Temporal Dynamics and Influencing Mechanism of Air Oxygen Content in Different Vegetation Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Setting
2.3. Observation Methods
2.4. Path Analysis and Decision Analysis
- (1)
- Direct and Indirect Path Coefficients
- (2)
- Decision Coefficients
- (3)
- Residual Path Coefficients
2.5. Data Processing and Analysis
3. Results
3.1. Temporal Dynamics of Air Oxygen Content in Different Vegetation Types
3.1.1. Diurnal Variation of Air Oxygen Content in Different Seasons
3.1.2. Monthly Variation of Air Oxygen Content in Different Vegetation Types
3.1.3. Seasonal Variation of Air Oxygen Content in Different Vegetation Types
3.2. Dominant Factors of Air Oxygen Content in Different Vegetation Types
3.2.1. Air Oxygen Content and Environmental Factors in Different Vegetation Types
3.2.2. Correlation Analysis
3.2.3. Multiple Stepwise Regression Analysis
3.2.4. Path Analysis
3.2.5. Decision Analysis
4. Discussion
4.1. Effect of Vegetation Types on Air Oxygen Content
4.2. Temporal Variation Pattern of Air Oxygen Content in Different Vegetation Types
4.3. Effect of Environmental Factors on Air Oxygen Content in Different Vegetation Types
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santhosh, K.V.; Roy, B.K.; Bhowmik, P.K. Oxygen Level Monitoring in an Oxygen Cylinder. In Proceedings of the IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012), Nagapattinam, India, 30–31 March 2012; pp. 592–595. [Google Scholar]
- Radkevich, M.; Shipilova, K.; Pochuzhevskyi, O.; Gapirov, A. Assessment of oxygen concentration reduction near the highway—Importance for health and quality of life. Int. J. Qual. Res. 2022, 16, 863–876. [Google Scholar] [CrossRef]
- Ginzburg, A.S.; Vinogradova, A.A.; Fedorova, E.I.; Nikitich, E.V.; Karpov, A.V. Content of oxygen in the atmosphere over large cities and respiratory problems. Izv. Atmos. Ocean Phys. 2014, 50, 782–792. [Google Scholar] [CrossRef]
- Fan, G.; Wu, P.; Wang, X. Changes of oxygen content in facial skin before and after cigarette smoking. Skin Res. Technol. 2012, 18, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, S.; Hasler, E.D.; Saxer, S.; Furian, M.; Müller-Mottet, S.; Keusch, S.; Bloch, K.E. Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: Randomized, sham-controlled cross-over trial. Eur. Heart J. 2017, 38, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Li, Y.Y.; Ji, Z.H.; Han, F.; Yang, D.; Lv, C. Elucidating the effects of a Cryptomeria fortunei forest environment on overall health based on open field testing of mice. Sustainability 2022, 14, 59. [Google Scholar] [CrossRef]
- Zhu, S.X.; Hu, F.F.; He, S.Y.; Qiu, Q.; Su, Y.; He, Q.; Li, J.Y. Comprehensive evaluation of healthcare benefits of different forest types: A case study in Shimen National Forest Park, China. Forests 2021, 12, 207. [Google Scholar] [CrossRef]
- Zhu, S.X.; He, S.Y.; Hu, F.F.; Guo, Y.D.; Su, Y.; Cui, G.F.; Li, J.Y.; Qiu, Q.; He, Q. Exurban and suburban forests have superior healthcare benefits beyond downtown forests. Front. Ecol. Evol. 2023, 11, 1105213. [Google Scholar] [CrossRef]
