NH4+-N and Low Ratios of NH4+-N/NO3−-N Promote the Remediation Efficiency of Salix linearistipularis in Cd- and Pb-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Experimental Design
2.3. Experimental Analysis
2.3.1. Gas Exchange Measurements
2.3.2. Root Morphological Parameters and Biomass Determination
2.3.3. Rhizosphere Soil Analyses
2.3.4. Plant Tissue Analysis
2.4. Statistical Analysis
3. Results
3.1. Chemical Properties of Rhizosphere Soil
3.2. Salix linearistipularis Traits under Different N Treatments
3.3. Distribution of Cd and Pb in Salix linearistipularis
3.4. Cd and Pb Accumulation in Salix linearistipularis
3.5. The Direct and Indirect Mechanisms Regulating the Accumulation of Cd and Pb
4. Discussion
4.1. Nitrogen Reduced Soil pH and Improved Soil Quality
4.2. NH4+-N Promotes Plant Growth
4.3. NH4+-N Increases Cd and Pb Accumulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Soil Properties | Value |
---|---|
pH | 8.21 |
Soil organic matter | 15.67 g kg−1 |
Total phosphorus | 185.25 mg kg−1 |
Total potassium | 6.12 g kg−1 |
Pb concentration | 210 mg kg−1 |
Cd concentration | 6.5 mg kg−1 |
Nitrogen Concentratioin (kg hm−2 year−1) | Ratios | SOM (g·kg−1) | CEC (cmol·Kg−1) | Ure (mg g−1 d−1) | S-CAT (ml·g−1) | NO3−-N (mg kg−1) | NH4+-N (mg kg−1) | Cd (mg kg−1) | Pb (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 17.71 ± 1.81 cd | 12.52 ± 0.06 a | 1 ± 0.09 cd | 0.94 ± 0.14 efg | 0.64 ± 0.09 fg | 0.24 ± 0.13 h | 4.09 ± 0.56 ef | 184.17 ± 11.04 abc |
60 | 6/0 | 19.6 ± 0.4 ab | 11.86 ± 0.83 a | 0.91 ± 0.05 de | 1.03 ± 0.13 cdef | 1.47 ± 0.1 efg | 0.37 ± 0.07 gh | 2.65 ± 0.17 g | 132.24 ± 19.28 fgh |
4/2 | 19.42 ± 0.66 ab | 10.46 ± 0.28 a | 0.73 ± 0.07 f | 0.77 ± 0.12 g | 5.08 ± 0.45 e | 0.31 ± 0.07 gh | 2.77 ± 0.15 g | 121.61 ± 23.95 ghi | |
3/3 | 18.56 ± 0.8 bc | 11.52 ± 1.25 a | 0.89 ± 0.08 e | 1.09 ± 0.08 bcde | 2.75 ± 0.19 efg | 0.56 ± 0.09 de | 2.71 ± 0.24 g | 159.21 ± 10.82 de | |
2/4 | 17.35 ± 0.35 de | 11.52 ± 0.58 a | 0.99 ± 0.04 cd | 0.96 ± 0.1 defg | 10.59 ± 1.14 d | 0.4 ± 0.05 fg | 3.06 ± 0.42 g | 136.74 ± 9.19 efg | |
0/6 | 19.07 ± 0.66 ab | 12.19 ± 0.69 a | 0.97 ± 0.05 de | 1.03 ± 0.16 cdef | 11.76 ± 0.92 d | 0.65 ± 0.06 cd | 4.29 ± 0.46 de | 110.34 ± 18.48 hi | |
120 | 6/0 | 16.32 ± 0.35 e | 11.03 ± 1.45 a | 0.91 ± 0.08 de | 0.87 ± 0.04 fg | 0.35 ± 0.03 g | 0.33 ± 0.05 gh | 4.74 ± 0.44 cd | 103.24 ± 12.79 i |
4/2 | 18.56 ± 0.01 bc | 11.87 ± 0.79 a | 1.19 ± 0.05 a | 0.96 ± 0.11 defg | 19.91 ± 1.88 c | 0.52 ± 0.05 ef | 5.14 ± 0.16 bc | 125.9 ± 10.48 ghi | |
3/3 | 18.55 ± 0.68 bc | 12.55 ± 1.1 a | 1.16 ± 0.08 a | 0.95 ± 0.07 defg | 22.71 ± 0.86 c | 0.31 ± 0.06 gh | 4.54 ± 0.45 cde | 102.26 ± 18.05 i | |
2/4 | 18.73 ± 0.66 bc | 12.18 ± 0.99 a | 1.16 ± 0.06 a | 1.18 ± 0.09 abc | 36.41 ± 4.92 b | 0.77 ± 0.14 b | 4.57 ± 0.48 cde | 135.74 ± 12.25 efg | |
0/6 | 19.41 ± 0.35 ab | 12.43 ± 0.86 a | 1.15 ± 0.04 a | 1.34 ± 0.08 a | 23.04 ± 3.49 c | 0.98 ± 0.08 a | 3.64 ± 0.35 f | 155.35 ± 15 def | |
200 | 6/0 | 19.25 ± 0.57 ab | 11.55 ± 0.72 a | 1.06 ± 0.06 bc | 0.91 ± 0.07 efg | 4.47 ± 0.52 ef | 0.33 ± 0.06 gh | 4.33 ± 0.46 de | 132.97 ± 14.31 fgh |
4/2 | 20.16 ± 0.4 a | 11.98 ± 1.75 a | 1.13 ± 0.03 ab | 1.11 ± 0.14 bcde | 39.46 ± 2.76 b | 0.72 ± 0.08 bc | 5.55 ± 0.48 ab | 194.67 ± 12.03 ab | |
