disasters and human activities can also
become important influencing factors for the reduction in FCR, and the impacts of the
relative factors are widely recognized in the literature (Hu Wenping et al., 2023; Mizuno, T.
et al., 2021; Hefeeda, M. et al., 2009) [34–36]. However, the existing research conducted on
the influencing factors lacks systematicity, with less use of diversified and complementary
methods, such as econometric model analysis based on RS interpretation, resulting in most
studies only focusing on one or a few aspects and failing to create a comprehensive study
system of the influencing factors. The third category is the prediction of future FCR (Yang
Zisheng, 2011; Pflugmacher, D. et al., 2012; Yuan Xue, 2022; Gu Kaiping, 1988) [7,16,37,38].
This type of research usually uses methods such as the back propagation (BP) neural
network and Markov chain to predict future FCR, which can highlight the approximate
changes in future FCR but fails to formulate more scientific predictions based on its core
relative factors.

Overall, significant progress has been made in the existing research on the FCR, with
more and more scholars conducting in-depth research on the dynamic monitoring, spa-
tiotemporal evolution, influencing factors, and prediction of FCR. In addition, with the
promotion of RS and GIS technologies, research methods have gradually diversified, such
as integrating MODIS and Landsat data for dynamic monitoring, using diversified tech-
nologies such as the BP neural network, Markov chain, and Landsat-derived disturbance
to predict FCR, and these research directions have gradually been integrated and expanded
(Hansen, M.C. et al., 2008; Kennedy, R.E. et al., 2012; Cohen, W.B. et al., 2010; Wang Kai,
2016; Ma Jingjing et al., 2023; Verbesselt, J. et al., 2009; Pflugmacher, D. et al., 2012; Yuan
Xue, 2022; Gu Kaiping, 1988) [10–16,37,38]. However, when exploring a literature review, it
can be observed that there are still some shortcomings and the areas that required improve-
ments and enhancements regarding the study of the influencing factors of FCR. In terms
of the spatiotemporal evolution of FCR, many existing studies often use official statistical
data, such as statistical yearbooks, for analyses, lacking the application of precise technical
methods, such as RS image interpretation, to statistically analyze the land use types of each
plot and achieve more accurate FCR monitoring results. In terms of the research conducted
on the influencing factors, several existing studies mainly use methods such as principal
component analysis and summarization, and lack the availability of a more comprehensive
and systematic indicator system. As for the prediction research on FCR, many existing
studies only use the trend of past changes in FCR to predict the future values, without
dynamically adjusting future FCR based on the changes in the relative factors. Fortunately,
with the growth and maturity of RS technology, more and more studies have used RS
interpretation methods to systematically monitor FCR. This not only fills in the gaps men-
tioned above, but also continuously improves and innovates the technology, resulting in
increasingly refined calculation results. However, this type of research mainly focuses on
the accuracy of calculations and the improvement of methods, with less attention paid to
the relevant factors and dynamic predictions of the FCR. Therefore, there is little organic
integration of “spatiotemporal evolution, influencing factors, and change prediction” to
form systematic and comprehensive analyses of FCR. At the same time, there is also a lack
of understanding in the research regarding the spatial heterogeneity and interaction effects
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of various relative factors on FCR, and a lack of a methodology that integrates the research
methods of “RS and GIS, multi-phase LUCC, and construction of econometric models”.

Yunnan Province is located on the southwestern border of China and is a typical moun-
tainous province with an underdeveloped economy and fragile ecological environment.
This study adopts it as the research region, not only because it is a typical border mountain
province, but also because it is located at the source or upstream of the six world-famous
rivers (i.e., the Yangtze, Pearl, Lancang, Red, Nu, and Irrawaddy rivers), which means that
Yunnan is not only an ecological security barrier located in southwest China, but it also
has an irreplaceable and important role in maintaining the ecological security of the six
world-renowned rivers. It can be observed that Yunnan’s important ecological location
determines its significance as an international ecological security barrier. In response to
the insufficient combining of the RS and GIS technology and econometric model analysis
methods in the existing research to systematically explore the spatiotemporal evolution fea-
ture of FCR, and the lack of diversified and complementary measurement, techniques and
methods combined with RS image interpretation results and econometric model analysis
to systematically discuss the relative factors of FCR, this study analyzes the spatiotemporal
evolution of FCR in 129 counties in Yunnan based on the LULC data obtained by the RS
images for seven periods (i.e., 1990, 1995, 2000, 2005, 2010, 2015, and 2020). Complementary
research methods, such as the spatial econometric models, the geographic weighted re-
gression (GWR), and the geographic detector (GD), are combined to reveal the influencing
factors on FCR. Finally, this study predicts the FCRs of 129 counties in Yunnan from 2025 to
2050. Compared with the existing research results, this study makes certain contributions:
Firstly, it enriches and expands the systematic analysis of the “spatiotemporal evolution, in-
fluencing factors, and change prediction” of FCR in ecologically fragile areas by integrating
the methods of “RS and GIS, multi-phase LUCC, and construction of econometric models”.
The second contribution is the enrichment and expansion of the research methods and
paradigms of interdisciplinary fields, such as econometrics and geography, to explore the
important influencing factors, and the channels and methods for predicting future changes
in FCR. Thirdly, this study provides a reference for the scientific formulation of policies
and measures to successfully increase FCR and improve the ecological environment quality
in Yunnan and other ecologically vulnerable areas according to the local conditions.

2. Materials and Methods
2.1. Overview of the Research Area

Yunnan is a border mountainous province located in southwestern China, with its lati-
tude and longitude ranging from 21◦8′32′′ N to 29◦15′8′′ N and 97◦31′39′′ E to 106◦11′47′′ E,
respectively (Figure 1). Overall, the features of Yunnan can be categorized into the following
four points [39]:

The first is its frontier geographical location. Yunnan is located on the southwestern
border of China, bordering Myanmar to the west and Laos and Vietnam to the south.
The length of the border line is 3235.2 km. This geographical feature determines that
Yunnan is located at the source or upstream of six major rivers, becoming an ecological
security barrier.

Secondly, the terrain is mainly mountainous, making it a typical mountainous province.
The overall terrain is characterized by a high northwest and low southeast. The highest
point is 6740 m, and the lowest point is 76.4 m, with a height difference of 6663.6 m. The
mountainous area of the entire province accounts for approximately 94% of the land, while
the flat land only accounts for approximately 6%. About 77% of the land has a >15◦ slope,
and nearly 2/5 of the land consists of steep slopes with a >25◦ slope. This topographic
feature determines its vulnerability status in “innate” ecology. In addition, the long-lasting
irrational development and utilization of land resources in mountainous areas can easily
create disharmony in the relationship between human beings and the land, resulting in
significant soil erosion and ecological degradation.
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Figure 1. Geographical location and digital elevation model (DEM) map of the research area: (a) geo-
graphical location; (b) distribution of the 129 counties; and (c) DEM map.

Thirdly, there are numerous ethnic minorities living throughout Yunnan Province.
There are a total of 55 ethnic minorities in China, and Yunnan Province has 51 ethnic
minorities. Additionally, there are 25 ethnic minorities living in areas inhabited by ethnic
minorities. In 2020, the population of ethnic minorities in Yunnan Province was 15.6396 mil-
lion, accounting for approximately 1/3 of the total population in Yunnan. Various ethnic
minorities have created diverse patterns of land use and ecological protection for their
long-term survival and development.

Fourthly, the economy is underdeveloped. According to the statistics, the GDP of
Yunnan in 2020 was CNY 245.22 billion, of which the output values of the primary, sec-
ondary, and tertiary industries accounted for 14.68%, 33.80%, and 51.53%, respectively [40].
In 2020, the per capita disposable income (PCDI) of all the residents living in Yunnan
Province was CNY 23,295 (China’s average is CNY 32,189), ranking in the 28th (fourth from
the bottom) position in China, where the PCDIs of rural residents is CNY 12,842 (China’s
average is CNY 17,131) and also ranks 28th in China. In future development scenarios,
while effectively protecting the ecology of the area, it is of great importance to vigorously
develop the economy and steadily improve the PCDIs of all the residents.

2.2. Analysis Process and Steps

In general, the research steps in this article mainly include the following aspects
(Figure 2):

(1) Using RS image interpretation to obtain the LULC data for Yunnan Province
considering a total of 7 periods ranging from 1990 to 2020, and based on the interpretation
results, this study obtained the FCRs in 129 counties.

(2) On the basis of extracting and calculating the FCR data, this study explores the
laws and characteristics of their spatiotemporal evolution further, and refers to the existing
research results to construct a scientific and reasonable indicator system of influencing
factors based on the data obtained from the RS image interpretation, statistical yearbooks,
relevant functional department surveys, and other channels.

(3) This study uses complementary econometric model analysis techniques, such as
the spatial econometric models, the GWR, and the GD to analyze influencing factors of
FCR. When analyzing the influencing factors, they included not only the effect of the
influencing factors, but also the differences in their effects and the interaction effects of
different overlapping influencing factors.