- Wu, H.; Liu, J.; Zhang, J.; Li, C.; Fan, J.; Xu, X. Comparative quantification of oxygen release by wetland plants: Electrode technique and oxygen consumption model. Environ. Sci. Pollut. Res. 2014, 21, 1071–1078. [Google Scholar] [CrossRef]
- Liu, X.X.; Zhang, L.J.; Li, W.; Zhang, X.Z.; Jiang, C.Y. Simulating the changing oxygen production of terrestrial vegetation and its influencing factors in China. Acta Ecol. Sin. 2015, 35, 4314–4325. [Google Scholar]
- Shi, P.; Zhang, Y.; Chen, Y.; Zhu, W.; Hu, X.; Yang, H.; Jiang, L.; Ma, Y.; Tang, H. Factors contributing to the oxygen concentration over the Qinghai-Tibetan Plateau and its contribution rate calculation. Sci. China Earth Sci. 2024, 67, 497–509. [Google Scholar] [CrossRef]
- Zhao, J.J.; Li, Y.M.; Tian, H.L.; Liu, Y.S.; Xiang, S.M. Analysis on the oxygen content of forest environment in Qiannan Guizhou Province. Shandong For. Sci. Technol. 2012, 42, 24–26. [Google Scholar]
- Tian, H.L.; Li, Y.M.; Meng, X.J.; Zhang, J.; Xiang, S.M.; Ji, M. Analysis on environmental hygiene factors of different forest types in Qiannan Prefecture of Guizhou Province. J. West China For. Sci. 2013, 42, 41–46. [Google Scholar]
- Feng, S.S. Recreation Impact Factor of Pinus tabulatus and Quercus variabilis in West Mountain of Beijing; Beijing Forestry University: Beijing, China, 2012. [Google Scholar]
- Zeng, S.C.; Su, Z.Y.; Xie, Z.S.; Gu, Y.K.; Chen, B.G.; Lin, S.H. Productivity and capacities of CO2 fixation and O2 production of the major vegetation types in the Baiyunshan Scenic Spot, Guangzhou. J. South China Agric. Univ. (Nat. Sci. Ed.) 2003, 24, 16–19. [Google Scholar]
- Zaporozhets, A.O.; Redko, O.O.; Babak, V.P.; Eremenko, V.S.; Mokiychuk, V.M. Method of indirect measurement of oxygen concentration in the air. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 5, 105–114. [Google Scholar] [CrossRef]
- Wen, Y. Research on the Spatio-Temporal Dynamics of Forest Convalescence Factors and Convalescent Functions in Northern Jiangxi Province; Jiangxi Agricultural University: Nanchang, China, 2020. [Google Scholar]
- Wang, Y.; Wang, C.; Dong, J.; Wang, Q.; Lin, S.; Fu, W.; Zhu, L. Diurnal oxygen concentration changes in mixed evergreen broad-leaved forest at Qishan, Fuzhou. J. Chin. Urban For. 2014, 12, 6–9. [Google Scholar]
- Gu, L. Ecological Health Effects of Three Recreational Forests in Hui Mountain of Wuxi City, Jiangsu Province, Southern China; Chinese Academy of Forestry Sciences: Beijing, China, 2013. [Google Scholar]
- Ciren, W.M.; Tian, Y.J.; Chen, G.Y.; Pubu, S.M.; Deji, B.M. Incorporating oxygen level in the air into the comfort index of plateau tourism. Adv. Meteorol. Sci. Technol. 2022, 12, 63–65. [Google Scholar]
- Wang, Y.Y. Study on Health Functions of Typical Forest Communities in Qishan Mountain of Fuzhou; Chinese Academy of Forestry Sciences: Beijing, China, 2014. [Google Scholar]
- Zhang, Y.L. Ecological Health Effects of Typical Urban Forest in Hangzhou; Chinese Academy of Forestry Sciences: Beijing, China, 2013. [Google Scholar]
- Wang, Q. Study on Ecological Health Functions of Phyllostachys pubescens Forest in Qishan Mountain of Fuzhou; Chinese Academy of Forestry Sciences: Beijing, China, 2015. [Google Scholar]
