Effects of Compound Fertilizer Decrement and Water-Soluble Humic Acid Fertilizer Application on Soil Properties, Bacterial Community Structure, and Shoot Yield in Lei Bamboo (Phyllostachys praecox) Plantations in Subtropical China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Experimental Design
2.3. Soil Sampling and Properties Tests
2.4. Soil Microbial Biomass Carbon and Nitrogen
2.5. Soil Extracellular Enzyme Activities
2.6. DNA Extraction and Sequencing
2.7. Statistical Analysis
3. Results
3.1. Effects of Water-Soluble Humic Acid Fertilizer on Soil Properties
3.2. Effects of Water-Soluble Humic Acid Fertilizer on Soil Enzyme Activities
3.3. Effects of Water-Soluble Humic Acid Fertilizer on Soil Bacterial Community
3.4. Effects of Water-Soluble Humic Acid Fertilizer on Lei Bamboo Shoot Yield
3.5. Relationships among Soil Properties, Bacterial Community Structures, and Bamboo Shoot Yields
4. Discussion
4.1. Effects of Water-Soluble Humic Acid Fertilizer on Soil Properties and Enzyme Activities
4.2. Effects of Water-Soluble Humic Acid Fertilizer on Soil Bacterial Community Structure
4.3. Relationships among Soil Properties, Bacterial Communities, and Bamboo Shoot Yields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Z.W.; Yu, W.X.; Chen, S.L.; Li, Y.C.; Yang, Q.P. Influence of mulching management on soil microbe and its relationship with soil nutrient in Phyllostachys praecox stand. Acta Ecol. Sin. 2013, 33, 5623–5630. [Google Scholar]
- Xu, S.; Gu, R.; Chen, S.L.; Guo, Z.W.; Yang, L.T. Changes and correlation of sheath leaf traits and taste quality of Phyllostachys violascens ‘Prevernalis’ shoots under mulching. Sci. Silvae Sci. 2021, 57, 34–41. [Google Scholar]
- Zhang, X.P.; Gai, X.; Zhong, Z.K.; Bian, F.Y.; Yang, C.B.; Li, Y.F.; Wen, X. Understanding variations in soil properties and microbial communities in bamboo plantation soils along a chromium pollution gradient. Ecotox Environ. Saf. 2021, 222, 112507. [Google Scholar] [CrossRef]
- Zhai, W.L.; Yang, C.B.; Zhang, X.P.; Gao, G.B.; Zhong, Z.K. Effects of mulching management on biomass of Phyllostachys praecox and soil fertility. Chin. J. Appl. Ecol. 2018, 29, 1147–1155. [Google Scholar]
- Zhang, X.P.; Zhong, Z.K.; Bian, F.Y.; Yang, C.B. Effects of composted bamboo residue amendments on soil microbial communities in an intensively managed bamboo (Phyllostachys praecox) plantation. Appl. Soil Ecol. 2019, 136, 178–183. [Google Scholar] [CrossRef]
- Zhai, W.L.; Zhong, Z.K.; Gao, G.B.; Yang, H.M. Influence of Mulching Management on Soil Bacterial Structure and Diversity in Phyllostachys praecox Stands. Sci. Silvae Sci. 2017, 53, 133–142. [Google Scholar]
- Liu, L.; Chen, S.L.; Li, Y.H. Stand structure and bamboo shoot number production based assessment of degradation degree of Phyllostachys praecox covered with organic materials. J. Zhejiang For. Coll. 2010, 27, 15–21. [Google Scholar]
- Qin, H.; Wang, H.; Strong, P.J.; Li, Y.; Xu, Q.; Wu, Q. Rapid soil fungal community response to intensive management in a bamboo forest developed from rice paddies. Soil Biol. Biochem. 2014, 68, 177–184. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yuan, L.; Lin, Z.A.; Li, Y.T.; Hu, S.W.; Zhao, B.Q. Advances in humic acid for promoting plant growth and its mechanism. J. Plant Nutr. Fertil. 2017, 23, 1065–1076. [Google Scholar]