(4) By using econometric models, this paper will predict the FCRs of 129 counties in
Yunnan from 2025 to 2050.
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2.3. RS Image Interpretation Data Acquisition and Explanation

The RS image data of the 7 periods (i.e., 1990, 1995, 2000, 2005, 2010, 2015, and
2020) used in this study are available at the following website: “https://www.resdc.cn/”,
accessed on 18 January 2023.

The Chinese Academy of Sciences (CAS) established a multi-period LULC RS image
database of China. In terms of seasonality, this study selected images with winter cloud
cover of less than 10% for the interpretation (Table 1).

Table 1. Detailed information of the RS images from 1990 to 2020.

Year RS Image Data Details Time Spatial Resolution

1990 Landsat TM Dec 1989 to Feb 1992

30 m × 30 m

1995 Landsat TM Dec 1995 to Feb 1996
2000 Landsat TM/ETM Dec 1999 to Feb 2000
2005 Landsat TM/ETM Dec 2004 to Feb 2005
2010 Landsat TM Dec 2009 to Feb 2010
2015 Landsat-8 Jan 2015 to Feb 2015
2020 Landsat-8 Jan 2020 to Feb 2020

The seven-phase land use vector database of Yunnan was obtained through interactive
human–machine interpretation and interpretation of LULC types based on the unified land
use classification system and the RS interpretation markers within the ArcGIS 10.5 software
environment. The specific steps were as follows:

(1) After obtaining the RS images, this study first performed image preprocessing
operations, such as the false color synthesis, precise geometric rectification, image clipping,
and image mosaic, and then overlayed the administrative vector maps of 129 counties in
2021 to obtain the RS image maps for each county.

(2) Based on the field investigations and comprehensive expert opinions, this study es-
tablished RS image interpretation markers suitable for Yunnan Province, and also obtained
DEM, vegetation, and land use maps, and then performed manual interpretations.

(3) During the interpretation process, the counties were used as units to generate
interpretation results for each county.

(4) After the interpretation was completed, this study used the “Arcinfo Workstation”
and “SHAPEARC” commands to generate the “coverage” files for each county. Finally, this

https://www.resdc.cn/
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study used the ARCEDIT module of ARC/INFO to edit the graphics, check and modify
errors, and then organized and summarized the results.

(5) Finally, referring to the research conducted by Xu Xinliang et al. (2018) [41], Liu
Jiyuan et al. (2002, 2003, 2014) [42–44], and Kuang Wenhui et al. (2022) [45], this study
divided them into 6 primary and 12 secondary land types, and calculating the land areas of
6 primary and 12 secondary land types for each county for the 7 periods (Table 2).

Table 2. Classified areas of LULC areas in Yunnan Province in 1990, 1995, 2000, 2005, 2010, 2015,
and 2020.

Land Use Types Land Use Classification Area (Unit: 10,000 Hectares)

Number Name 1990 1995 2000 2005 2010 2015 2020

1 Cultivated Land 552.45 551.27 551.08 548.89 545.96 542.28 539.56
11 Paddy Field 136.77 136.24 135.91 135.37 134.53 132.68 131.39
12 Dryland 415.68 415.03 415.17 413.52 411.43 409.60 408.17

2 Woodland 1868.92 1930.96 1998.19 2119.85 2224.10 2321.67 2418.67
21 Closed Forest Land 1112.91 1237.20 1414.58 1553.96 1724.81 1784.48 1884.72
22 Other Forest Land 756.02 693.75 583.61 565.89 499.29 537.19 533.95

3 Grassland 532.64 501.25 481.25 403.85 325.65 253.64 181.12

31 Pasture with High
Coverage 340.02 323.92 307.02 248.01 195.20 150.60 105.36

32 Pasture with Medium and
Low Coverage 192.62 177.33 174.23 155.84 130.46 103.04 75.76

4 Waters 48.14 48.52 49.34 51.14 53.28 54.75 56.09
41 Rivers and Lakes 31.96 31.86 31.78 31.63 31.47 31.32 31.18
42 Reservoirs and Ponds 16.18 16.66 17.56 19.51 21.81 23.43 24.91

5 Construction Land 61.78 64.10 66.72 76.77 86.77 108.00 129.69

51

Urban Construction Land,
Rural Settlement Area,

and Land for Mining and
Industry

50.82 52.72 54.84 61.94 71.86 90.40 109.17

52 Other Building Land 10.96 11.38 11.88 14.82 14.91 17.59 20.52

6 Unused Land 778.48 746.33 695.85 641.93 606.67 562.09 517.30
61 Bare Land 105.56 100.61 96.13 83.44 70.73 67.64 64.83
62 Other Land Types 672.92 645.72 599.72 558.49 535.93 494.46 452.47

The LULC classification results obtained from the interpretation of the 7 phases’ RS
image data are in line with reality. Taking the 2020 LULC classification results as an
example, compared with the Main Data Bulletin of the Third National Land Survey of Yunnan
Province, which was compiled by the Office of the Leading Group of the Third National
Land Survey of Yunnan Province on 31 December 2019, the total cultivated land area of the
province interpreted by RS in 2020 was 5.3956 million hectares, while the total cultivated
land area of Yunnan Province in 2019 from the Third National Land Survey of Yunnan
Province (TNLS) was 5.3955 million hectares, which is relatively close. The total forest area
of the province interpreted by RS in 2020 was 24.1867 million hectares, while the total forest
area of TNLS in 2019 was 24.97 million hectares, with a difference of only 3.16% between
the two. The total construction land area of the province interpreted by RS in 2020 was
1.2969 million hectares, while TNLS’s total construction land area in 2019 was 1.302 million
hectares, with a difference of only 0.25%. It can be seen that the LULC classification in this
RS interpretation is relatively accurate.

Based on the results obtained from the RS image interpretation (Table 2), this study
calculated the FCRs (dependent variables) of 129 counties in Yunnan Province from 1990
to 2020 and analyzed their spatiotemporal evolution features. At the same time, other
independent variables related to ecology and land use (such as the land reclamation rate,
land utilization rate, the proportion of construction land and the proportion of bare land
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areas, and effective irrigation rate) were also established. Based on the other available
data of Yunnan Statistical Yearbook, existing thematic surveys, the second national land
survey in Yunnan Province dam area special survey, and special survey of land area in
different climatic zones and slopes in Yunnan Province and various meteorological stations
in China, a scientific, reasonable, and rich indicator system of the influencing factors of
FCR was constructed. Combined with other spatial econometric models, a comprehensive
and scientific analysis of the influencing factors was conducted by using diversified and
complementary methods.

2.4. Construction and Model Analysis of the Influencing Factor Indicator System
2.4.1. Construction of the Influencing Factor Indicator System

The data collected in this study are panel data. Prior to the construction of the model,
it was necessary to clarify the dependent variable and determine the relevant independent
variables based on the existing relevant theories and empirical research to form a scientific
and reasonable indicator system for the analysis of the influencing factors.

The dependent variable of this study was the FCRs of 129 counties ranging from 1990
to 2020, and the data were sourced from RS image interpretations. When analyzing the
influencing factors of FCR, considering that the existing studies concerning influencing
factors only rely on relatively single sources of data, such as statistical yearbooks, and
lack the use of RS interpretations of LULC and survey statistical data from relevant in-
stitutions, this study constructs relevant indicator systems and determines the relevant
influencing factors of FCR by referring to the research conducted by Kirton, J. et al., 2021;
Brown, S. et al., 1984; Zhang Xiaodong, 2016; Deng Huiping et al., 2018; Wang Kai et al.,
2016; Zhang Qian, 2016; and Jiang Youyan et al. 2022 [27–33]. Based on a summary of
the shortcomings and research trends of the existing research on influencing factors of
FCR, this study incorporated the existing research approaches and selection of reasonable
indicators for successfully measuring land use and ecological protection when using the
RS image interpretation method (Yang Zisheng et al., 2023) [46]. In addition, this study
referred to the indicator systems of industrial economy and population structure presented
by Yang Renyi et al. (2022) [5] and He Bowen et al. (2019) [47] when studying urbanization
and economic development, as well as the indicator system and research methods used by
Yang Zisheng et al. (2021) [48] in exploring the influencing factors of resource environment
and geographical conditions. Moreover, this study constructed an indicator system from
five dimensions (Table 3). Considering that most economic and social indicators exhibited
exponential growth characteristics and that it was not conducive to construct linear regres-
sion models to explore the actual impacts of these economic indicators during analyses, this
study referred to the methods of Yang Renyi et al. (2022) [5], and introduced the natural
logarithmic forms of the PCGDP and PD (Table 3).