3/3 | 18.79 ± 0.79 bc | 10.78 ± 0.4 a | 1.18 ± 0.02 a | 1.28 ± 0.14 ab | 14.09 ± 1.68 d | 1.35 ± 0.12 a | 5.09 ± 0.33 bc | 173.13 ± 15.84 bcd | |
2/4 | 18.73 ± 0.86 bc | 12.55 ± 0.83 a | 1.16 ± 0.04 a | 1.11 ± 0.1 bcde | 58.17 ± 5.38 a | 0.52 ± 0.04 def | 5.62 ± 0.17 ab | 168.91 ± 19.3 cd | |
0/6 | 20.15 ± 0.39 a | 12.74 ± 0.79 a | 1.16 ± 0.04 a | 1.15 ± 0.16 abcd | 38.59 ± 2.26 b | 1.05 ± 0.04 a | 6.09 ± 0.62 a | 201.92 ± 16.63 a | |
L | ** | ns | ** | ** | ** | ** | ** | ** | |
R | ** | ns | ** | ** | ** | ** | ** | ** | |
L × R | ** | ns | ** | ** | ** | ** | ** | ** |
Nitrogen Level (kg hm−2 year−1) | Ratios | Cd | Pb | ||
---|---|---|---|---|---|
TF of Stems | TF of Leaves | TF of Stems | TF of Leaves | ||
0 | 0 | 1.6 ± 0.21 abc | 3.59 ± 0.4 abc | 1.11 ± 0.14 bcd | 0.78 ± 0.04 bcdef |
60 | 6/0 | 1.35 ± 0.41 abcd | 3.86 ± 0.24 abc | 1.23 ± 0.24 abc | 1.04 ± 0.24 ab |
4/2 | 1.7 ± 0.34 ab | 4.62 ± 0.75 a | 1.33 ± 0.01 ab | 1.05 ± 0.18 ab | |
3/3 | 1.21 ± 0.32 cde | 2.86 ± 1.09 cde | 1.54 ± 0.5 a | 1.15 ± 0.24 a | |
2/4 | 1.79 ± 0.34 a | 4.08 ± 1.26 ab | 0.74 ± 0.06 ef | 0.51 ± 0.16 fg | |
0/6 | 1.18 ± 0.32 cde | 1.86 ± 0.56 ef | 0.66 ± 0.12 f | 0.47 ± 0.11 g | |
120 | 6/0 | 1.25 ± 0.27 bcde | 3.08 ± 0.58 bcd | 1.03 ± 0.11 bcde | 0.71 ± 0.1 cdefg |
4/2 | 0.89 ± 0.07 def | 2.11 ± 0.3 def | 0.72 ± 0.09 ef | 0.47 ± 0.08 g | |
3/3 | 1.12 ± 0.14 def | 2.23 ± 0.33 def | 0.76 ± 0.09 def | 0.54 ± 0.05 efg | |
2/4 | 0.99 ± 0.16 def | 1.29 ± 0.1 f | 0.92 ± 0.08 cdef | 0.81 ± 0.08 bcde | |
0/6 | 1.08 ± 0.26 def | 1.84 ± 0.56 ef | 0.65 ± 0.3 f | 0.63 ± 0.27 defg | |
200 | 6/0 | 1 ± 0.02 def | 1.61 ± 0.19 f | 0.63 ± 0.05 f | 0.61 ± 0.04 defg |
4/2 | 0.68 ± 0.09 f | 1.03 ± 0.13 f | 0.61 ± 0.06 f | 0.56 ± 0.06 efg | |
3/3 | 0.65 ± 0.01 f | 1.58 ± 0.03 f | 0.65 ± 0.01 f | 0.88 ± 0.06 bcd | |
2/4 | 0.89 ± 0.18 def | 3.58 ± 0.78 abc | 0.87 ± 0.16 def | 0.91 ± 0.05 abc | |
0/6 | 0.85 ± 0.12 ef | 1.84 ± 0.32 ef | 0.69 ± 0.16 ef | 0.65 ± 0.05 cdefg | |
L | ** | ** | ** | ** | ** |
R | ns | ns | ** | ns | ns |
L × R | ** | ns | ** | ns | ** |
References
- Cheng, H.; Shen, R.L.; Chen, Y.Y.; Wan, Q.J.; Shi, T.Z.; Zhu, T.; Wang, J.J.; Wan, Y.; Hong, Y.S.; Li, X.C. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Luo, X.S.; Yu, S.; Zhu, Y.G.; Li, X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef]
- Zhang, S.M.; Yang, C.; Chen, M.M.; Chen, J.; Pan, Y.H.; Chen, Y.L.; Rahman, S.U.; Fan, J.F.; Zhang, Y. Influence of nitrogen availability on Cd accumulation and acclimation strategy of Populus leaves under Cd exposure. Ecotoxicol. Environ. Saf. 2019, 180, 439–448. [Google Scholar] [CrossRef]
- Yang, X.; Wen, F.; Ge, C.J. Iron-modified phosphorus- and silicon-based biochar exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. J. Hazard. Mater. 2023, 443, 130203. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Zhang, X.F.; Hu, Z.H.; Yan, T.X.; Lu, R.R.; Peng, C.L.; Li, S.S.; Jing, Y.X. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicol. Environ. Saf. 2019, 171, 352–360. [Google Scholar] [CrossRef]
- Mandal, P. An insight of environmental contamination of arsenic on animal health. Emerg. Contam. 2017, 3, 17–22. [Google Scholar] [CrossRef]
