Comprehensive Response of Daily Transpiration from Armeniaca sibirica Plantations to Meteorological and Soil Moisture/Temperature Conditions on the Semi-Arid Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Sample Plots
2.2.2. Sap Flow Measurement and Transpiration Calculation
2.2.3. Weather and Soil Moisture/Temperature Measurements
2.3. Data Processing
2.3.1. Establishment of Daily Transpiration Model of Forest Trees
2.3.2. Data Processing and Model Validation
3. Results
3.1. Changes in Meteorological Factors, REW and ST
3.2. Changes in Tree Transpiration
3.3. Response of Tree Transpiration to PET, REW, and ST
3.4. Construction and Verification of Model of Forest Transpiration Response to Multiple Factors
3.5. Restrictions on Transpiration by PET, REW and ST
4. Discussion
4.1. Response of Tree Transpiration to PET
4.2. Response of Tree Transpiration to REW
4.3. Response of Tree Transpiration to ST
4.4. Multi-Factor Coupling Model of Forest Transpiration
4.5. Limitations of This Study and Future Research Suggestions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Liu, W. Simulating potential response of hydrology, soil erosion, and crop productivity to climate change in Changwu tableland region on on the Loess Plateau of China. Agric. For. Meteorol. 2005, 131, 127–142. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, S.; Yang, X.; Gu, N. Negative impacts of afforestation and economic forestry on the chinese loess plateau and proposed solutions. Quatern. Int. 2016, 399, 165–173. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, M.; Batunacun. Evaluations of water yield and soil erosion in the shaanxi-gansu loess plateau under different land use and climate change scenarios. Environ. Dev. 2019, 34, 100488. [Google Scholar] [CrossRef]
- National Development and Reform Commission (NDRC); Ministry of Water Resources (MWR); Ministry of Agriculture (MA); State Forestry Administration (SFA). Programming for Comprehensive Management of the Loess Plateau (2010e2030). Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201101/t20110117_962112_ext.html (accessed on 17 January 2011).
- Wang, C.; Wang, S.; Fu, B.; Lü, Y.; Liu, Y.; Wu, X. Integrating vegetation suitability in sustainable revegetation for the loess plateau, China. Sci. Total Environ. 2020, 759, 143572. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, B.; Chen, L.; Zhao, W.; Yang, Q.; Liu, G.; Gulinck, H. Dynamics and driving factors of agricultural landscape in the semiarid hilly area of the Loess Plateau, China. Agric. Ecosyst. Environ. 2004, 103, 535–543. [Google Scholar] [CrossRef]
- Shi, X.; Sun, L.; Chen, X.; Wang, L. Farmers’ perceived efficacy of adaptive behaviors to climate change in the loess plateau, china. Sci. Total Environ. 2019, 697, 134217. [Google Scholar] [CrossRef]
- Piao, S.; Yue, C.; Ding, J.; Guo, Z. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci. China Earth Sci. 2022, 65, 1178–1186. [Google Scholar] [CrossRef]
- Schwärzel, K.; Zhang, L.; Montanarella, L.; Wang, Y.; Sun, G. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Glob. Chang. Biol. 2020, 26, 944–959. [Google Scholar] [CrossRef]
- Schwärzel, K.; Zhang, L.; Stecker, A.; Podlasly, C. Improved water consumption estimates of Black Locust plantation in China’s Loess Plateau. Forests 2018, 9, 201. [Google Scholar] [CrossRef]
- Benjamin, I.C.; Justin, S.M.; Anchukaitis, K.J. Climate change and drought: From past to future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021. The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2021. [Google Scholar]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef]