- Zhu, J.; Wei, X.; Yang, J.; Zhang, J. Effects of topographic factors on tree species diversity in subtropical coniferous and broad-leaved mixed forests. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 153–161. [Google Scholar]
- Yao, L.; Wang, Z.; Wu, C.; Yuan, W.; Zhu, J.; Jiao, J.; Jiang, B. Competition and facilitation co-regulate spatial patterns and coexistence in a coniferous and broad-leaved mixed forest community in Zhejiang, China. Forests 2022, 13, 1356. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, X.; Wang, N.; Meng, M.; Jia, Z.; Wang, J.; Ma, S.; Tang, Y.; Li, C.; Zhai, L.; et al. Effects of vegetation type on soil shear strength in Fengyang Mountain Nature Reserve, China. Forests 2021, 12, 490. [Google Scholar] [CrossRef]
- Güneri, Ö.I.; Göktas, A.; Kayali, U. Path analysis and determining the distribution of indirect effects via simulation. J. Appl. Stat. 2017, 44, 1181–1210. [Google Scholar] [CrossRef]
- Yuan, Z.F.; Zhou, J.Y.; Guo, M.C.; Lei, X.Q.; Xie, X.L. Decision coefficient—The decision index of path analysis. J. Northwest A & F Univ. (Nat. Sci. Ed.) 2001, 29, 131–133. [Google Scholar]
- Zhao, M.W. Path analysis on the influence of meteorological factors on winter wheat yield in the Kaifeng Area. J. North China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2015, 36, 26–31. [Google Scholar]
- Shi, P.J.; Chen, Y.Q.; Zhang, G.F.; Tang, H.P.; Chen, Z.; Yu, D.Y.; Yang, J.; Ye, T.; Wang, J.A.; Liang, S.L.; et al. Factors contributing to spatial-temporal variations of observed oxygen concentration over the Qinghai-Tibetan Plateau. Sci. Rep. 2021, 11, 17338. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Yao, W.; Wang, X.; Chen, F.; Wang, S. Daily dynamics of forest air negative ion concentration in spring and the relationship of influencing factors: Results of field monitoring. Air Qual. Atmos. Health 2023, 1–11. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, L.; Pang, D.B.; Ma, J.P.; Wang, H.Y.; Wang, J.F.; Li, J.Y.; Li, X.B. Study on carbon sequestration and oxygen release capacity of 10 typical plants in Helan Mountain. J. Soil Water Conserv. 2021, 35, 206–213. [Google Scholar]
- Zhang, N.; Zhang, W.; Chen, W.; He, X.Y.; Wang, X.Y. Carbon sequestration and oxygen release capabilities of six garden tree species in Dalian. Chin. J. Ecol. 2015, 34, 2742–2748. [Google Scholar]
- Cheng, P.; Ma, Y.C.; Xiao, Z.D.; She, C.Q.; Cai, X.L.; Wang, Q.L. Analyses on photosynthetic characteristics of Camellia sinensis in different forests and its main impact factors and microclimate factors. J. Plant Resour. Environ. 2012, 21, 79–83. [Google Scholar]
- Zhao, W.R.; Liu, X.; Zhang, J.C.; Wang, Y.X.; Wang, J.P.; Zhuang, J.Y. Photosynthesis transpiration, the carbon fixation and oxygen release, and the cooling and humidificant capacity of typical tree species in Nanjing suburban. Sci. Silvae Sin. 2016, 52, 31–38. [Google Scholar]
- Krstic, B.; Borišev, M.; Kastori, R.; Orlović, S. The importance of urban vegetation in the carbon cycle and oxygen release. Zb. Matice Srp. Za Prir. Nauk. 2023, 14, 21–28. [Google Scholar] [CrossRef]
- Shao, Y.C.; Li, J.J.; Fu, D.F.; Li, E.H.; Zhuang, J.Y. Photosynthetic and transpiration characteristics of eight deciduous broad-leaved trees in summer in Shanghai. J. Northwest For. Univ. 2015, 30, 30–38. [Google Scholar]