- Dai, Y.Y.; Liu, R.; Zhou, Y.M.; Li, N.; Hou, L.Q.; Ma, Q.; Gao, B. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environ. Int. 2020, 136, 105421. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Li, J.X.; Liu, Y.K.; Luo, J.P.; Xu, Q.; Li, B.; Li, Q.Q.; Li, T.Q.; Wang, C.Q. Ochrobactrum intermedium and saponin assisted phytoremediation of Cd and B[a]P co-contaminated soil by Cd-hyperaccumulator Sedum alfredii. Chemosphere 2020, 245, 125547. [Google Scholar] [CrossRef] [PubMed]
- Vijendra, S.; Achlesh, D. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Cui, X.Y.; Mao, P.; Sun, S.; Huang, R.; Fan, Y.X.; Li, Y.X.; Li, Y.W.; Zhuang, P.; Li, Z.A. Phytoremediation of cadmium contaminated soils by Amaranthus Hypochondriacus L.: The effects of soil properties highlighting cation exchange capacity. Chemosphere 2021, 283, 131067. [Google Scholar] [CrossRef]
- Dos Santos Utmazian, M.N.; Wenzel, W.W. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J. Plant Nutr. Soil Sci. 2007, 170, 265–272. [Google Scholar] [CrossRef]
- Tozser, D.; Magura, T.; Simon, E. Heavy metal uptake by plant parts of willow species: A meta-analysis. J. Hazard. Mater. 2017, 336, 101–109. [Google Scholar] [CrossRef]
- Cao, Y.N.; Ma, C.X.; Chen, G.C.; Zhang, J.F.; Xing, B.S. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environ. Pollut. 2017, 225, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.D.; Liu, D.; Wang, Y.Y.; Hussain, B.L.; Zhao, F.L.; Ding, Z.L.; Yang, X.; Zhu, H.Q.; Dawood, M. Variations in phytoremediation potential and phytoavailability of heavy metals in different Salix genotypes subjected to seasonal flooding. J. Environ. Manag. 2021, 299, 113632. [Google Scholar] [CrossRef] [PubMed]
- Andrej, P.; Ronald, S.Z.J.; Srđan, R.; Nataša, N.; Saša, O.; Jelena, B.; Marina, K. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. J. Environ. Manag. 2019, 239, 352–365. [Google Scholar] [CrossRef]
- Sandra, C.G.; María, E.Y.; David, M.C.; Rocío, M.; Luis, E.H. Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environ. Exp. Bot. 2012, 75, 16–24. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Cang, L.; Wang, Y.J.; Zhou, D.M. Effects of soil properties, nitrogen application, plant phenology, and their interactions on plant uptake of cadmium in wheat. J. Hazard. Mater. 2020, 384, 121452. [Google Scholar] [CrossRef]
- Carr, N.F.; Boaretto, R.M.; Mattos, D. Coffee seedlings growth under varied NO3−:NH4+ ratio: Consequences for nitrogen metabolism, amino acids profile, and regulation of plasma membrane H+-ATPase. Plant Physiol. Biochem. 2020, 154, 11–20. [Google Scholar] [CrossRef]
- Nishida, H.; Suzaki, T. Nitrate-mediated control of root nodule symbiosis. Curr. Opin. Plant Biol. 2018, 44, 129–136. [Google Scholar] [CrossRef]
- Srivastava, S.; Pathare, V.S.; Sounderajan, S.; Suprasanna, P. Nitrogen supply influences arsenic accumulation and stress responses of rice (Oryza sativa L.) seedlings. J. Hazard. Mater. 2019, 367, 599–606. [Google Scholar] [CrossRef]