- Angstmann, J.L.; Ewers, B.E.; Kwon, H. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence. Tree Physiol. 2012, 32, 599–611. [Google Scholar] [CrossRef]
- Wang, H.; Tetzlaff, D.; Dick, J.J.; Soulsby, C. Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment. Agric. For. Meteorol. 2017, 240, 58–66. [Google Scholar] [CrossRef]
- Nalevanková, P.; Ježík, M.; Sitková, Z.; Vido, J.; Leštianska, A.; Střelcová, K. Drought and irrigation affect transpiration rate and morning tree water status of a mature European beech (Fagus sylvatica L.) forest in Central Europe. Ecohydrology 2018, 11, e1958. [Google Scholar] [CrossRef]
- Grossiord, C.; Sevanto, S.; Borrego, I.; Chan, A.M.; Collins, A.D.; Dickman, L.T.; Hudson, P.J.; McBranch, N.; Michaletz, S.T.; Pockman, W.T.; et al. Tree water dynamics in a drying and warming world. Plant. Cell Environ. 2017, 40, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, C.P.; Lubczynski, M.W.; Bruijnzeel, L.A.; Chayarro-Rincon, D. Transpiration and canopy conductance of two contrasting forest types in the Lesser Himalaya of Central Nepal. Agric. For. Meteorol. 2014, 197, 76–90. [Google Scholar] [CrossRef]
- Li, Z.; Yu, P.; Wang, Y.; Webb, A.A.; He, C.; Wang, Y.; Yang, L. A model coupling the effects of soil moisture and potentialevaporation on the tree transpiration of a semi-arid larch plantation. Ecohydrology 2017, 10, e1764. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, W.; He, Z. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agric. For. Meteorol. 2004, 187, 14–21. [Google Scholar] [CrossRef]
- Ji, X.; Zhao, W.; Kang, E.; Jin, B.; Xu, S. Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of northwestern China. Hydrol. Process. 2016, 30, 4841–4854. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, B. The response of sap flow in shrubs to rainfall pulses in the desert region of China. Agric. For. Meteorol. 2010, 150, 1297–1306. [Google Scholar] [CrossRef]
- Brito, P.; Lorenzo, J.R.; Gonzalez-Rodriguez, A.M.; Morales, D.; Wieser, G.; Jimenez, M.S. Canopy transpiration of a semi arid Pinus canariensis forest at a treeline ecotone in two hydrologically contrasting years. Agric. For. Meteorol. 2015, 201, 120–127. [Google Scholar] [CrossRef]
- Wu, S.H.; Jansson, P.E. Modelling soil temperature and moisture and corresponding seasonality of photosynthesis and transpiration in a boreal spruce ecosystem. Hydrol. Earth Syst. Sci. 2013, 17, 735–749. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef]
- Tian, A.; Wang, Y.; Webb, A.A.; Liu, Z.; Yu, P.; Xiong, W.; Wang, X. Partitioning the causes of spatiotemporal variation in the sunny day sap flux density of a larch plantation on a hillslope in northwest China. J. Hydrol. 2019, 571, 503–515. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrig. Drain. 1998, 56, 1–15. [Google Scholar]
- Wang, L.; Liu, Z.; Guo, J.; Wang, Y.; Ma, J.; Yu, S.; Yu, P.; Xu, L. Estimate canopy transpiration in larch plantations via the interactions among reference evapotranspiration, leaf area index, and soil moisture. For. Ecol. Manag. 2021, 481, 118749. [Google Scholar] [CrossRef]
- Granier, A.; Loustau, D.; Bréda, N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann. For. Sci. 2000, 57, 755–765. [Google Scholar] [CrossRef]
- Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B 1976, 273, 593–610. [Google Scholar] [CrossRef]