As shown in Table 3, the data for the industrial economy and population structure
were sourced from the Yunnan Statistical Yearbook and Express Professional Superior
(EPS) platform (website: “https://www.epsnet.com.cn/index.html#/Index”, accessed on
9 October 2023). Due to regional adjustments, the county-level data for Gucheng and
Yulong from 1990 to 2000 were converted and supplemented based on the proportion
in 2005. The FCRs and main data for other dimensions were obtained from RS image
interpretations. Considering that, since CCFP in Yunnan Province were introduced in 2000,
the conversion of a certain area of steep slope cultivated land into forest land in various
counties of Yunnan Province would increase the FCR. This study introduced a dummy
variable named PCCF, to explore the policy effects of CCFP. In addition, this study referred
to the method employed by Yang Renyi et al. (2022) [5] and used the IDW method to
spatially interpolate the data obtained from various meteorological stations in China to
determine the annual average temperature and precipitation data. Considering that the
data included some indicators that did not change over time (such as PMA and PSSA), which
were key geographical factors affecting the FCR, this article adopted the random effects
(RE) model to analyze the relevant influencing factors.

https://www.epsnet.com.cn/index.html#/Index
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Table 3. Index system of the influencing factors of the FCR.

Attributions Dimensions Variables Names Calculation Methods Data Sources Units

Dependent
Variable Forests Forest Coverage Rate

(FCR) FCR

Closed Forest Land
Area/Total Land Area ×

100%

RS Image
Interpretation %

Influence
Factors

Industrial
Economy

Per Capita GDP
(PCGDP) ln PGDP

ln(Gross Domestic Product
(GDP)/Total Population)

Yunnan Statistical
Yearbook CNY/Person

The Proportion of
Output Value of the
Secondary Industry

POSI

Output Value of the
Secondary Industry/GDP ×

100%

Yunnan Statistical
Yearbook %

The Proportion of
Output Value of the

Tertiary Industry
POTI

Output Value of the Tertiary
Industry/GDP × 100%

Yunnan Statistical
Yearbook %

Population
Structure

Population Density
(PD) ln PD

ln(Total Population/Total
Land Area)

Yunnan Statistical
Yearbook Person/km2

Population
Urbanization Rate PUR

(1-Total Rural
Population)/Total

Population × 100%

Yunnan Statistical
Yearbook %

Land Use

Land Reclamation
Rate RLR

Cultivated Land Area/Total
Land Area × 100%

RS Image
Interpretation %

Proportion of
Construction Land

Area
PCLA

Construction Land
Area/Total Land Area ×

100%

RS Image
Interpretation %

Land Utilization Rate RLU
(1-Unused Land Area/Total

Land Area) × 100%
RS Image

Interpretation %

The Conversion of
Cultivated Land to

Forest Project (CCFP)
PCCF

Taking 1 in 2000 and Later,
and Taking 0 in Other Years None None

Ecological
Protection

Over-reclaimed Rate ROR

(Land Reclamation
Rate—Suitable Land

Reclamation Rate)/Suitable
Land Reclamation Rate ×

100%

RS Image
Interpretation, Land

Suitability Evaluation
%

The Proportion of
Bare Land Area PBLA

Bare Land Area/Total Land
Area × 100%

RS Image
Interpretation %

The Proportion of Soil
Erosion Land Area PSE

Soil Erosion Area/Total
Land Area × 100%

Existing Thematic
Surveys %

Effective Irrigation
Rate REI

Paddy Field
Area/Cultivated Land Area

× 100%

RS Image
Interpretation %

Natural
Environmental

Conditions

The Proportion of
Land Area in

Mountainous Areas
PMA

Land Area in Mountainous
Areas/Total Land Area ×

100%

The Second National
Land Survey in

Yunnan Province
Dam Area Special

Survey

%

The Proportion of
≥25◦ Steep Slope

Area
PSSA

≥25◦ Steep Slope
Area/Total Land Area ×

100%

Special Survey of
Land Area in

Different Climatic
Zones and Slopes in

Yunnan Province

%

Annual Average
Temperature AAT Convert to Grid Data with a

Resolution of 0.1◦ × 0.1◦

using the IDW Interpolation
Method

Data from Various
Meteorological

Stations in China

◦C

Annual Average
Precipitation AAP mm

2.4.2. Introduction of Spatial Econometric Models

The theory suggests that the ordinary least squares (OLS) estimation could fail when
used for data with spatial correlations, and, thus, requires the use of spatial econometric
methods for estimation (Chen Qiang, 2014) [49]. Its main steps include establishing a
spatial weight matrix W, calculating Moran’s I, conducting a model estimation and analysis,
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drawing conclusions, and then applying them. The formula for Moran’s I is as follows
(Moran P, 1950) [50]:

Moran′sI =
neTWe

eTe
(

∑i ∑j wij

) =
∑i ∑j wij(xi − x)(yi − y)

S2
(

∑i ∑j wij

) (1)

where e is the residual matrix, W is the spatial weight matrix, and S2 is the variance of the
observed value xi. The value of Moran’s I generally ranges from −1 to 1. The closer the
value is to −1, the more obvious the degree of dispersion is; the closer it is to 1, the more
obvious the degree of aggregation is; and the closer it is to 0, the more obvious the degree
of randomness is. After the transformation, it approximately follows a normal distribution;
thus, it can conveniently be used to determine spatial correlation.

The principle of Geary’s C is similar to Moran’s I (Gear R, 1954) [51]; however, due to
the inability of these two indices to distinguish between the “hot spot” and “cold spot”,
Getis and Ord (1992) [52] propose the indicator of Getis–Ord Gi*:

Getis − Ord Gi∗ =
∑n

i=1 ∑n
j=1 wijxixj

∑n
i=1 ∑n

j ̸=i xixj
(2)

The common spatial econometric panel models include the SAC model (spatial au-
tocorrelation), SEM (spatial error model), SAR model (spatial autoregressive), and SDM
(spatial Durbin model). For static panels, the general nesting spatial model can generally
be represented as follows (Yang Zisheng et al., 2021) [48]:

Y = ρW1Y + Xβ+ W2Xδ+ u + γ+ ε,
ε = λW3ε+ v

(3)

where ρ and λ represent spatial parameters; δ represents fixed and unknown parameter
vectors that need to be estimated (due to W2Xδ indicating the spatial lag of the dependent
variable, the coefficient estimated value of δ is usually used to calculate spatial spillover
effects); W1, W2, and W3 represent spatial weight matrices; Y represents the vector matrix
of the FCR; X represents the independent variable matrix; β represents the parameter
vector (i.e., the estimated coefficients of each independent variable, which is used to study
the specific impact of the relative variables on FCR); u represents the individual effect; γ
represents the time effect; ε represents a random error vector; and v represents a normally
distributed random error vector. Static panels typically use SARAR, SAR or the SEM models.
If δ = 0, it is called the SAC model, which generally focuses on fixed effects estimations
and is not suitable for random effects estimation and analysis. If δ = 0 and λ = 0, it is
called the SAR model. If δ = 0 and ρ = 0, it is called the SEM model. The SDM is generally
used to estimate spatial spillover effects and is less involved in determining influencing
factors [48,53]. Therefore, the SAC, the SAR and the SEM models are usually used in
the research, and it is necessary to select the most suitable model based on the statistical
indicators or parameters, such as LM-lag, LM-error, robust LM-lag, robust LM-error, or the
Moran’s I error term.

2.4.3. Introduction of the Geographically Weighted Regression (GWR) Model

The GWR model is a spatial regression model proposed by Fotheringham et al. (1999)
based on the idea of local smoothness [54]. It incorporates the spatial attributes of the
data into the regression model, allowing the values of the variables to be changed with
the spatial positions, thereby reflecting the spatial non-stationary nature of parameters in
different regions [55,56]. Specifically, it is set as follows [57]:

yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi, i = 1, 2, · · · , n (4)
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where yi is the observed value of the FCR in the county i and xik is the observed value of
the independent variable k in the county i; β0 is the intercept coefficient; βk is the coefficient
of the independent variable k in the county i; and εi is the random error term.

In practical operations, it requires the original data to be cross-sectional. In this paper,
the average variable values of each year were used as the data (PCCF was a 0–1 variable, so
it was not included in the GWR model estimation).

2.4.4. Introduction of the Geographic Detector (GD)

The GWR model is limited to measuring the degree of the individual impact of a
single factor, while the geographic detector (GD) can measure the degree of the joint impact
of two influencing factors on FCR [58,59]. The explanatory power of factors in the GD is
measured by the Q value [60]:

Q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 (5)

where L represents the stratification of the FCR or influencing factors (i.e., classification or
zoning); Nh and σh

2 represent the number of units and variance of layer h, respectively; and
N and σ2 represent the overall number of units and variance. The Q value represents the
influencing degree on the FCR, ranging from 0 to 1. The relationship between two factors
can be classified into 5 types (Wu Peng et al., 2018) [57] (Table 4).

Table 4. Judgment basis for different interactions of GD interactions.