- Boschiero, B.N.; Mariano, E.; Azevedo, R.A.; Paulo, C.O.T. Influence of nitrate—Ammonium ratio on the growth, nutrition, and metabolism of sugarcane. Plant Physiol. Biochem. 2019, 139, 246–255. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Wang, S.L.; Xu, F.S.; Wang, C.; Cai, H.M.; Ding, G.D. The rapeseed genotypes with contrasting NUE response discrepantly to varied provision of ammonium and nitrate by regulating photosynthesis, root morphology, nutritional status, and oxidative stress response. Plant Physiol. Biochem. 2021, 166, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Leite, T.S.; Monteiro, F.A. Nitrogen form regulates cadmium uptake and accumulation in Tanzania guinea grass used for phytoextraction. Chemosphere 2019, 236, 124324. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.M.; Wang, P.; Kopittke, P.M.; Wang, A.A.; Tang, C.X. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation. J. Exp. Bot. 2016, 17, 5041–5050. [Google Scholar] [CrossRef]
- Jalloh, M.A.; Chen, J.H.; Zhen, F.R. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J. Hazard. Mater. 2009, 162, 1081–1085. [Google Scholar] [CrossRef]
- Xie, H.L.; Jiang, R.F.; Zhang, F.S.; McGrath, S.P.; Zhao, F.J. Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 2009, 318, 205–215. [Google Scholar] [CrossRef]
- Hachiya, T.; Sakakibara, H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. J. Exp. Bot. 2017, 68, 2501–2512. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, S.H.B.; Zheng, H.; Li, S.S.; Chen, L.; Wang, D. The responses of cadmium phytotoxicity in rice and the microbial community in contaminated paddy soils for the application of different long-term N fertilizers. Chemosphere 2020, 238, 124700. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Zou, D.S.; Wang, A.D.; Zhou, A.Y.; Liu, Y.H.; Li, Z.H.; Liu, F.; Wang, H.; Zeng, Q.; Xiao, Z.H. Remediation of cadmium-contaminated soils using Brassica napus: Effect of nitrogen fertilizers. J. Environ. Manag. 2020, 255, 109885. [Google Scholar] [CrossRef]
- Han, H.; Cai, H.; Wang, X.Y.; Hu, X.M.; Chen, Z.J.; Yao, L.G. Heavy metal-immobilizing bacteria increase the biomass and reduce the Cd and Pb uptake by pakchoi (Brassica chinensis L.) in heavy metal-contaminated soil. Ecotoxicol. Environ. Saf. 2020, 195, 110375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.P.; Huang, G.Y.; Liang, D.; Liu, Y.H.; Yao, S.Y.; Ali, U.; Hu, H.Q. Influence of nitrogen forms and application rates on the phytoextraction of copper by castor bean (Ricinus communis L.). Environ. Sci. Pollut. Res. 2019, 27, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.C.; Zhang, W.J.; Xu, S.J.; Shi, H.Z.; Wen, D.; Huang, Y.D.; Peng, L.J.; Deng, T.H.B.; Du, R.Y.; Li, F.R.; et al. Increasing ammonium nutrition as a strategy for inhibition of cadmium uptake and xylem transport in rice (Oryza sativa L.) exposed to cadmium stress. Environ. Exp. Bot. 2018, 155, 734–741. [Google Scholar] [CrossRef]
- Cao, Y.N.; Tan, Q.; Zhang, F.; Ma, C.X.; Xiao, J.; Chen, G.C. Phytoremediation potential evaluation of multiple Salix clones for heavy metals (Cd, Zn and Pb) in flooded soils. Sci. Total Environ. 2022, 813, 152482. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.K.; Niu, X.Y.; Di, D.L.; Huang, D.Z. Nitrogen and sulfur fertilizers promote the absorption of lead and cadmium with Salix integra Thunb. by increasing the bioavailability of heavy metals and regulating rhizosphere microbes. Front. Microbiol. 2022, 13, 945847. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Gbadebo, A.M.; Oyedepo, J.A.; Ojekunle, Z.O.; Oyeniran, A.A.; Onalaja, O.J.; Ogunjimi, D. Bioremediation of industrially contaminated soil using compost and plant technology. J. Hazard. Mater. 2016, 304, 166–172. [Google Scholar] [CrossRef]