- She, D.; Xia, Y.; Shao, M.; Peng, S.; Yu, S. Transpiration and canopy conductance of Caragana korshinskii trees in response to soil moisture in sand land of China. Agroforest Syst. 2013, 87, 667–678. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, Z.; Yu, P.; Han, X. Interannual variation of transpiration and its modeling of a larch plantation in semiarid northwest China. Forests 2020, 11, 1303. [Google Scholar] [CrossRef]
- Wilby, R.L. Uncertainty in water resource model parameters used for climate change impact assessment. Hydrol. Process. 2005, 19, 3201–3219. [Google Scholar] [CrossRef]
- Kvålseth, T.O. Cautionary note about R2. Am. Stat. 1985, 39, 279–285. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, M.; Warrington, D.N. Black locust transpiration responses to soil water availability as affected by meteorological factors and soil texture. Pedosphere 2015, 25, 57–71. [Google Scholar] [CrossRef]
- Li, W.; Si, J.; Yu, T.; Li, X. Response of Populus euphratica Oliv. sap flow to environmental variables for a desert riparian forest in the Heihe River Basin, Northwest China. J. Arid. Land 2016, 8, 591–603. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Q. Seasonal and annual variation in transpiration of a dominant desert species, Haloxylon ammodendron, in Central Asia up-scaled from sap flow measurement. Ecohydrology 2015, 8, 948–960. [Google Scholar] [CrossRef]
- Novak, V.; Hurtalova, T.; Matejka, F. Predicting the effects of soil water content and soil water potential on transpiration of maize. Agr. Water Manag. 2005, 76, 211–223. [Google Scholar] [CrossRef]
- Petzold, R.; Schwärzel, K.; Feger, K. Transpiration of a hybrid poplar plantation in Saxony (Germany) in response to climate and soil conditions. Eur. J. For. Res. 2011, 130, 695–706. [Google Scholar] [CrossRef]
- Meinzer, F.C.; Goldstein, G.; Jackson, P.; Holbrook, N.M.; Gutiérrez, M.V.; Cavelier, J. Environmental and physiological regulation of transpiration in tropical forest gap species: The influence of boundary layer and hydraulic properties. Oecologia 1995, 101, 514–522. [Google Scholar] [CrossRef]
- Bréda, N.; Cochard, H.; Dreyer, E.; Granier, A. Water transfer in a mature oak stand (Quercus petraea): Seasonal evolution and effects of a severe drought. Can. J. For. Res. 1993, 23, 1136–1143. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Tian, A.; Webb, A.A.; Yu, P.; Xiong, W.; Xu, L.; Wang, Y. Modeling the response of daily evapotranspiration and its components of a Larch plantation to the variation of weather, soil moisture, and canopy leaf area index. J. Geophys. Res.-Atmos. 2018, 123, 7354–7374. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, G.; Wang, Y.; Webb, A.A.; Yu, P.; Wang, X. Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture. Sci. Rep. 2019, 9, 4697. [Google Scholar] [CrossRef] [PubMed]
- Granier, A.; Huc, R.; Colin, F. Transpiration and stomatal conductance of two rain forest species growing in plantations (Simarouba amara and Goupia glabra) in French Guyana. Ann. Forest Sci. 1992, 49, 17–24. [Google Scholar] [CrossRef]
- Granier, A.; Bobay, V.; Gash, J.H.C.; Gelpe, J.; Saugier, B.; Shuttleworth, W.J. Vapour flux density and transpiration rate comparisons in a stand of Maritime Pine (Pinus pinaster Ait.) in Les Landes forest. Agric. For. Meteorol. 1990, 51, 309–319. [Google Scholar] [CrossRef]
- Granier, A.; Huc, R.; Barigah, S.T. Transpiration of natural rain forest and its dependence on climatic factors. Agric. For. Meteorol. 1996, 78, 19–29. [Google Scholar] [CrossRef]
- Roth, S.; McDonald, E.P.; Lindroth, R.L. Atmospheric CO2 and soil water availability: Consequences for tree-insect interactions. Can. J. Forest Res. 1997, 27, 1281–1290. [Google Scholar] [CrossRef]