Judgment Basis Interaction Types

Qx1∩x2 < min(Qx1, Qx2) Non-linear Attenuation (NA)
min(Qx1, Qx2) < Qx1∩x2 < max(Qx1, Qx2) Single-Factor Non-Linear Attenuation (SNA)

Qx1 + Qx2 > Qx1∩x2 > max(Qx1, Qx2) Double-Factor Enhancement (DE)
Qx1∩x2 = Qx1 + Qx2 Independent of Each Factor (IF)
Qx1∩x2 > Qx1 + Qx2 Non-Linear Enhancement (NE)

In practical operations, the GD and GWR model have similar data requirements
(i.e., requiring the panel data to be converted into cross-sectional data). Therefore, this
study employed the average values of each year as the sample data (PCCF was a dummy
variable, so it was not included in the model estimation). Before using the GD to explore the
interaction of influencing factors, it was necessary to normalize and classify each influencing
factor. Considering that the influencing factors involved in this article were positively and
negatively correlated with the FCR, this study referred to the research method employed
by He Bowen et al. (2019) [47] when normalizing the influencing factors with positive
(+) and negative (−) attributions, and respectively processed them as dimensionless to
convert them into values with a range of [0, 1] (the FCR was the dependent variable in this
study, with a range of 0 to 100, which could be divided by 100 to obtain values with a range
of [0, 1]):

qij =
Xij − min

(
Xj

)
max

(
Xj

)
− min

(
Xj

) OR qij =
max

(
Xj

)
− Xij

max
(
Xj

)
− min

(
Xj

) (6)

where Xij represents the original value of the index j in the county i, and qij is the dimension-
less attribute value of the index j in the county i; and max and min represent the maximum
and minimum values of the index, respectively.

In addition, data classification was required before using the GD method. This study
divided each indicator into 5 categories based on the natural breakpoint method (NBM).
The NBM, also known as the Jenks Method, is a classification method aimed at arranging a
set of numerical optimizations into “natural” classes. This method is based on the principle
of univariate classification in cluster analysis. When the number of levels is determined,
the data breakpoints between classes are iteratively calculated to minimize the differences
within the same category and maximize the differences among different categories, thereby
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grouping the similar values in the data most appropriately (Huang Qi et al., 2023) [61]. The
NBM has been widely applied in research such as GWR and GD (He Bowen et al., 2019;
Wu Peng et al., 2018) [47,57].

2.4.5. Predictive Analysis of Econometric Models

Econometric models not only estimate the results of specified parameters, but also
make reasonable predictions for the future. Common prediction models include OLS,
autoregression (AR), moving average process (MA), and vector autoregression (VAR)
(Chen Qiang, 2014) [49]. Considering that the data type used in this study was panel data,
the spatial econometric models could effectively control and eliminate the interference of
data with spatial autocorrelation issues on the results, thereby obtaining more accurate
estimation results. Applying this estimation method to the prediction analysis can result
in more scientific and reliable prediction results for future FCRs. Referring to the research
ideas and methods of Chen Qiang (2014) [49] and Yang Renyi et al. (2021) [62], this study
used the OLS method to predict the results of various influencing factors from 2025 to 2050
(PCCF takes 1 in 2000 and later), and based on the selection of the most suitable model to fit
the panel data from 1990 to 2020, this study predicted the FCRs of 129 counties in Yunnan
Province from 2025 to 2025.

3. Results
3.1. Analysis of the Spatiotemporal Evolution of the FCR
3.1.1. Analysis of the Spatiotemporal Evolution of the FCR over the Past 30 Years

According to the results this study obtained, the closed forest land area in Yunnan
shows a trend of increasing from 11.1291 million hectares in 1990 to 18.8472 million hectares
in 2020, with a net increase of 69.35% over 30 years and an average annual growth rate
of 1.77%. This means that the overall FCR increased from 28.96% (in 1990) to 49.05%
(in 2020), with a net increase of 20.09%. It can be observed that the FCR in Yunnan
is gradually increasing, and with the increase in people’s awareness of the ecological
civilization construction (ECC) concept, the inherently fragile ecological environment is
gradually improving, and new progress regarding the ECC will be achieved.

The aforementioned RS interpretation results intuitively show the trend of changes
occurring in closed forest land area and FCR in Yunnan in the past 30 years. However, to
analyze the reasons for the increase in FCR more thoroughly, it is necessary to understand
the extent to which other land use types (LUTs) has transformed into closed forest land in
the past 30 years, and how much of the original closed forest land has transformed into
other LUTs. Therefore, this study calculated the transfer matrices of LUTs (Table 5).

Table 5. Transfer matrices of LUTs in Yunnan Province from 1990 to 2020 (unit: 10,000 hectares).

Number
of Types 1990

The Area of Mutual Transformations of Various LUTs
Decrease 2020

→1 →21 →22 →3 →4 →5 →6

1 552.45 520.13 7.52 4.32 5.05 2.61 10.24 2.58 32.33 539.56
21 1112.91 6.38 1074.34 13.60 4.99 1.12 11.64 0.83 38.56 1884.72
22 756.02 4.28 245.48 480.31 7.56 2.02 16.32 0.04 275.71 533.95
3 532.64 5.33 374.55 1.13 127.46 1.22 22.65 0.30 405.18 181.12
4 48.14 0.44 0.08 0.03 0.35 46.77 0.39 0.06 1.37 56.09
5 61.78 0.31 0.22 0.07 0.10 1.31 59.65 0.13 2.13 129.69
6 778.50 2.69 182.53 34.49 35.61 1.04 8.80 513.35 265.15 517.30

Total 3842.42 539.56 1884.72 533.95 181.12 56.09 129.69 517.30 — 3842.42
— Increase 19.44 810.38 53.64 53.66 9.32 70.04 3.95 — —

— Net Increase or
Decrease −12.89 771.81 −222.07 −351.52 7.95 67.91 −261.20 — —

Note: In the number of land use types, 1, 2, 3, 4, 5, and 6 represent cultivated land, woodland, grassland, water,
construction land, and unused land, respectively; where, 21 and 22 represent closed forest land (CFL) and other
forest land, respectively.
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It can be seen that, although there were nearly 0.3856 hectares of closed forest land
(CFL) converted to other LUTs during the past 30 years, there are still 8.1038 million
hectares of other LUTs converted to the CFL (Table 5). Due to the significantly higher
value of the latter, the net increase in the CFL was 7.7181 million hectares from 1990 to
2020. Where there was a considerable amount of CFL area that was converted into other
forest land and construction land, reaching 1.36 × 105 (35.27%) and 1.16 × 105 (30.19%)
hectares, respectively. This means that a considerable amount of land was converted from
closed forest land into sparse shrubs and other forest land, and even into construction
land. This also indicates that there are still some unreasonable land use phenomena in
the urbanization process. Fortunately, there are still many other LUTs that have been
converted into CFL. The areas of cultivated land, other forest land, grasslands, water
bodies, construction land, and unused land converted into CFL were 7.52 × 104 (0.93%),
2.45 × 106 (30.29%), 3.75 × 106 (46.22%), 800 (0.01%), 2.2 × 103 (0.03%), and 1.83 × 106

(22.52%) hectares, respectively. This means that the areas of land converted from other
forest land, grasslands, and unused land to CFL were very large, accounting for 99.03%
of the total increase of the reason why 8.03 × 106 hectares of other forest land, grassland,
and unused land have been converted into CFL is due to the effectiveness of afforestation.
Yunnan has continuously increased the proportion of its closed forest area, significantly
increased its FCR and improved its ecological environment in the past 30 years, achieving
great results in terms of the ECC.

Although the aforementioned method calculates the overall FCR, CFL area, and LUCC
in Yunnan, the spatiotemporal evolution of the FCR remain unexplored. To display the
changes in the FCRs of 129 counties more intuitively, this study draws the FCR distribution
maps of seven periods in 129 counties based on the RS interpretation results (Figure 3).
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From Figure 3, two basic conclusions can be drawn:
(1) From the perspective of analyzing spatial patterns, the FCR in Yunnan generally

presents a trend of lower in the east and higher in the west, which occurs regardless
of how the FCR changes from 1990 to 2020. The reason for this result is related to the
geographical conditions of Yunnan Province: there are many areas located in the southeast
under the jurisdiction of some prefectures (such as Honghe and Wenshan) suffering from
karst rocky desertification, mostly exposed rocks, and unused land. However, as a result
of afforestation, the FCRs in these areas have gradually improved. The central region
of Yunnan represents an important growth pole, presenting more developed economic
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conditions compared to other regions, such as Chuxiong, Kunming, and Qujing, which
have a better overall economic outlook and more construction land, thus greatly affecting
the FCR. The overall altitude, steep slopes, and low population density in Diqing, Nujiang,
Lijiang, and other counties in the northwest region result in relatively high FCRs. Moreover,
with the promotion of the CCFP in 2000, steep slope farmland in these areas has been
transformed into forest land, which has significantly promoted the increase in the FCR. The
temperatures in Dehong in the west and Xishuangbanna in the southwest are relatively
high and there is sufficient precipitation, and the ecological environment is also relatively
good, so the FCR is relatively high.