- Hasegawa, Y.; Yamanaka, G.; Ando, K.; Uchida, H. Ambient temperature effects on evaluation of plant physiological activity using plant bioelectric potential. Sens. Mater. 2014, 26, 461–470. [Google Scholar] [CrossRef]
- Chen, T.; Wang, W.; La, B. Study on oxygen content change in Lasha. Plateau Mt. Meteorol. Res. 2010, 30, 65–67. [Google Scholar]
- Wang, L.M.; Hu, Y.H.; Qin, J.; Gao, K.; Huang, J. Carbon fixation and oxygen production of 151 plants in Shanghai. J. Huazhong Agric. Univ. 2007, 26, 399–401. [Google Scholar]
- Terzaghi, E.; Wild, E.; Zacchello, G.; Cerabolini, B.E.L.; Jones, K.C.; Di Guardo, A. Forest filter effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 2013, 74, 378–384. [Google Scholar] [CrossRef]
- Zhang, W.K.; Wang, B.; Niu, X. Dynamic research on particulates-absorbing capacities of common tree species leaves in Beijing over time. Acta Sci. Circumst. 2016, 36, 3840–3847. [Google Scholar]
Vegetation Types | Stand Vertical Structure | Dominant Tree Species | Attitude/m | Stand Area/hm2 | Canopy Density | Stand Mean Age/Year | Stand Density/N·hm−2 | Height of Tree/m | Diameter at Breast Height/cm |
---|---|---|---|---|---|---|---|---|---|
Broad-leaved forest | Tree layer and herb layer | Liquidambar formosana | 450 | 15.6 | 0.6 | ≥20 | 637 | 16.55 ± 3.04 | 15.36 ± 2.41 |
Coniferous forest | Tree layer and herb layer | Cunninghamia lanceolata | 350 | 17.9 | 0.7 | ≥30 | 861 | 30.10 ± 4.83 | 25.04 ± 3.17 |
Coniferous and broad-leaved mixed forest | Tree layer, shrub layer, and herb layer | Liquidambar formosana, Cunninghamia lanceolata | 290 | 25.6 | 0.5 | ≥20 | 688 | 20.38 ± 6.44 | 20.52 ± 4.78 |
Non-forest land | Herb layer | None | 790 | 1.7 | - | - | - | - | - |
Seasons | Vegetation Types | Morning (9:00–11:00) | Noon (12:00–14:00) | Afternoon (15:00–17:00) |
---|---|---|---|---|
Spring | Broad-leaved forest | 20.97 ± 0.06 c | 21.17 ± 0.01 a | 21.08 ± 0.02 b |
Coniferous forest | 21.02 ± 0.14 c | 21.27 ± 0.07 a | 21.17 ± 0.05 b | |
Coniferous and broad-leaved mixed forest | 21.05 ± 0.12 c | 21.38 ± 0.04 a | 21.20 ± 0.08 b | |
Non-forest land | 20.78 ± 0.03 c | 21.07 ± 0.05 a | 20.97 ± 0.01 b | |
Summer | Broad-leaved forest | 21.38 ± 0.25 c | 21.82 ± 0.27 a | 21.57 ± 0.30 b |
Coniferous forest | 21.44 ± 0.24 b | 21.92 ± 0.26 a | 21.59 ± 0.37 b | |
Coniferous and broad-leaved mixed forest | 21.62 ± 0.33 b | 22.07 ± 0.25 a | 21.73 ± 0.37 b | |
Non-forest land | 21.15 ± 0.25 c | 21.55 ± 0.22 a | 21.31 ± 0.28 b | |
Autumn | Broad-leaved forest | 20.99 ± 0.12 b | 21.12 ± 0.07 a | 20.98 ± 0.10 b |
Coniferous forest | 21.06 ± 0.11 b | 21.16 ± 0.08 a | 21.02 ± 0.06 b | |
Coniferous and broad-leaved mixed forest | 21.15 ± 0.12 b | 21.23 ± 0.06 a | 21.13 ± 0.07 b | |
Non-forest land | 20.89 ± 0.09 ab | 20.93 ± 0.10 a | 20.88 ± 0.06 b | |
Winter | Broad-leaved forest | 20.79 ± 0.05 c | 20.92 ± 0.02 a | 20.87 ± 0.04 b |
Coniferous forest | 20.85 ± 0.08 b | 20.95 ± 0.05 a | 20.88 ± 0.03 b | |
Coniferous and broad-leaved mixed forest | 20.87 ± 0.03 c | 20.99 ± 0.07 a | 20.92 ± 0.04 b | |
Non-forest land | 20.56 ± 0.05 c | 20.70 ± 0.06 a | 20.64 ± 0.04 b |
Indicators | Broad-Leaved Forest | Coniferous Forest | Coniferous and Broad-Leaved Mixed Forest | Non-Forest Land |