- Aslis, S.; Neumann, P.M. Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 2010, 336, 313–322. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, Q. Discussion on Humic Acid Fertilizers and Related Research Subjects. Humic Acid 2020, 3, 19–24. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Zeng, X.C. Make humic acid water soluble fertilizer favour human. Humic Acid 2014. [Google Scholar] [CrossRef]
- Liu, M.T.; Wang, T.L.; Cheng, Y. Peat and brown coal resources in China and its potential for developing potassium humatefertilizer. Earth Sci. Front. 2014, 21, 255–266. [Google Scholar]
- Scheuerell, S.J.; Mahafee, W.F. Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythiumultimum. Phytopathology 2004, 94, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.H. Humic Matter in Soil and the Environment: Principles and Controversies; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Antelo, J.; Arce, F.; Avena, M. Adsorption of a soil hnmic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma 2007, 138, 12–19. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Yan, S.; Liu, F.; Ji, P.H.; Wang, X.Y.; Tong, Y.A. Effects of chemical fertilizer combined with organic manure on Fuji apple quality, yield and soil fertility in apple orchard on the Loess Plateau of China. Int. J. Agric. Biol. Eng. 2014, 7, 45–55. [Google Scholar]
- Serenella, N.; Diego, P.; Adele, M.; Angelo, V. Physiological effects of humic substances on higher plants. Soil Bio Biochem. 2002, 34, 1527–1536. [Google Scholar]
- Tahir, M.M.; Khurshid, M.; Khan, M.Z.; Abbasi, M.K.; Kazmi, M.H. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2011, 21, 124–131. [Google Scholar] [CrossRef]
- Musbau, S.A.; Ayinde, B.H. Micro and macro (organisms) and their contributions to soil fertility. Environ. Microbiol. 2021, 7, 44–56. [Google Scholar]
- Ye, G.P.; Lin, Y.X.; Luo, J.F.; Di, H.J.; Lindsey, S.; Liu, D.; Fan, J.B.; Ding, W.X. Responses of soil fungal diversity and community composition to long-term fertilization: Field experiment in an acidic Ultisol and literature synthesis. Appl. Soil Ecol. 2020, 145, 103305. [Google Scholar] [CrossRef]
- Liu, C.J.; Gong, X.W.; Dang, K.; Li, J.; Yang, P.; Gao, X.L.; Deng, X.P.; Feng, B.L. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environ. Res. 2020, 184, 109261. [Google Scholar] [CrossRef] [PubMed]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Wang, Q.; Zhu, M.; Xu, Y.; Zhang, M. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Sci. Total Environ. 2017, 607, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, B.; Li, Q.; Yang, H.; Xu, K. Analysis of soil degradation causes in Phyllostachys edulis forests with different mulching years. Forests 2018, 9, 149. [Google Scholar] [CrossRef]
- Ni, H.J.; Su, W.H.; Fan, S.H.; Chu, H.Y. Effects of intensive management practices on rhizosphere soil properties, root growth, and nutrient uptake in Moso bamboo plantations in subtropical China. For. Ecol. Manag. 2021, 493, 119083. [Google Scholar] [CrossRef]
- Babur, E.; Dindaroglu, T.; Solaiman, Z.M.; Battaglia, M.L. Microbial Respiration, Microbial Biomass and Activity Are Highly Sensitive to Forest Tree Species and Seasonal Patterns in the Eastern Mediterranean Karst Ecosystems. Sci. Total Environ. 2021, 775, 145868. [Google Scholar] [CrossRef]