(2) From the perspective of time changes, the FCRs in various counties in Yunnan
have generally improved in the past 30 years, and their ecological environments have also
greatly improved. In 1990, Luoping presented the lowest value among the 129 counties,
with the FCR value of only 5.37%; the county with the highest value was Zhenyuan, with
the FCR value of only 55.52%. In 1990, there were 12 counties with FCR values less than
or equal to 10%, accounting for 9.30%; there were 36 counties with FCR values of 10% to
20%, accounting for 27.91%; and only 3 counties, accounting for 2.33%, had FCR values of
over 50%. In 2020, Chenggong presented the lowest value out of the 129 counties, with the
FCR value of 12.53%; the county with the highest value was Yulong, with the FCR value of
76.02%. In 2020, there were no counties with the FCR value less than or equal to 10%; only
9 counties with FCR values of 10% to 20%, accounting for 6.98%; and 52 counties, accounting
for 40.31%, with FCR values over 50%. From the comparison of the results between 1990
and 2020, not only did the values of the counties with the lowest/highest FCRs significantly
increased, but the number of counties with the low FCRs significantly decreased, and the
number of counties with the high FCRs significantly increased. Ultimately, the FCRs of
various counties in Yunnan significantly improved.

From the results presented above, it can be seen that the FCRs of the 129 counties
present a clear spatial distribution pattern, showing an overall trend of appearing lower in
the east and higher in the west. In order to explore the relevant influencing factors, it is
necessary to use spatial econometric models to better control the interference caused by
spatial agglomeration. However, Figure 3 presents the spatial distribution characteristics
intuitively, and whether it has the significant clustering characteristics still require more
precise calculations and analyses by using reasonable statistical methods.

3.1.2. The Spatial Distribution Patterns of the FCRs in 129 Counties in Yunnan Province

To more precisely measure the spatial agglomerative characteristics of the FCR in
129 counties, this study used Stata 15 software to calculate the statistic values for seven
periods and the annual average values (Table 6).

Table 6. Spatial correlation test results for FCR from 1990 to 2020.

Calculation
Indicators Year 1990 1995 2000 2005 2010 2015 2020 Annual

Average

Moran’s I
Values 0.60 *** 0.61 *** 0.61 *** 0.64 *** 0.65 *** 0.65 *** 0.65 *** 0.64 ***

Z-Statistic 11.44 11.57 11.61 12.20 12.34 12.38 12.37 12.25
p-Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Geary’s C
Values 0.38 *** 0.37 *** 0.38 *** 0.35 *** 0.36 *** 0.35 *** 0.35 *** 0.35 ***

Z-Statistic −10.33 −10.41 −10.40 −10.88 −10.81 −10.89 −10.93 −10.96
p-Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Getis and
Ord’s G

Values 0.05 *** 0.05 *** 0.05 *** 0.05 *** 0.04 *** 0.04 *** 0.04 *** 0.05 ***
Z-Statistic 4.38 4.40 4.40 4.07 3.73 3.66 3.59 4.02
p-Values 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: *** indicates the significance levels of 1%.

As shown in Table 6, all the results pass the 1% significance level test, indicating
that the FCRs of the 129 counties present obvious spatial agglomerative characteristics.
Therefore, this study draws local Moran’s I distribution maps of the annual average values
of the FCRs in 129 counties (Figure 4).
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Figure 4. Distribution of annual average values of FCRs.

As can be seen in Figure 4, the estimated values for the 129 counties are mostly located
in the first and third quadrants, and the slope of the basic linear fitting results is positive,
indicating a significant positive spatial agglomeration of the FCR. In order to achieve a
more detailed understanding of the agglomeration of these FCR, this study mapped the
distribution of the annual average values of the FCRs and its cold & hot spots analysis
results for 129 counties (Figure 5).
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As shown in Figure 5, based on the annual average results, the distribution characteris-
tics of the FCR still present a trend of lower in the east and higher in the west. The analysis
of the cold & hot spots further confirmed the positive spatial agglomeration characteristics.
Where, the main areas of prefectures, such as Kunming, Qujing, Yuxi, and Honghe, were
located in the cold spot agglomeration area, which mainly presented the characteristics
of having the agglomeration of low value and low value; the main regions of Xishuang-
banna, Pu’er, Nujiang, Diqing, Dehong, and other prefectures were located in the hot spot
agglomeration area, which mainly exhibited the features of having the agglomeration of
high value and high value. It can be observed that the FCR in Yunnan has obvious spatial
agglomerative characteristics, so it is particularly necessary to use spatially correlated
research tools to analyze its influencing factors.

3.2. Analysis of Factors Influencing the FCR Based on Spatial Econometric Models
3.2.1. Testing and Selection of Spatial Econometric Models

Prior to the construction of a spatial econometric model, it is essential to construct the
OLS to test whether the model has significant spatial autocorrelation issues (Table 7).
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Table 7. Spatial autocorrelation test results for the regression estimation.

Items Calculation
Indicators Statistics p-Values

Spatial Error
Moran’s I 2.68 0.01

Lagrange Multiplier 132.21 0.00
Robust Lagrange

Multiplier 102.17 0.00

Spatial Lag Lagrange Multiplier 33.57 0.00
Robust Lagrange

Multiplier 3.53 0.06

As shown in Table 7, although the LM statistic of the spatial lag term passes the
1% significance level test, the robust LM statistic does not pass the 5% significance level
test, indicating that using the robust standard error method to estimate can alleviate the
autocorrelation problem of the spatial lag term to some extent. However, all the test results
of the spatial error term pass the 1% significance level test. It indicates that traditional
OLS models suffer from severe spatial error autocorrelation issues. Therefore, compared
to various different spatial econometric models, using the SEM to estimate will be able to
better control the interference caused by spatial error autocorrelations, and it is the most
suitable model.

3.2.2. Estimation Results and Analysis of Spatial Econometric Models

Although the aforementioned analysis method indicates that using the SEM is the
most appropriate method, this study presents the results using the traditional panel and
SAR models (Table 8). The reason for listing the results of other models is to further explore
the robustness of the model. After inspection and testing, the regression results of this study
have no model setting issues such as multicollinearity and heteroscedasticity. Considering
that previous studies determined that the FCR in Yunnan was mainly characterized by
lower in the east and higher in the west, this study divided the research area into the eastern
and western regions of Yunnan and constructed the SEMs separately (the eastern region
included Zhaotong, Kunming, Qujing, Wenshan, Yuxi, Chuxiong, and Honghe, and the
other prefectures were included in the western region). In addition, this study calculated
the average FCRs for 129 counties and divided their values into the lowest 50% and highest
50% according to their FCRs to construct the appropriate models (Table 8). By comparing
the SEM to other models, including classified models, it is not only conveniently to explore
the robustness of the model, but also helped to better compare the differences in the effects
of influencing factors in different FCR areas.

Table 8. Comparison of the estimation results of econometric models.

Variables (1) Total
Panel Model

(2) Total
SAR

(3) Total
SEM

(4) East
SEM

(5) West
SEM

(6) Lowest
50%
SEM

(7) Highest
50%
SEM

ln PGDP
3.2315 ***
(0.2966)

1.4988 ***
(0.2095)

2.8078 ***
(0.2957)

2.6345 ***
(0.3292)

3.3787 ***
(0.3898)

2.3718 ***
(0.3369)

3.9132 ***
(0.3278)

POSI
0.0178

(0.0236)
0.0223

(0.0143)
−0.0031
(0.0168)

0.0314
(0.0202)

−0.0175
(0.0268)

0.0147
(0.0201)

0.0024
(0.0225)

POTI
−0.0172
(0.0107)

−0.0072
(0.0104)

−0.0151
(0.0168)

0.0106
(0.0196)

−0.0462 **
(0.0210)

−0.0081
(0.0200)

−0.0386 **
(0.0177)

ln PD
−3.4678 **

(1.3504)
−2.8705 ***

(0.8173)
−5.2265 ***

(0.9101)
−3.3115 ***

(1.2599)
−1.7813
(1.4018)

−2.1366 *
(1.1540)

−2.6498 **
(1.2715)

PUR
0.0034

(0.0049)
−0.0027
(0.0050)

−0.0031
(0.0049)

−0.0021
(0.0048)

−0.0835 *
(0.0441)

−0.0045
(0.0043)

−0.0144
(0.0372)
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Table 8. Cont.