- Meng, J.; Li, W.J.; Diao, C.M. Microplastics drive microbial assembly, their interactions, and metagenomic functions in two soils with distinct pH and heavy metal availability. J. Hazard. Mater. 2023, 458, 131973. [Google Scholar] [CrossRef]
- Han, F.; An, S.Y.; Liu, L.; Wang, Y.; Ma, L.Q.; Yang, L. Sulfoaluminate cement-modified straw biochar as a soil amendment to inhibit Pb-Cd mobility in the soil-romaine lettuce system. Chemosphere 2023, 332, 138891. [Google Scholar] [CrossRef]
- Arnaud, J.; Léna, D.B.; Thomas, D.; Thibault, S.; Nausicaa, N. Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: Influence of nitrogen fertilization and planting density. Ecol. Eng. 2018, 116, 178–187. [Google Scholar] [CrossRef]
- Sterckeman, T.; Goderniaux, M.; Sirguey, C.; Cornu, J.Y.; Christophe, N. Do roots or shoots control cadmium accumulation in the hyperaccumulator Noccaea caerulescens? Plant Soil 2015, 392, 87–99. [Google Scholar] [CrossRef]
- Niu, X.Y.; Zhou, J.; Wang, X.N.; Su, X.Y.; Du, S.H.; Zhu, Y.F.; Yang, J.Y.; Huang, D.Z. Indigenous bacteria have high potential for promoting Salix integra Thunb. remediation of lead-contaminated soil by adjusting soil properties. Front. Microbiol. 2020, 11, 924. [Google Scholar] [CrossRef]
- Cheng, F.Y. Nursery Science for Gardens; China Forestry Publishing House: Beijing, China, 2012. [Google Scholar]
- Zheng, H.F.; Zhang, X.; Ma, W.J.; Song, J.Y.; Rahman, S.U.; Wang, J.H.; Zhang, Y. Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei. Environ. Exp. Bot. 2017, 138, 77–87. [Google Scholar] [CrossRef]
- Riley, D.; Barber, S.A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface. Soil Sci. Soc. Am. J. 1970, 34, 154–155. [Google Scholar] [CrossRef]
- Lu, K. Analytical Methods of Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999; pp. 127–332. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Gosewinkel, U.; Broadbent, F.E. Conductimetric determination of soil urease activity. Commun. Soil Sci. Plant Anal. 1984, 15, 1377–1389. [Google Scholar] [CrossRef]
- Zheng, S.N.; Zhang, M.K. Effect of moisture regime on the redistribution of heavy metals in paddy soil. J. Environ. Sci. 2011, 23, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- He, J.L.; Qin, J.J.; Long, L.Y.; Ma, Y.L.; Li, H.; Li, K.; Jiang, X.N.; Liu, T.X.; Polle, A.; Liang, Z.S.; et al. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol. Plant. 2011, 143, 50–63. [Google Scholar] [CrossRef]
- Kim, I.S.; Kang, K.H.; Johnson, G.P.; Lee, E.J. Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ. Pollut. 2003, 126, 235–243. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.D.; Zhou, Q.X.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef]