---|---|---|---|---|
Air oxygen content | 21.18 ± 0.36 b | 21.24 ± 0.37 b | 21.33 ± 0.42 a | 20.99 ± 0.33 c |
Negative air ion concentration | 1 845 ± 1 375 b | 2 264 ± 1 329 a | 2 205 ± 1 377 a | 1 096 ± 485 c |
Temperature | 24.60 ± 4.41 b | 25.24 ± 4.26 ab | 25.59 ± 4.16 a | 23.14 ± 4.18 c |
Relative humidity | 77.63 ± 12.76 a | 76.46 ± 13.56 a | 76.68 ± 13.26 a | 77.06 ± 13.41 a |
Wind speed | 0.94 ± 0.75 b | 0.96 ± 0.82 b | 0.91 ± 0.88 b | 5.92 ± 2.23 a |
Vegetation Types | Model | B | SE | β | t | Sig. | R2 | |
---|---|---|---|---|---|---|---|---|
Broad-leaved forest | 1 | Constant | 19.735 | 0.091 | 218.061 | 0.000 | 0.523 | |
T | 0.059 | 0.004 | 0.723 | 16.247 | 0.000 | |||
2 | Constant | 19.761 | 0.089 | 222.265 | 0.000 | 0.545 | ||
T | 0.055 | 0.004 | 0.675 | 14.758 | 0.000 | |||
WS | 0.074 | 0.022 | 0.155 | 3.394 | 0.001 | |||
3 | Constant | 19.723 | 0.090 | 219.962 | 0.000 | 0.554 | ||
T | 0.055 | 0.004 | 0.673 | 14.829 | 0.000 | |||
WS | 0.068 | 0.022 | 0.143 | 3.135 | 0.002 | |||
NAIC | 0.000 | 0.000 | 0.099 | 2.277 | 0.024 | |||
4 | Constant | 19.914 | 0.125 | 159.678 | 0.000 | 0.563 | ||
T | 0.055 | 0.004 | 0.676 | 15.013 | 0.000 | |||
WS | 0.073 | 0.022 | 0.153 | 3.357 | 0.001 | |||
NAIC | 0.000 | 0.000 | 0.127 | 2.815 | 0.005 | |||
RH | −0.003 | 0.001 | −0.098 | −2.179 | 0.030 | |||
Coniferous forest | 1 | Constant | 19.699 | 0.105 | 187.877 | 0.000 | 0.479 | |
T | 0.061 | 0.004 | 0.692 | 14.885 | 0.000 | |||
2 | Constant | 19.764 | 0.103 | 190.972 | 0.000 | 0.508 | ||
T | 0.055 | 0.004 | 0.627 | 12.933 | 0.000 | |||
WS | 0.084 | 0.022 | 0.184 | 3.794 | 0.000 | |||
3 | Constant | 19.952 | 0.131 | 151.775 | 0.000 | 0.519 | ||
T | 0.056 | 0.004 | 0.639 | 13.220 | 0.000 | |||
WS | 0.089 | 0.022 | 0.195 | 4.043 | 0.000 | |||
RH | −0.003 | 0.001 | −0.104 | −2.285 | 0.023 | |||
Coniferous and broad-leaved mixed forest | 1 | Constant | 19.429 | 0.113 | 171.809 | 0.000 | 0.547 | |
T | 0.074 | 0.004 | 0.740 | 17.055 | 0.000 | |||
2 | Constant | 19.530 | 0.112 | 174.169 | 0.000 | 0.577 | ||
T | 0.067 | 0.005 | 0.669 | 14.750 | 0.000 | |||
WS | 0.090 | 0.022 | 0.188 | 4.149 | 0.000 | |||
3 | Constant | 19.745 | 0.144 | 137.282 | 0.000 | 0.587 | ||
T | 0.068 | 0.005 | 0.676 | 15.021 | 0.000 | |||
WS | 0.096 | 0.022 | 0.200 | 4.432 | 0.000 | |||
RH | −0.003 | 0.001 | −0.099 | −2.357 | 0.019 | |||
Non-forest land | 1 | Constant | 19.576 | 0.074 | 264.030 | 0.000 | 0.609 | |
T | 0.061 | 0.003 | 0.780 | 19.377 | 0.000 | |||
2 | Constant | 19.625 | 0.075 | 260.653 | 0.000 | 0.621 | ||
T | 0.063 | 0.003 | 0.808 | 19.743 | 0.000 | |||
WS | −0.017 | 0.006 | −0.114 | −2.782 | 0.006 |
Vegetation Types | ||||||||
---|---|---|---|---|---|---|---|---|
T | WS | NAIC | RH | Total | ||||
Broad-leaved forest | T | 0.723 | 0.676 | 0.047 | 0.008 | −0.008 | 0.047 | |
WS | 0.362 | 0.153 | 0.208 | 0.017 | −0.014 | 0.210 | ||
NAIC | 0.159 | 0.127 | 0.042 | 0.020 | −0.029 | 0.033 | ||
RH | 0.017 | −0.098 | 0.056 | 0.022 | 0.038 | 0.116 | ||
Coniferous forest | T | 0.692 | 0.639 | 0.070 | −0.016 | 0.053 | ||
WS | 0.407 | 0.195 | 0.228 | −0.016 | 0.212 | |||
RH | 0.025 | −0.104 | 0.100 | 0.029 | 0.130 | |||