Variables (1) Total
Panel Model

(2) Total
SAR

(3) Total
SEM

(4) East
SEM

(5) West
SEM

(6) Lowest
50%
SEM

(7) Highest
50%
SEM

RLR
−0.8374 ***

(0.1085)
−0.6082 ***

(0.1107)
−0.7839 ***

(0.1229)
−0.6179 ***

(0.1442)
−0.9049 ***

(0.1898)
−0.4849 ***

(0.1170)
−0.7725 ***

(0.1944)

PCLA
−0.7678 ***

(0.2148)
−0.4834 ***

(0.1031)
−0.4360 ***

(0.1117)
−0.3554 ***

(0.1184)
−0.8595*
(0.5116)

−0.3807 ***
(0.1062)

−0.3042
(0.2845)

RLU
0.8351 ***
(0.1392)

0.4484 ***
(0.0731)

0.5806 ***
(0.0779)

0.5010 ***
(0.0873)

0.6883 ***
(0.1441)

0.3552 ***
(0.0820)

0.4870 ***
(0.1381)

PCCF
2.5004 ***
(0.3101)

1.0263 ***
(0.3319)

4.0295 ***
(0.7415)

2.0522 ***
(0.7530)

4.6380 ***
(0.7339)

2.0055 **
(0.8165)

4.8906 ***
(0.6049)

ROR
0.0025

(0.0609)
−0.0315
(0.0325)

−0.0195
(0.0329)

0.0367
(0.0472)

−0.0351
(0.0473)

0.0029
(0.0414)

−0.0011
(0.0465)

PBLA
0.1384

(0.2352)
0.3271 ***
(0.1263)

0.0654
(0.1406)

0.2600 *
(0.1484)

−0.3742
(0.3514)

0.0939
(0.1313)

−0.5436
(0.3783)

PSE
−0.0080
(0.0386)

−0.0106
(0.0226)

−0.0695 **
(0.0272)

−0.0405
(0.0305)

−0.1914 ***
(0.0564)

−0.0995 ***
(0.0310)

−0.0466
(0.0389)

PEI
0.0110

(0.0707)
−0.0018
(0.0559)

−0.0025
(0.0612)

−0.0985
(0.0812)

0.1564 *
(0.0891)

−0.0795
(0.0667)

−0.0098
(0.0922)

PMA
−0.0354
(0.1364)

−0.0434
(0.1119)

−0.0257
(0.1251)

−0.1137
(0.1434)

0.2603
(0.2561)

−0.1184
(0.1115)

−0.2028
(0.3038)

PSSA
0.0059

(0.0588)
−0.0625
(0.0566)

−0.0160
(0.0639)

−0.0124
(0.0856)

0.0435
(0.0744)

−0.0378
(0.0692)

0.0224
(0.0694)

AAT
0.5378 ***
(0.1835)

0.3024 *
(0.1628)

0.5947 ***
(0.2297)

0.7587 **
(0.3178)

0.7340 **
(0.3006)

0.4456
(0.2916)

0.3111
(0.2678)

AAP
−0.0016 **

(0.0008)
−0.0010
(0.0007)

−0.0007
(0.0014)

−0.0033 **
(0.0017)

−0.0004
(0.0014)

−0.0025
(0.0018)

0.0002
(0.0012)

_cons −35.2545 **
(16.4114)

−7.1738
(12.2214)

−3.5180
(14.046)

−5.1276
(17.1220)

−54.1026 *
(29.6950)

8.0059
(15.0909)

7.3151
(31.7221)

Parameter ρ
0.5356 ***
(0.0297)

Parameter λ
0.6004 ***
(0.0370)

0.4626 ***
(0.0561)

0.3403 ***
(0.0740)

0.5151 ***
(0.0476)

0.2693 ***
(0.0676)

Observations 903 903 903 518 385 448 455
R-squared 0.8543 0.6959 0.7182 0.5752 0.8049 0.4811 0.7348

Note: All estimation results are estimated by the robust standard error method. *, **, and *** indicate the
significance levels of 10%, 5%, and 1%, respectively.

According to the test, the SEM is the optimal model. Therefore, this study will analyze
the results estimated by the SEM and compare the estimation results of other models as
well as the differences in the estimation results between regions with different FCRs. The
results of ln PGDP, ln PD, RLR, PCLA, RLU, PCCF, PSE, and AAT are significant (Table 8), so
this study will analyze these core influencing factors:

(1) The natural logarithmic form of the PCGDP (ln PGDP). Based on the optimal SEM
estimation results, the estimated coefficient is 2.8078 and passed the 1% significance level
test, indicating that the PCGDP is a key factor affecting the FCR. Every 1% increase in
the PCGDP will promote an increase of approximately 0.0281% in the FCR. The results of
both the panel and SAR models are significantly positive, indicating the robustness of the
model. The significant positive correlation between ln PGDP and FCR further indicates that
economic growth is not the result of excessive deforestation and ecological damage. With
the development of the economy, the awareness of the ecological protection has increased
and it has more economic strength of afforestation to improve FCR and the ecology. The
results of models 4–7 are significantly positive, but the absolute value of the estimated
coefficient in the western region is higher than that in the eastern region, and the influence
of ln PGDP on the FCR is more significant in the highest 50% of FCR areas. It indicates that in
areas with higher FCRs, fast economic development will be more conducive to improving
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their FCRs, and the FCRs in the west are generally higher than that in the east, so its effect
will be more significant.

(2) The natural logarithmic form of population density (ln PD). Based on the optimal
SEM model estimation results, the coefficient is −5.2265 and has passed the 1% significance
level test, indicating that ln PD is a key factor affecting FCR. Every 1% increase in PD
will lead to an about 0.0523% decrease in FCR. The results of both panel model and SAR
model are significantly negative, indicating the robustness of the model. The significant
negative correlation between ln PD and FCR is due to the fact that densely populated areas
cause more deforestation, and with the process of urbanization, more and more forests
will be converted into construction land to support the survival of people. The results of
models 4–7 are all negative and most models are significant. Overall, ln PD has a more
significant impact on FCR in the eastern region and the highest 50% of FCR areas. This is
mainly because many counties in the east have better economic conditions and a denser
population, and the increase in population has a more significant impact on FCR. For areas
with high FCRs, the impact of population growth will be more obvious.

(3) Land Reclamation Rate (RLR). Based on the optimal SEM model estimation results,
the coefficient is −0.7839 and has passed the 1% significance level test, indicating that RLR
is a key factor affecting FCR. Every 1% increase in RLR will lead to a decrease of about
0.7839% in FCR. The results of both panel model and SAR model are significantly negative
with small difference, indicating the robustness of the model. The significant negative
correlation between RLR and FCR is due to the increase in the proportion of cultivated land
being transferred from other LUT, including the conversion of CFL to cultivated land. The
results of models 4–7 are significantly negative, and overall, RLR has a more significant
impact on FCR in the west and the highest 50% of FCR areas. This is mainly because the
FCRs in these areas are generally high, and the phenomenon of converting closed forest
land to cultivated land is more common.

(4) Proposal of Construction Land Area (PCLA). Based on the optimal SEM model
estimation results, the coefficient is −0.4360 and has passed the 1% significance level test,
indicating that PCLA is a key factor affecting FCR. Each 1% increase in PCLA will lead to
a decrease of about 0.4360% in FCR. The results of both panel model and SAR model are
significantly negative, indicating the robustness of the model. The significant negative
correlation between PCLA and FCR is due to the fact that the increase in construction land
often comes at the cost of occupying high-quality farmland or deforestation. With the
rapid process of urbanization, more and more construction land is being used, occupying
a considerable amount of closed forest land. The results of models 4–7 are all negative.
Overall, the impact of PCLA on FCR is more significant (significance level of 1%) in the
results of the east and the lowest 50% of FCR areas. This is mainly because the overall
economic conditions in these areas are relatively good, and the expansion of construction
land has occupied more closed forest land.

(5) Land Utilization Rate (RLU). Based on the optimal SEM model estimation results,
the coefficient is 0.5806 and has passed the 1% significance level test, indicating that RLU is a
key factor affecting FCR. Every 1% increase in RLU will promote an increase in FCR by about
0.5806%. The results of both panel model and SAR model are significantly positive with
small difference, indicating the robustness of the model. The significant positive correlation
between RLU and FCR is due to the increase in land use efficiency, which helps to convert
unused land into other LUT. As more and more land is effectively utilized, a significant
amount of land will be converted into CFL, thereby increasing FCR and improving ecology.
The results of models 4–7 are significantly positive, and overall, RLU has a more significant
impact on FCR in the west and the highest 50% of FCR areas. This is mainly because the
FCRs in these areas are generally high, and as more unused land is utilized reasonably, the
proportion of land converted into closed forest land will be higher.

(6) The Conversion of Cropland to Forest Project (PCCF). Based on the optimal SEM
model estimation results, the coefficient is 4.0295 and has passed the 1% significance
level test, indicating that PCCF is a key factor affecting FCR. With the experiment and
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implementation of the CCFP policy in Yunnan in 2000, FCR will increase by about 4.0295%.
The results of both panel model and SAR model are significantly positive, indicating the
robustness of the model. The results of models 4–7 are significantly positive, and overall,
PCCF has a more significant impact on FCR in the west and the highest 50% of FCR areas.
This is mainly because the overall terrain in these areas is relatively steep, with a higher
proportion of ≥25◦ cultivated land. Therefore, the area of returning cultivated land to
forests is larger, and the impact of this policy is more obvious.

(7) The Proposal of Soil Erosion Land Area (PSE). Based on the optimal SEM model
estimation results, the coefficient is −0.0695 and has passed the significance level test of
5%, indicating that PSE is a key factor affecting FCR. Every 1% increase in PSE will lead to a
decrease of about 0.0695% in FCR. The significant negative correlation between PSE and FCR
is due to the fact that areas with a larger proportion of soil erosion often suffer more severe
ecological damage, resulting in lower FCR. The results of models 4–7 are all negative and
most models are significant. Overall, the impact of PSE on FCR is more significant in the
west and the lowest 50% of FCR areas. This is mainly because the terrain in the west is
relatively steep, especially in some areas with higher elevations in the northwest, which
may suffer from greater ecological problems such as soil erosion; and soil erosion will bring
greater harm for the areas with lower FCR.