- Ma, Q.; Qian, Y.S.; Yu, Q.Q.; Cao, Y.F.; Tao, R.R.; Zhu, M.; Ding, J.F.; Li, C.Y.; Guo, W.S.; Zhu, X.K. Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agric. Ecosyst. Environ. 2023, 349, 108445. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ye, C.; Su, Y.W.; Peng, W.C.; Lu, R.; Liu, Y.X.; Huang, H.C.; He, X.H.; Yang, M.; Zhu, S.S. Soil acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Souza, J.C.; Nogueirol, R.C.; Monteiro, F.A. NO3−/NH4+ ratios affect nutritional homeostasis and production of Tanzania guinea grass under Cu toxicity. Environ. Sci. Pollut. Res. 2018, 25, 14083–14096. [Google Scholar] [CrossRef]
- Zhang, L.D.; Liu, X.; Wei, M.Y.; Guo, Z.J.; Zhao, Z.Z.; Gao, C.H.; Li, J.; Xu, J.X.; Shen, Z.J.; Zheng, H.L. Ammonium has stronger Cd detoxification ability than nitrate by reducing Cd influx and increasing Cd fixation in Solanum nigrum L. J. Hazard. Mater. 2022, 425, 127947. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kang, X.F.; Zou, J.Z. Allochthonous arbuscular mycorrhizal fungi promote Salix viminalis L.–mediated phytoremediation of polycyclic aromatic hydrocarbons characterized by increasing the release of organic acids and enzymes in soils. Ecotoxicol. Environ. Saf. 2023, 249, 114461. [Google Scholar] [CrossRef] [PubMed]
- Enggrob, K.L.; Jakobsen, C.M.; Pedersen, I.F.; Rasmussen, J. Newly depolymerized large organic N contributes directly to amino acid uptake in young maize plants. New Phytol. 2019, 224, 689–699. [Google Scholar] [CrossRef]
- Giansoldati, V.; Tassi, E.; Morelli, E.; Gabellieri, E.; Pedron, F.; Barbafieri, M. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 2012, 87, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.M.; Wang, A.; Tang, C.X. Ammonium-based fertilizers enhance Cd accumulation in Carpobrotus rossii grown in two soils differing in pH. Chemosphere 2017, 188, 689–696. [Google Scholar] [CrossRef]
- Sarker, A.; Masud, M.A.; Deep, D.M.; Kallol, D.; Rakhi, N.; Most, W.R.A.; Reza, A.M.; Islam, T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. Chemosphere 2023, 332, 138861. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.G.; Zhang, W.; Wang, F.; Meng, Z.H.; Cheng, Y.; Geng, Z.X.; Lian, F. Particle size of biochar significantly regulates the chemical speciation, transformation, and ecotoxicity of cadmium in biochar. Environ. Pollut. 2023, 320, 121100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xue, B.; Jiao, L.; Meng, X.Y.; Zhang, L.Y.; Li, B.X.; Sun, H.W. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil. Sci. Total Environ. 2022, 813, 152648. [Google Scholar] [CrossRef]
- Guo, S.H.; Hu, N.; Li, Q.S.; Yang, P.; Wang, L.L.; Xu, Z.M.; Chen, H.J.; He, B.Y.; Zeng, E.Y. Response of edible amaranth cultivar to salt stress led to Cd mobilization in rhizosphere soil: A metabolomic analysis. Environ. Pollut. 2018, 241, 422–431. [Google Scholar] [CrossRef]
- Esteban, R.; Ariz, I.; Cruz, C.; Jose, F.M. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Su, S.Q.; Zhou, Y.M.; Qin, J.G.; Wang, W.; Yao, W.Z.; Song, L. Physiological responses of Egeria densa to high ammonium concentration and nitrogen deficiency. Chemosphere 2012, 86, 538–545. [Google Scholar] [CrossRef]
- Bock, B.R. Increasing cereal yields with higher ammonium/nitrate ratios: Review of potentials and limitations. J. Environ. Sci. Health 1986, 21, 723–758. [Google Scholar] [CrossRef]