- Stewart, J.B. Modelling surface conductance of pine forest. Agric. For. Meteorol. 1988, 43, 19–35. [Google Scholar] [CrossRef]
- Ritchie, J.T. Water dynamics in the soil-plant-atmosphere system. Plant Soil 1981, 58, 81–96. [Google Scholar] [CrossRef]
- Wikberg, J. Water Relation in Salix with Focus on Drought Response. Ph.D. Dissertation, Swedish University of Agricultural Sciences, Umea, Sweden, 2006. [Google Scholar]
- Irvine, J.; Perks, M.P.; Magnani, F.; Grace, J. The response of Pinus sylvestris to drought: Stomatal control of transpiration and hydraulic conductance. Tree Physiol. 1998, 18, 393–402. [Google Scholar] [CrossRef]
- Lagergren, F.; Lindroth, A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agric. For. Meteorol. 2002, 112, 67–85. [Google Scholar] [CrossRef]
- Bernier, P.Y.; Bréda, N.; Granier, A.; Raulier, F.; Mathieu, F. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements. For. Ecol. Manag. 2002, 163, 185–196. [Google Scholar] [CrossRef]
- Ungar, E.D.; Rotenberg, E.; Raz-Yaseef, N.; Cohen, S.; Yakir, D.; Schiller, G. Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. For. Ecol. Manag. 2013, 298, 39–51. [Google Scholar] [CrossRef]
- Bernier, P.Y.; Bartlett, P.; Black, T.A.; Barr, A.; Kljun, N.; McCaughey, J.H. Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands. Agric. For. Meteorol. 2006, 140, 64–78. [Google Scholar] [CrossRef]
- Wahbi, A.; Sinclair, T.R. Transpiration response of Arabidopsis, maize, and soybean to drying of articial and mineral soil. Environ. Exp. Bot. 2007, 59, 188–192. [Google Scholar] [CrossRef]
- Sadras, V.O.; Milroy, S.P. Soil-water thresholds for the responses of leaf expansion and gas exchange: A review. Field Crops Res. 1996, 47, 253–266. [Google Scholar] [CrossRef]
- Granier, A.; Bréda, N.; Biron, P.; Villette, S. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 1999, 116, 269–283. [Google Scholar] [CrossRef]
- Jiao, L.; Lu, N.; Fang, W.; Li, Z.; Wang, J.; Jin, Z. Determining the independent impact of soil water on forest transpiration: A case study of a black locust plantation in the Loess Plateau, China. J. Hydrol. 2019, 572, 671–681. [Google Scholar] [CrossRef]
- Kaufmann, M.R. Leaf water stress in Dngelmann Spruce: Influence of the root and shoot environments. Plant Physiol. 1975, 58, 841–844. [Google Scholar] [CrossRef]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: London, UK, 1995. [Google Scholar]
- Schwarz, P.A.; Fahey, T.J.; Dawson, T.E. Seasonal air and soil temperature effects on photosynthesis in red spruce (Picea rubens) saplings. Tree Physiol. 1997, 17, 187–194. [Google Scholar] [CrossRef]
- Kramer, P.J. Root resistance as a cause of decreased water adsorption by plants at low temperatures. Plant Physiol. 1940, 15, 63–79. [Google Scholar] [CrossRef]
- Mellander, P.E.; Stähli, M.; Gustafsson, D.; Bishop, K. Modelling the effect of low soil temperatures on transpiration by scots pine. Hydrol. Process. 2006, 20, 1929–1944. [Google Scholar] [CrossRef]
- Mellander, P.E.; Bergh, J.; Lundmark, T.; Bishop, K. Recovery of photosynthetic capacity in Scots pine: A model analysis of forest plots with contrasting soil temperature. Eur. J. For. Res. 2008, 127, 71–79. [Google Scholar] [CrossRef]
- Wu, S.H.; Jansson, P.E.; Kolari, P. Modeling seasonal course of carbon fluxes and evapotranspiration in response to low temperature and moisture in a boreal scots pine ecosystem. Ecol. Model. 2011, 222, 3103–3119. [Google Scholar] [CrossRef]
- Wu, S.H.; Jansson, P.E.; Kolari, P. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem. Agric. For. Meteorol. 2012, 156, 85–103. [Google Scholar] [CrossRef]