- Yang, C.B.; Zhang, X.P.; Ni, H.J.; Gai, X.; Huang, Z.C.; Du, X.H.; Zhong, Z.K. Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of Moso bamboo (Phyllostachys edulis) plantations in subtropical China. Sci. Total Environ. 2021, 752, 142333. [Google Scholar] [CrossRef]
- Yang, C.B.; Zhang, X.P.; Zhong, Z.K.; Bian, F.Y.; Du, X.H. Responses of Soil Organic Carbon Sequestration Potential and Bacterial Community Structure in Moso Bamboo Plantations to Different Management Strategies in Subtropical China. Forests 2018, 9, 657. [Google Scholar] [CrossRef]
- Yu, X.D.; Guo, X.S.; Chen, S.G.; Zhang, L.; Fan, Z.Q.; Ding, F.J. Humic Acid Soil Conditioner: Effects on Chemical Properties of Saline-alkali Soil and Wheat Yield in the Yellow River Delta. J. Agric. 2020, 11, 25–31. [Google Scholar]
- Tang, X.; Shang, H.; Liu, G.M.; Yao, Y.T.; Zhang, F.H.; Yang, J.S.; Zhou, L.X.; Chu, R. Effects of Combined Amendment on Improvement of Salinized Soil and Plant Growth. Soils 2021, 5, 1033–1039. [Google Scholar]
- Sharif, M.; Khattak, R.A.; Sarir, M.S. Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Commun. Soil Sci. Plant Anal. 2002, 33, 3567–3580. [Google Scholar] [CrossRef]
- Lindahl, B.D.; Tunlid, A. Ectomycorrhizal fungi—Potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015, 205, 1443–1447. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.M.; Zhou, Y.; Zhang, Z.J.; Zhao, Y.; Li, Y.Y.; Pang, Y.Q.; Wang, Y.X.; Han, W.Y.; Liu, J.H. Effects of Humic Acid and Different Tillage Measures on Carbon Pool and Microbial Community Structure in Saline Alkali Soil. Crops 2023, 2, 1–10. [Google Scholar]
- Li, J.; Sang, C.P.; Yang, J.Y.; Qu, L.R.; Xia, Z.W.; Sun, H.; Jiang, P.; Wang, X.G.; He, H.B.; Wang, C. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biol. Biochem. 2021, 156, 108207. [Google Scholar] [CrossRef]
- Thorn, K.A.; Mikita, M.A. Ammonia fixation by humic substances: A Nitrogen-15 and carbon-13 NMR study. Sci. Total Environ. 1992, 113, 67–87. [Google Scholar] [CrossRef]
- Rosinger, C.; Rousk, J.; Sandén, H. Can Enzymatic Stoichiometry Be Used to Determine Growth-Limiting Nutrients for Microorganisms? A Critical Assessment in Two Subtropical Soils. Soil Biol. Biochem. 2019, 128, 115–126. [Google Scholar] [CrossRef]
- Cimrin, K.M.; Yilmaz, I. Humic acid applications to lettuce do not improve yield but do improve phosphorus availability. Acta Agric. Scand. (Sect. B Soil Plant Sci.) 2005, 55, 58–63. [Google Scholar] [CrossRef]
- Li, Z.J.; Lin, Z.A.; Zhao, B.Q. Effects of value-added phosphate fertilizers on transformation of inorganic phosphorus in calcareous soils. J. Plant Nutr. Fertil. 2013, 19, 1183–1191. [Google Scholar]
- Alvarez, R.; Evans, L.A.; Milham, P.J.; Wilson, M.A. Effects of humic material on the precipitation of calcium phosphate. Geoderma 2004, 118, 245–260. [Google Scholar] [CrossRef]
- Dong, L.H. The Mechanism of Nitrogen in Corporation into Lignite Humic acid and the Effect on Soil Ammonium Oxidizer. Ph.D. Thesis, China Agricultural University, Beijing, China, 2009. [Google Scholar]