- Babalar, M.; Sokri, S.M.; Lesani, H.; Mohammad, A.; Allen, V.B. Effects of nitrate: Ammonium ratios on vegetative growth and mineral element composition in leaves of apple. J. Plant Nutr. 2015, 38, 2247–2258. [Google Scholar] [CrossRef]
- Chang, Y.S.; Chang, Y.J.; Lin, C.T.; Lee, M.C.; Wu, C.W.; Lai, Y.H. Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata. Int. Biodeterior. Biodegrad. 2013, 85, 709–714. [Google Scholar] [CrossRef]
- Chai, M.W.; Li, R.Y.; Shen, X.X.; Nora FY, T.; Zan, Q.J.; Li, R.L. Does ammonium nitrogen affect accumulation, subcellular distribution and chemical forms of cadmium in Kandelia obovata? Ecotoxicol. Environ. Saf. 2018, 162, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Zerche, S.; Druege, U.; Kadner, R. Nitrogen absorption, growth of stock plants, and adventitious rooting of Pelargonium × hortorumcuttings as affected by the form and dosage of nitrogen. J. Hortic. Sci. Biotechnol. 2008, 83, 207–217. [Google Scholar] [CrossRef]
Treatments | Nitrogen Levels (kg·hm−2·year−1) | |||
---|---|---|---|---|
0 | 60 | 120 | 200 | |
NH4+-N/NO3−-N = 6/0 | Control | N60-6/0 | N120-6/0 | N200-6/0 |
NH4+-N/NO3−-N = 4/2 | N60-4/2 | N120-4/2 | N200-4/2 | |
NH4+-N/NO3−-N = 3/3 | N60-3/3 | N120-3/3 | N200-3/3 | |
NH4+-N/NO3−-N = 2/4 | N60-2/4 | N120-2/4 | N200-2/4 | |
NH4+-N/NO3−-N = 0/6 | N60-0/6 | N120-0/6 | N200-0/6 |
Nitrogen Levels (kg hm−2 year−1) | Ratios | pH | Total Cd (mg kg−1) | Total Pb (mg kg−1) | Acid-Soluble Cd (mg kg−1) | Acid-Soluble Pb (mg kg−1) |
---|---|---|---|---|---|---|
0 | Control | 7.96 ± 0.05 a | 4.09 ± 0.56 ef | 184.17 ± 11.04 abc | 0.77 ± 0.04 a | 20.78 ± 2.22 de |
60 | 6/0 | 7.88 ± 0.06 bc | 2.65 ± 0.17 g | 132.24 ± 19.28 fgh | 0.81 ± 0.13 a | 22.82 ± 2.53 bcd |
4/2 | 7.92 ± 0.03 ab | 2.77 ± 0.15 g | 121.61 ± 23.95 ghi | 0.81 ± 0.05 a | 18.91 ± 1.61 e | |
3/3 | 7.78 ± 0.06 de | 2.71 ± 0.24 g | 159.21 ± 10.82 de | 0.82 ± 0.1 a | 22.43 ± 3.51 bcde | |
2/4 | 7.77 ± 0.05 e | 3.06 ± 0.42 g | 136.74 ± 9.19 efg | 0.37 ± 0.03 c | 22.24 ± 1.87 cde | |
0/6 | 7.84 ± 0.01 cd | 4.29 ± 0.46 de | 110.34 ± 18.48 hi | 0.41 ± 0.09 c | 19.42 ± 2.48 de | |
120 | 6/0 | 7.88 ± 0.02 bc | 4.74 ± 0.44 cd | 103.24 ± 12.79 i | 0.83 ± 0.05 a | 19.53 ± 2.23 de |
4/2 | 7.78 ± 0.08 de | 5.14 ± 0.16 bc | 125.9 ± 10.48 ghi | 0.81 ± 0.08 a | 19.22 ± 1.19 de | |
3/3 | 7.76 ± 0.03 e | 4.54 ± 0.45 cde | 102.26 ± 18.05 i | 0.41 ± 0.03 c | 19.85 ± 1.15 de | |
2/4 | 7.80 ± 0.03 de | 4.57 ± 0.48 cde | 135.74 ± 12.25 efg | 0.48 ± 0.04 bc | 19.11 ± 1.64 e | |
0/6 | 7.80 ± 0.03 de | 3.64 ± 0.35 f | 155.35 ± 15 def | 0.55 ± 0.08 b | 14.32 ± 2.78 f | |
200 | 6/0 | 7.78 ± 0.04 de | 4.33 ± 0.46 de | 132.97 ± 14.31 fgh | 0.5 ± 0.07 bc | 27.62 ± 0.69 a |
4/2 | 7.74 ± 0.04 ef | 5.55 ± 0.48 ab | 194.67 ± 12.03 ab | 0.78 ± 0.07 a | 25.9 ± 0.59 ab | |
3/3 | 7.66 ± 0.03 g | 5.09 ± 0.33 bc | 173.13 ± 15.84 bcd | 0.77 ± 0.05 a | 25.81 ± 3.66 ab | |
2/4 | 7.69 ± 0.04 fg | 5.62 ± 0.17 ab | 168.91 ± 19.3 cd | 0.8 ± 0.07 a | 25.37 ± 2.87 abc | |
0/6 | 7.73 ± 0.05 ef | 6.09 ± 0.62 a | 201.92 ± 16.63 a | 0.73 ± 0.17 a | 25.18 ± 0.77 abc | |
L | ** | ** | ** | ** | ** | |
R | ** | ** | ** | ** | ** | |
L × R | ns | ** | ** | ** | ns |