- Wieser, G.; Grams, T.E.; Matyssek, R.; Oberhuber, W.; Gruber, A. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps. Tree Physiol. 2015, 35, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Clements, F.E.; Martin, E.V. Effect of soil temperature on transpiration in Helianthus annuus. Plant Physiol. 1934, 9, 619–630. [Google Scholar] [CrossRef]
- Xu, J.; Ma, L. Influence of soil temperature on sap flow of Pinus tabulaeformis. Acta Ecol. Sin. 2008, 28, 6107–6112. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.; Nie, Y.; Luo, T.; Yu, J.; Shen, W.; Zhang, L. Seasonal shift in climatic limiting factors on tree transpiration: Evidence from sap flow observations at alpine treelines in southeast Tibet. Front. Plant Sci. 2016, 7, 1018. [Google Scholar] [CrossRef]
Year | Canopy Density | Mean of Tree Ground Diameter/cm | Mean of Tree Height/m | Mean Clear Length of Trees/m | Mean Canopy Diameter/m | Total Sapwood Area/cm2 |
---|---|---|---|---|---|---|
2019 | 0.39 | 11.3 | 3.9 | 0.7 | 3.3 | 2062 |
2020 | 0.40 | 11.8 | 3.9 | 0.7 | 3.5 | 2160 |
Year | Sample Tree/No. | Ground Diameter/cm | Height/m | Clear Length/m | Canopy Diameter/m |
---|---|---|---|---|---|
2019 | 1 | 10.4 | 4.5 | 1.6 | 3.8 |
5 | 17.3 | 6.0 | 1.5 | 3.7 | |
7 | 14.6 | 5.1 | 1.7 | 6.0 | |
16 | 16.4 | 6.3 | 1.2 | 3.9 | |
2020 | 1 | 11.2 | 4.7 | 1.6 | 4.0 |
5 | 17.8 | 6.0 | 1.5 | 4.2 | |
7 | 15.2 | 5.2 | 1.7 | 6.2 | |
16 | 16.8 | 6.3 | 1.2 | 4.1 |
Year | Month | PET Limit | REW Limit | ST Limit | |||
---|---|---|---|---|---|---|---|
T/mm | Percent/% | T/mm | Percent/% | T/mm | Percent/% | ||
2019 | May | 4.19 | 23.78 | 0.33 | 1.87 | 1.24 | 7.04 |
Jun | 3.45 | 20.23 | 1.57 | 9.25 | 0.32 | 1.88 | |
Jul | 2.12 | 12.03 | 1.92 | 10.93 | 0.11 | 0.60 | |
Aug | 4.28 | 24.32 | 0.67 | 3.81 | 0.10 | 0.54 | |
Sep | 7.08 | 41.58 | 0.16 | 0.93 | 0.52 | 3.07 | |
Oct | 11.14 | 63.32 | 0.21 | 1.22 | 1.87 | 10.64 | |
May–Oct | 32.25 | 30.88 | 4.87 | 4.66 | 4.16 | 3.98 | |
2020 | May | 2.72 | 15.43 | 1.52 | 8.62 | 0.83 | 4.72 |
Jun | 3.14 | 18.46 | 4.16 | 24.40 | 0.26 | 1.50 | |
Jul | 3.89 | 22.12 | 2.45 | 13.90 | 0.13 | 0.72 | |
Aug | 6.19 | 35.16 | 0.96 | 5.43 | 0.16 | 0.89 | |
Sep | 7.20 | 42.25 | 0.37 | 2.15 | 0.48 | 2.82 | |
Oct | 11.83 | 67.21 | 0.39 | 2.24 | 2.09 | 11.88 | |
May–Oct | 34.97 | 33.47 | 9.83 | 9.41 | 3.94 | 3.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Liu, G.; Xu, H.; Dong, L.; Wang, X. Comprehensive Response of Daily Transpiration from Armeniaca sibirica Plantations to Meteorological and Soil Moisture/Temperature Conditions on the Semi-Arid Loess Plateau, China. Forests 2024, 15, 251. https://doi.org/10.3390/f15020251
Han X, Liu G, Xu H, Dong L, Wang X. Comprehensive Response of Daily Transpiration from Armeniaca sibirica Plantations to Meteorological and Soil Moisture/Temperature Conditions on the Semi-Arid Loess Plateau, China. Forests. 2024; 15(2):251. https://doi.org/10.3390/f15020251
Chicago/Turabian StyleHan, Xinsheng, Guangquan Liu, Hao Xu, Liguo Dong, and Xiao Wang. 2024. "Comprehensive Response of Daily Transpiration from Armeniaca sibirica Plantations to Meteorological and Soil Moisture/Temperature Conditions on the Semi-Arid Loess Plateau, China" Forests 15, no. 2: 251. https://doi.org/10.3390/f15020251
APA StyleHan, X., Liu, G., Xu, H., Dong, L., & Wang, X. (2024). Comprehensive Response of Daily Transpiration from Armeniaca sibirica Plantations to Meteorological and Soil Moisture/Temperature Conditions on the Semi-Arid Loess Plateau, China. Forests, 15(2), 251. https://doi.org/10.3390/f15020251