(8) Annual Average Temperature (AAT). Based on the optimal SEM model estimation
results, the coefficient is 0.5947 and has passed the 1% significance level test, indicating that
AAT is a key factor affecting FCR. Every 1% increase in AAT will promote an increase in FCR
by about 0.5947%. The results of both panel model and SAR model are significantly positive,
indicating the robustness of the model. The significant positive correlation between AAT
and FCR is due to the fact that climate is an important factor affecting FCR, especially in
areas with high temperatures and abundant precipitation, where trees are more likely to
survive and the cost of afforestation will be lower. The results of models 4–7 are all negative
and most models are significant. Overall, the difference in estimated coefficients among
different regions is relatively small.

Although spatial econometric models can obtain accurate estimates of parameters
based on controlling for spatial autocorrelation, simply dividing different FCR areas and
constructing models separately cannot effectively determine the spatial differences and
trends of key influencing factors. GWR can effectively compensate for this deficiency.

3.3. Results of the GWR Model

The GWR is a variable coefficient model. Compared with other spatial econometric
models, its most prominent feature is to assign different estimation results to different
regions, thereby better analyzing and answering the differences of the effects on the FCR
and spatial change trends in terms of different regions. Based on it, this study takes the
annual average values from the panel data of 7 periods (1990–2020) to construct a cross-
sectional data for one period, and uses ArcGIS software and GWR4 software to construct
the GWR model. After comparing the Adjust R2 values of multivariate GWR and univariate
GWR, this paper uses multivariate GWR to determine the bandwidth according to the
Akashi Information Criterion (AIC), and constructs a multivariate GWR model using
stepwise regression method. Due to the fact that the PCCF is a dummy variable, it needs to
be excluded in the estimation of cross-sectional data. Given that reduce the dimensionality
of panel data could lead to multicollinearity issues, this study excluded two independent
variables (i.e. ln PD and AAT) from the core influencing factors mentioned above based
on the principles of minimizing AIC value, maximizing Log Likelihood, and maximizing
Adjust R2 value. The constructed GWR model has the Adjust R2 value of 0.77, the −2 log
likelihood value of 851.22, and the AIC value of 887.22, which is the best compared to
other GWR models in the absence of multicollinearity problems and it is the optimal model.
Based on it, this study applies GIS technology to output the regression results of its core
factors (Figure 6), and conducts a detailed analysis based on the results.
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0.932 to 3.170. The standard deviation of all estimated coefficients is 0.614, indicating a
significant spatial heterogeneity in the effect of ln PGDP on FCR. Overall, the effect shows a
decreasing trend from the south to the northeast and northwest, which may be related to
terrain and slope. Due to the terrain of Yunnan generally showing a trend of low in the
south and high in the north, with the favorable conditions such as temperature in the south,
these areas in the south will likely be planted with more trees with the development of the
economy, so the impact of ln PGDP on FCR in these areas will be more obvious.

(2) RLR. The estimated coefficients for each region are negative, ranging from −0.407
to −0.575. The standard deviation of all estimated coefficients is 0.037, indicating a certain
degree of spatial heterogeneity in the effect of RLR on FCR. Overall, the effect shows a trend
of increasing from the south to the north, which may also be related to terrain and slope.
Due to the terrain of Yunnan generally showing a trend of low in the south and high in the
north, there are more steep slope and high-altitude farmland in the north compared to the
south, so the increase in the RLR will have a more negative impact on FCR.

(3) PCLA. The estimated coefficients for each region are negative, ranging from −0.079
to −0.362. The standard deviation of all estimated coefficients is 0.066, indicating a certain
degree of spatial heterogeneity in the effect of PCLA on FCR. Overall, the effect shows a
trend of increasing from the west to the east, which is similar to the previous results of
spatial econometric regression. The reason may be that the economic conditions in the east
are generally better than those in the west, and there is relatively more construction land,
so the impact on FCR will be more significant; the overall FCR in the west is relatively high,
and the increase in construction land has a relatively small impact on it.

(4) RLU. The estimated coefficients for each region are all positive, with a range of
values between 0.650 and 0.805. The standard deviation of all estimated coefficients is 0.035,
indicating a certain degree of spatial heterogeneity in the effect of RLU on FCR. Overall, the
effect shows a decreasing trend from the northwest to the southeast, which is similar to
the previous results. The reason may be that the karst rocky desertification problem in
the southeast is more prominent, with a larger bare land area and relatively low land use
efficiency. Therefore, the effect of RLU on FCR is relatively low; the FCR in the northwest is
relatively high. With more land being used, the proportion of unused land converted into
closed forest land may be larger.

(5) PSE. The estimation coefficients for each region are all negative, with values
ranging from −0.230 to −0.245. The standard deviation of all estimation coefficients is
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0.003, indicating that there is small spatial heterogeneity in the effect of PSE on FCR. Overall,
the effect shows an increasing trend from the north to the southwest, which is similar to
the previous results.

Although the GWR model can effectively reveal the regional differences in the effects
of core influencing factors, in reality, different influencing factors are likely to be interrelated.
Therefore, when multiple factors work together on FCR, the total effect of these factors may
not necessarily be equal to the sum of their single effects. In terms of exploring the joint
effects of multiple influencing factors, the GD can appropriately answer the question of the
correlation between different influencing factors.

3.4. Results of Geographic Detectors (GDs)

The GD can be applied to both single factor detection and double factor detection.
For exploring the combined effects of multiple influencing factors on FCR, using GD for
double factor detection is the most appropriate. Before using double factor detection, it is
necessary to detect each single factor and the Q values of them (Table 9).

Table 9. Single-factor estimation results.

Factor ln PGDP POSI POTI ln PD PUR RLR PCLA RLU ROR PBLA PSE PEI PMA PSSA AAT AAP

Q Values 0.06 0.09 0.04 0.51 0.08 0.33 0.3 0.34 0.03 0.33 0.31 0.12 0.17 0.13 0.12 0.16

The results of it can only reflect the degree of independent influence of a single factor
on FCR. To gain a more important results of the impact of multi factor interaction, this
study used the double factor interaction detection of GD for analysis (Table 10). Meanwhile,
referring to the classification types in Table 4, this study will reasonably classify the results
of double factor detection (Table 11).

Table 10. Double-factor estimation results.

ln PGDP POSI POTI ln PD PUR RLR PCLA RLU ROR PBLA PSE PEI PMA PSSA AAT AAP

ln
PGDP
POSI 0.22
POTI 0.22 0.22
ln PD 0.57 0.59 0.58
PUR 0.17 0.28 0.18 0.56
RLR 0.43 0.44 0.44 0.59 0.41
PCLA 0.45 0.42 0.42 0.54 0.41 0.45
RLU 0.39 0.44 0.44 0.70 0.41 0.63 0.60
ROR 0.19 0.19 0.24 0.57 0.16 0.44 0.39 0.42
PBLA 0.43 0.40 0.43 0.68 0.42 0.67 0.52 0.57 0.43
PSE 0.51 0.49 0.47 0.67 0.44 0.58 0.57 0.52 0.39 0.61
PEI 0.26 0.27 0.21 0.56 0.27 0.41 0.40 0.48 0.24 0.47 0.48

PMA 0.34 0.30 0.26 0.55 0.28 0.42 0.35 0.54 0.28 0.44 0.56 0.27
PSSA 0.33 0.24 0.24 0.61 0.23 0.45 0.38 0.56 0.28 0.48 0.54 0.30 0.22
AAT 0.33 0.25 0.36 0.60 0.29 0.47 0.44 0.45 0.28 0.50 0.53 0.34 0.32 0.32
AAP 0.35 0.27 0.25 0.63 0.27 0.53 0.40 0.51 0.26 0.48 0.49 0.31 0.30 0.38 0.36

From the results of double factor detection, there are only 2 types of detection results
(i.e. NE and DE) (Table 11), indicating that the FCR is influenced by multiple factors, and
the overlapping effects of these effects are more obvious. Where, it is very obvious that the
interaction of ln PGDP, POSI, POTI, PUR, PEI, and ROR with other factors has an impact on
FCR (mostly shows as the non-linear enhancement type), showing that the interaction effect
of the 2 factors exceeds the sum of their single impact effects. The above results further
indicate that the FCR is influenced by a combination of multiple factors, which exhibit
complex, diverse, interwoven, and overlapping characteristics.
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Table 11. Analysis and classification of the estimation results.

ln PGDP POSI POTI ln PD PUR RLR PCLA RLU ROR PBLA PSE PEI PMA PSSA AAT AAP

ln
PGDP
POSI NE
POTI NE NE
ln PD DE DE NE
PUR NE NE NE DE
RLR NE NE NE DE DE
PCLA NE NE NE DE NE DE
RLU DE NE NE DE DE DE DE
ROR NE NE NE NE NE NE NE NE
PBLA NE DE NE DE NE NE DE DE NE
PSE NE NE NE DE NE DE DE DE NE DE
PEI NE NE NE DE NE DE DE NE NE NE NE

PMA NE NE NE DE NE DE DE NE NE DE NE DE
PSSA NE NE NE DE NE DE DE NE NE NE NE NE DE
AAT NE NE NE DE NE DE NE DE NE NE NE NE NE NE
AAP NE NE NE DE NE NE DE NE NE DE NE NE DE NE NE

Note: “NE” and “DE” represent non-linear and double-factor enhancements, respectively.