Nitrogen Levels (kg hm−2 year−1) | Ratios | Cd | Pb | ||||
---|---|---|---|---|---|---|---|
BCF of Roots | BCF of Stems | BCF of Leaves | BCF of Roots | BCF of Stems | BCF of Leaves | ||
0 | Control | 2.01 ± 0.19 de | 3.21 ± 0.4 bc | 7.18 ± 0.49 bcd | 0.04 ± 0.01 e | 0.04 ± 0.01 b | 0.03 ± 0.01 fg |
60 | 6/0 | 2.19 ± 0.47 de | 2.84 ± 0.37 bcde | 8.37 ± 1.28 b | 0.03 ± 0.01 e | 0.04 ± 0.01 b | 0.03 ± 0.01 defg |
4/2 | 1.87 ± 0.28 de | 3.15 ± 0.6 bcd | 8.55 ± 0.69 b | 0.04 ± 0.01 e | 0.05 ± 0.01 ab | 0.04 ± 0.01 cde | |
3/3 | 2.14 ± 0.35 de | 2.52 ± 0.24 cdef | 5.85 ± 1.1 de | 0.03 ± 0.01 e | 0.05 ± 0.01 ab | 0.04 ± 0.01 cdef | |
2/4 | 1.99 ± 0.26 de | 3.52 ± 0.25 ab | 7.9 ± 1.51 bc | 0.07 ± 0.01 ab | 0.05 ± 0.01 a | 0.04 ± 0.01 cdef | |
0/6 | 2.22 ± 0.47 de | 2.52 ± 0.18 cdef | 4.01 ± 0.79 fgh | 0.07 ± 0.01 abc | 0.04 ± 0.01 b | 0.03 ± 0.01 efg | |
120 | 6/0 | 3.33 ± 0.52 a | 4.13 ± 0.85 a | 10.06 ± 0.44 a | 0.05 ± 0 cde | 0.05 ± 0.01 a | 0.03 ± 0.01 cdefg |
4/2 | 3.22 ± 0.39 abc | 2.84 ± 0.16 bcde | 6.72 ± 0.2 cd | 0.06 ± 0.01 bcd | 0.04 ± 0.01 b | 0.03 ± 0.01 g | |
3/3 | 2.17 ± 0.35 de | 2.39 ± 0.09 ef | 4.77 ± 0.35 efg | 0.06 ± 0.01 bcd | 0.04 ± 0.01 b | 0.03 ± 0.01 efg | |
2/4 | 2.57 ± 0.34 cd | 2.51 ± 0.15 cdef | 3.31 ± 0.41 gh | 0.05 ± 0.01 de | 0.04 ± 0.01 b | 0.04 ± 0.01 bcde | |
0/6 | 1.79 ± 0.49 e | 1.9 ± 0.47 fg | 3.16 ± 0.61 h | 0.07 ± 0.02 ab | 0.04 ± 0.01 b | 0.04 ± 0.01 bc | |
200 | 6/0 | 3.3 ± 0.38 ab | 3.3 ± 0.38 b | 5.24 ± 0.24 ef | 0.07 ± 0 ab | 0.04 ± 0.01 b | 0.04 ± 0.01 bc |
4/2 | 3.69 ± 0.66 a | 2.46 ± 0.11 def | 3.78 ± 0.22 fgh | 0.08 ± 0.01 a | 0.04 ± 0.01 b | 0.04 ± 0.01 bcd | |
3/3 | 2.52 ± 0.33 cde | 1.64 ± 0.22 g | 3.98 ± 0.45 fgh | 0.08 ± 0.01 a | 0.05 ± 0.01 b | 0.06 ± 0.01 a | |
2/4 | 2.12 ± 0.22 de | 1.87 ± 0.22 fg | 7.51 ± 1.02 bc | 0.05 ± 0.01 cde | 0.04 ± 0.01 b | 0.05 ± 0.01 b | |
0/6 | 2.6 ± 0.36 bcd | 2.19 ± 0.21 efg | 4.77 ± 1.06 efg | 0.06 ± 0.01 abcd | 0.04 ± 0.01 b | 0.04 ± 0.01 bcd | |
L | ** | ** | ** | ** | ns | ** | |
R | ** | ** | ** | ** | ns | ns | |
L × R | ** | ** | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, D.; Wang, S.; Chen, G.; Wang, Q.; Zhang, J.; Niu, X.; Huang, D. NH4+-N and Low Ratios of NH4+-N/NO3−-N Promote the Remediation Efficiency of Salix linearistipularis in Cd- and Pb-Contaminated Soil. Forests 2024, 15, 419. https://doi.org/10.3390/f15030419
Di D, Wang S, Chen G, Wang Q, Zhang J, Niu X, Huang D. NH4+-N and Low Ratios of NH4+-N/NO3−-N Promote the Remediation Efficiency of Salix linearistipularis in Cd- and Pb-Contaminated Soil. Forests. 2024; 15(3):419. https://doi.org/10.3390/f15030419
Chicago/Turabian StyleDi, Dongliu, Shaokun Wang, Guangcai Chen, Qian Wang, Jingwei Zhang, Xiaoyun Niu, and Dazhuang Huang. 2024. "NH4+-N and Low Ratios of NH4+-N/NO3−-N Promote the Remediation Efficiency of Salix linearistipularis in Cd- and Pb-Contaminated Soil" Forests 15, no. 3: 419. https://doi.org/10.3390/f15030419
APA StyleDi, D., Wang, S., Chen, G., Wang, Q., Zhang, J., Niu, X., & Huang, D. (2024). NH4+-N and Low Ratios of NH4+-N/NO3−-N Promote the Remediation Efficiency of Salix linearistipularis in Cd- and Pb-Contaminated Soil. Forests, 15(3), 419. https://doi.org/10.3390/f15030419