- Dong, L.H.; Yang, J.S.; Yuan, H.L. Chemical characteristics and influences of two fractions of Chinese lignite humic acids on urease. Eur. J. Soil Biol. 2008, 44, 166–171. [Google Scholar] [CrossRef]
- Peng, Z.P.; Xue, S.C.; Sun, Z.M.; Men, M.X. Study the effect of humic acid (HA) compound fertilizer on the quality and physiologic index of rape. J. Agric. Univ. Hebei 2001, 24, 24–27. [Google Scholar]
- Liu, L.L.; Shi, C.X.; Jiang, T.B.; Yu, H.J.; Liu, F.J. Microbial and enzyme activity in response to humic acid in soil with a ginger crop. Acta Ecol. Sin. 2009, 29, 6136–6141. [Google Scholar]
- Liu, J.L.; Li, S.Q.; Yue, S.C.; Tian, J.Q.; Chen, H.; Jiang, H.B.; Siddique, K.; Zhai, A.; Fang, Q.X.; Yu, Q. Soil microbial community and network changes after long-term use of plastic mulch and nitrogen fertilization on semiarid farmland. Geoderma 2021, 396, 115086. [Google Scholar] [CrossRef]
- Ramirez, K.S.; Craine, J.M.; Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Chang. Biol. 2012, 18, 1918–1927. [Google Scholar] [CrossRef]
- Sellamuthu, K.M.; Govindaswamy, M. Effect of fertiliser and humic acid on rhizosphere microorganisms and soil enzymes at an early stage of sugarcane growth. Sugar Tech. 2003, 5, 273–277. [Google Scholar] [CrossRef]
- Dong, L.; Córdova-Kreylos, A.L.; Yang, J.; Yuan, H.; Scow, K.M. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biol. Biochem. 2009, 41, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Lupwayi, N.Z.; May, W.E.; Kanashiro, D.A.; Petri, R.M. Soil bacterial community responses to black medic cover crop and fertilizer N under no-till. Appl. Soil Ecol. 2018, 124, 95–103. [Google Scholar] [CrossRef]
- Tian, W.; Wang, L.; Li, Y.; Chen, X.Y.; Ran, W.; Shen, Q.R.; Hu, P.; Li, H.X. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric. Ecosyst. Environ. 2015, 213, 219–227. [Google Scholar] [CrossRef]
- Li, Q.; Song, X.; Gu, H.; Gao, F. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in moso bamboo plantations. Sci. Rep. 2016, 6, 28235. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; Van Veen, J.A.; Kuramae, E.E. The ecology of Acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Lidbury, I.D.E.A.; Borsetto, C.; Murphy, A.R.J.; Bottrill, A.; Jones, A.M.E.; Bending, G.D.; Hammond, J.P.; Chen, Y.; Wellington, E.M.H.; Scanlan, D.J. Niche-adaptation in plant-associated bacteroidetes favours specialisation in organic phosphorus mineralisation. ISME J. 2021, 15, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.H.; Sun, R.H.; Li, J.G.; Zhai, L.M.; Cui, H.L.; Fan, B.Q.; Wang, H.Y.; Liu, H.B. Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecol. Lett. 2023, 5, 220142. [Google Scholar] [CrossRef]
- Serenella, N.; Diego, P.; Michela, S.; Andrea, E. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Woolf, D.; Fan, M.S.; Qiao, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Peng, Y.Z.; Zhang, Y.N.; Sun, Q.X. Characteristics and significance of dissolved organic matter in river sediments of extremely water-deficient basins: A Beiyun River case study. J. Clean. Prod. 2020, 277, 123063. [Google Scholar] [CrossRef]
CF1 (CF) | CF2 (0.7CF) | CF2HA1 (0.7CF + HA) | CF2HA2 (0.7CF + 2HA) | ||
---|---|---|---|---|---|
Fertilization Time | Fertilization Type | Fertilization Amount (kg/ha) | |||
April 2021 | Compound fertilizer | 643 | 450 | 450 | 450 |