Although the above analysis effectively reveals the interaction of various influencing
factors, this study is more concerned with the specific changes of FCR in the future. There-
fore, this study plans to use spatial econometric models to scientifically predict FCRs in
129 counties from 2025 to 2050.

3.5. Prediction Results for FCRs in 129 Counties in Yunnan Province from 2025 to 2050

The above analysis not only reveals the impact degree of factors on FCR, but also
reveals the differences of the effects and the interaction effects. Therefore, based on the most
suitable spatial econometric model mentioned above, referring to the research ideas and
methods of Yang Renyi et al. (2021) [62] and Chen Qiang (2014) [49], this study uses OLS
method to predict the results of various influencing factors from 2025 to 2050 (PCCF takes 1
in 2000 and later), and fitting the panel data from 1990 to 2020 based on the most suitable
SEM model, and predicting the FCRs of 129 counties from 2025 to 2050, and using GIS
techniques to draw the predicted spatial distribution results (Figure 7).
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From Figure 7, it can be seen that the distribution of the model prediction results of
FCRs in 129 counties from 2025 to 2050 basically conforms to the spatiotemporal evolution
law of 7 phases from 1990 to 2020. That is, in the future, the FCR will still show a trend of
low in the east and high in the west, and the prediction results show that the FCR in each
county is gradually improving. By 2050, the FCRs in the vast majority of western regions
will reach over 50%. The above results further indicate that selecting the optimal spatial
econometric model for prediction is more scientific and reasonable.

Although Figure 7 provides a more intuitive display of the predicted FCR distribution
of 129 counties in the future, the map still cannot accurately show the data distribution
and overall situation of the predicted FCR of each county. Therefore, the average, standard
deviation, median and other indicators of the prediction results for each county in the next
6 phases are calculated (Table 12).

Table 12. Data description of prediction results of FCRs of 129 counties from 2025 to 2050.

Year Mean SD P25 P50 P75 Min Max

2025 47.03 12.80 36.68 46.12 56.81 19.63 72.42
2030 49.50 12.91 39.15 48.80 59.34 20.38 75.29
2035 51.96 13.03 41.51 51.33 61.88 21.06 78.17
2040 54.40 13.19 43.93 53.61 64.61 21.29 81.04
2045 56.78 13.41 46.44 55.79 67.56 20.02 83.92
2050 59.09 13.64 48.76 58.02 69.84 18.75 86.80

Average 53.13 13.76 42.81 52.40 63.84 18.75 86.80
Note: “Mean”, “SD”, “P25”, “P50”, “P75”, “Min”, and “Max” represent the average, standard deviation, lower
quartile, median, upper quartile, minimum, and maximum of prediction values of forest coverage rate of
129 counties in Yunnan in the corresponding year, respectively.

From Table 12, it can also be seen that the FCRs of various counties are gradually
increasing in 2025, which will mean that the fragile ecological environment in Yunnan
will be improved. According to the prediction results, the average FCR of each county in
Yunnan will reach 47.03% in 2025, and is expected to reach 59.09% by 2050. It is expected
to net increase by 12.06% within 25 years (with an average annual increase of 0.48%). The
results of statistical indicators such as median and maximum are also similar, showing a
trend of increasing year by year. The only difference is the trend of the minimum FCR, which
the model shows will decrease to 18.75% in 2050. This is because with the acceleration of
urbanization, more and more people from other prefectures will flow into some central city.
This will not only exacerbate urban congestion, but also lead to a significant increase in
construction land, which may cause a decrease in FCR.

4. Discussion

Abundant FCR play an important central role in promoting ecological environment
improvement and green development in a region. However, the existing research lacks the
use of RS and GIS technology to systematically explore the spatiotemporal evolution of
FCR in mountainous provinces in the long term, and also lacks the use of comprehensive
measurement techniques and methods combined with RS image interpretation results and
econometric model analysis to systematically discuss the influencing factors of FCR. In re-
sponse to the shortcomings of the existing research, this study explored the spatiotemporal
evolution characteristics and laws of FCR for 129 counties in Yunnan Province based on the
LULC data obtained from seven periods RS image interpretation of Yunnan (i.e., 1990, 1995,
2000, 2005, 2010, 2015, and 2020), and combined diverse and systematic research methods,
such as spatial econometric models, the GWR model, and the GD to reveal the influencing
factors on FCR and predicted the FCRs from 2025 to 2050.

This study found that the FCRs in 129 counties significantly improved from 1990 to
2020, especially with large areas of other forest land, grassland, and unused land being
transformed into closed forest land within 30 years, which significantly increased the FCR.
This is commendable and also indicates that Yunnan has made significant progress in the
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ECC in the past 30 years, and the fragile ecology has been significantly improved. However,
this study still found that the FCRs in most areas in eastern Yunnan were significantly lower
than those in western areas, and the reasons for this were varied. For some regions, such as
Zhaotong in the northeast, a dense population was the main reason for the low FCR. The
urbanization level and construction land in central Yunnan, including Kunming, Chuxiong,
and Qujing, were relatively high. The economic development and urbanization process
have had significant negative impacts on FCR. In the southeastern region of Yunnan,
the inherently fragile ecological environment, such as karst rocky desertification, is an
important factor restricting the FCR. In addition, the factors affecting FCR are complex and
exhibit interactive and overlapping characteristics.

Although the research shows that the FCR in Yunnan has significantly improved in
the past 30 years, it is still important to focus on the increase of FCR and improvement
of ecological protection in the eastern region. We must not sacrifice a healthy ecological
environment for high economic growth and rapid urbanization rates; we must not adopt
the old perspective of pollution before treatment, allowing cities to excessively expand;
and we also must not ignore forest and ecological issues in areas with better economic
conditions. Yunnan Province has an important ecological location. The government should
focus on the forest conditions in the eastern region, especially in ecologically fragile areas,
and strive to increase FCR through afforestation and other methods, focusing on increasing
the FCR and ecological environment conditions.

Some limitations were present in this study, which were mainly reflected in the
following aspects: Firstly, due to the limitations in the data acquisition process, this study
did not analyze the impacts of natural disasters, such as floods, landslides, and wildfires,
as well as human activities, such as logging and agriculture, on FCR. Secondly, due to the
limitations in obtaining RS image data, this study did not collect LULC data for each year
to more accurately monitor the FCRs. Finally, the most recent data collected for this study
was in 2020, this study did not further monitor the future changes of FCRs; thus, repeated
comparisons and adjustments of the predicted results are needed in order to obtain more
accurate prediction results. The aforementioned limitations must be continuously improved
and expanded in the future research.

5. Conclusions

The study of FCR is related to the ecological environment and SDGs of a region. In
response to the shortcomings of the existing research and the practical needs of the ECC in
Yunnan Province, this study analyzed the spatiotemporal evolution and influencing factors
of FCR for 129 counties in Yunnan Province from 1990 to 2020 based on the interpretation
data of the seven-period RS data of LULCs and further predicted the FCR from 2025 to 2050:

(1) Although 0.3856 million hectares of closed forest land were converted into other
land types over the last 30 years, there were still 8.1038 million hectares of other types of
land converted into closed forest land, leading to the FCR in the whole Yunnan increasing
from 28.96% in 1990 to 49.05% in 2020.

(2) In addition, the FCRs of 129 counties in Yunnan Province presented a clear spatial
distribution pattern, showing an overall trend of lower in the east and higher in the west,
with obvious spatial clustering characteristics.

(3) Furthermore, the analysis of influencing factors show that the increases of the per
capita GDP (ln PGDP), land utilization rate (RLU), and annual average temperature (AAT),
and the implementation of the CCFP (PCCF) will significantly improve the FCR, while the
increases in the population density (ln PD), land reclamation rate (RLR), and the proportion
of construction land area (PCLA), and the proportion of soil erosion land area (PSE) will
significantly reduce the FCR.

(4) However, these core influencing factors present significant regional differences in
terms of the results of the GWR model: the effect of ln PGDP on the FCR roughly shows
a decreasing trend from the south to the northeast and northwest; the effect of the RLR
on the FCR roughly shows an increasing trend from the south to the north; the effect of
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the PCLA on the FCR roughly shows an increasing trend from the west to the east; the
effect of the RLU on the FCR roughly shows a decreasing trend from the northwest to
the southeast; and the effect of the PSE on the FCR roughly shows an increasing trend
from the north to the southwest. Moreover, the FCR in Yunnan Province is influenced
by a combination of multiple factors, which exhibit complex, diverse, interwoven, and
overlapping characteristics, where the two-factor interaction between ln PGDP, POSI, POTI,
PUR, PEI, and ROR with other factors has a more significant impact on the FCR.

(5) Fortunately, the average FCR of each county in Yunnan Province will reach 47.03%
in 2025 and is expected to reach 59.09% by 2050 according to the model prediction results.
But the spatial pattern of FCR in Yunnan Province will still show a trend of appearing lower
in the east and higher in the west in the future.
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