Coniferous and broad-leaved mixed forest | T | 0.740 | 0.676 | 0.075 | −0.012 | 0.063 | ||
WS | 0.440 | 0.200 | 0.255 | −0.015 | 0.240 | |||
RH | 0.015 | −0.099 | 0.084 | 0.031 | 0.114 | |||
Non-forest land | T | 0.780 | 0.808 | −0.027 | −0.027 | |||
WS | 0.079 | −0.114 | 0.192 | 0.192 |
Vegetation Types | Contribution to R2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
T | WS | NAIC | RH | ||||||
Broad-leaved forest | T | 0.489 | 0.457 | 0.064 | 0.011 | −0.011 | 0.521 | 0.661 | |
WS | 0.055 | 0.023 | 0.064 | 0.005 | −0.004 | 0.087 | |||
NAIC | 0.020 | 0.016 | 0.011 | 0.005 | −0.007 | 0.024 | |||
RH | −0.002 | 0.010 | −0.011 | −0.004 | −0.007 | −0.013 | |||
Coniferous forest | T | 0.442 | 0.408 | 0.089 | −0.021 | 0.476 | 0.694 | ||
WS | 0.079 | 0.038 | 0.089 | −0.006 | 0.121 | ||||
RH | −0.003 | 0.011 | −0.021 | −0.006 | −0.016 | ||||
Coniferous and broad-leaved mixed forest | T | 0.500 | 0.457 | 0.102 | −0.017 | 0.544 | 0.643 | ||
WS | 0.088 | 0.040 | 0.102 | −0.006 | 0.136 | ||||
RH | −0.001 | 0.010 | −0.017 | −0.006 | −0.013 | ||||
Non-forest land | T | 0.630 | 0.653 | −0.044 | 0.608 | 0.615 | |||
WS | −0.009 | 0.013 | −0.044 | −0.031 |
Vegetation Types | Seasons | Topics | |||
---|---|---|---|---|---|
Effect of Vegetation Types on AOC | Temporal Variation Pattern of AOC | Effect of Environmental Factors on AOC | |||
Diurnal Variation | Seasonal Variation | ||||
Broad-leaved forest | Spring | ++ | noon > afternoon > morning | +++ | T > WS > NAIC > RH |
Summer | noon > afternoon > morning | ++++ | |||
Autumn | noon > morning > afternoon | ++ | |||
Winter | noon > afternoon > morning | + | |||
Coniferous forest | Spring | +++ | noon > afternoon > morning | +++ | T > WS > RH |
Summer | noon > afternoon > morning | ++++ | |||
Autumn | noon > morning > afternoon | ++ | |||
Winter | noon > afternoon > morning | + | |||
Coniferous and broad-leaved mixed forest | Spring | ++++ | noon > afternoon > morning | +++ | T > WS > RH |
Summer | noon > afternoon > morning | ++++ | |||
Autumn | noon > morning > afternoon | ++ | |||
Winter | noon > afternoon > morning | + | |||
Non-forest land | Spring | + | noon > afternoon > morning | +++ | T > WS |
Summer | noon > afternoon > morning | ++++ | |||
Autumn | noon > morning > afternoon | ++ | |||
Winter | noon > afternoon > morning | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Li, J.; He, Q.; Qiu, Q.; Su, Y.; Lei, T.; Cui, G. Temporal Dynamics and Influencing Mechanism of Air Oxygen Content in Different Vegetation Types. Forests 2024, 15, 432. https://doi.org/10.3390/f15030432
Zhu S, Li J, He Q, Qiu Q, Su Y, Lei T, Cui G. Temporal Dynamics and Influencing Mechanism of Air Oxygen Content in Different Vegetation Types. Forests. 2024; 15(3):432. https://doi.org/10.3390/f15030432
Chicago/Turabian StyleZhu, Shuxin, Jiyue Li, Qian He, Quan Qiu, Yan Su, Ting Lei, and Guofa Cui. 2024. "Temporal Dynamics and Influencing Mechanism of Air Oxygen Content in Different Vegetation Types" Forests 15, no. 3: 432. https://doi.org/10.3390/f15030432
APA StyleZhu, S., Li, J., He, Q., Qiu, Q., Su, Y., Lei, T., & Cui, G. (2024). Temporal Dynamics and Influencing Mechanism of Air Oxygen Content in Different Vegetation Types. Forests, 15(3), 432. https://doi.org/10.3390/f15030432