Water-soluble humic acid fertilizer | - | - | 30 | 60 | |
July 2021 | Compound fertilizer | 643 | 450 | 450 | 450 |
Water-soluble humic acid fertilizer | - | - | 75 | 150 | |
October 2021 | Compound fertilizer | 964 | 675 | 675 | 675 |
Water-soluble humic acid fertilizer | - | - | 45 | 90 | |
Total | Compound fertilizer | 2250 | 1575 | 1575 | 1575 |
Water-soluble humic acid fertilizer | - | - | 150 | 300 |
Treatments | pH | SOC | TN | TP | AN | AP | C/N |
---|---|---|---|---|---|---|---|
(g/kg) | (g/kg) | (g/kg) | (mg/kg) | (mg/kg) | |||
CF1 | 5.68 ± 0.55 a | 110.67 ± 1.15 c | 5.90 ± 0.11 a | 3.37 ± 0.09 b | 502.33 ± 21.96 a | 469.00 ± 42.44 b | 18.76 ± 0.54 c |
CF2 | 5.40 ± 0.28 a | 105.33 ± 2.52 c | 5.31 ± 0.11 c | 2.63 ± 0.18 c | 418.67 ± 70.53 d | 457.33 ± 41.14 b | 19.82 ± 0.09 c |
CF2HA1 | 5.33 ± 0.06 a | 116.97 ± 4.05 b | 5.42 ± 0.16 c | 3.12 ± 0.18 b | 442.00 ± 15.62 c | 473.00 ± 18.36 b | 21.59 ± 0.50 b |
CF2HA2 | 4.96 ± 0.19 b | 123.83 ± 1.61 a | 5.62 ± 0.51 b | 3.59 ± 0.19 a | 476.33 ± 47.65 b | 506.67 ± 27.06 a | 22.14 ± 0.81 a |
Treatments | OTUs | ACE | Chao1 | Shannon | Coverage |
---|---|---|---|---|---|
CF1 | 1870 ± 7 a | 1917 ± 9 a | 1945 ± 7 a | 9.22 ± 0.08 a | 0.99 ± 0.01 |
CF2 | 1848 ± 41 b | 1905 ± 32 a | 1930 ± 41 a | 9.29 ± 0.09 a | 0.99 ± 0.01 |
CF2HA1 | 1840 ± 38 b | 1891 ± 36 a | 1912 ± 38 a | 8.91 ± 0.35 b | 0.99 ± 0.01 |
CF2HA2 | 1817 ± 56 b | 1889 ± 44 a | 1907 ± 44 a | 9.04 ± 0.11 b | 0.99 ± 0.01 |
Envfit | RDA1 | RDA2 | R2 | p-Value |
---|---|---|---|---|
pH | −0.28 | 0.96 | 0.05 | 0.805 |
SOC | −0.21 | 0.98 | 0.14 | 0.514 |
TN | 0.55 | −0.83 | 0.21 | 0.327 |
TP | 0.78 | −0.63 | 0.16 | 0.449 |
AN | 0.95 | −0.32 | 0.11 | 0.558 |
AP | 0.34 | −0.94 | 0.65 | 0.015 * |
MBC | −0.12 | 0.99 | 0.30 | 0.190 |
MBN | −0.06 | −1.00 | 0.70 | 0.004 ** |
Acp | 0.87 | 0.49 | 0.31 | 0.202 |
Urease | −0.83 | 0.55 | 0.25 | 0.265 |
Sucrase | −0.57 | 0.82 | 0.23 | 0.331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, H.; Zhao, J.; Yang, Z. Effects of Compound Fertilizer Decrement and Water-Soluble Humic Acid Fertilizer Application on Soil Properties, Bacterial Community Structure, and Shoot Yield in Lei Bamboo (Phyllostachys praecox) Plantations in Subtropical China. Forests 2024, 15, 400. https://doi.org/10.3390/f15030400
Ni H, Zhao J, Yang Z. Effects of Compound Fertilizer Decrement and Water-Soluble Humic Acid Fertilizer Application on Soil Properties, Bacterial Community Structure, and Shoot Yield in Lei Bamboo (Phyllostachys praecox) Plantations in Subtropical China. Forests. 2024; 15(3):400. https://doi.org/10.3390/f15030400
Chicago/Turabian StyleNi, Huijing, Jiancheng Zhao, and Zhenya Yang. 2024. "Effects of Compound Fertilizer Decrement and Water-Soluble Humic Acid Fertilizer Application on Soil Properties, Bacterial Community Structure, and Shoot Yield in Lei Bamboo (Phyllostachys praecox) Plantations in Subtropical China" Forests 15, no. 3: 400. https://doi.org/10.3390/f15030400
APA StyleNi, H., Zhao, J., & Yang, Z. (2024). Effects of Compound Fertilizer Decrement and Water-Soluble Humic Acid Fertilizer Application on Soil Properties, Bacterial Community Structure, and Shoot Yield in Lei Bamboo (Phyllostachys praecox) Plantations in Subtropical China. Forests, 15(3), 400. https://doi.org/10.3390/f15030400