Differentiating Historical Open Forests and Current Closed Forests of the Coastal Plain, Southeastern USA
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Surveys, Tree Composition, Historical Boundary, and the Squared Chord Distance
2.3. Historical Density
3. Results
3.1. Identification of the Historical Boundary between Pine and Oak-Pine Open Forests
3.2. Historical and Current Forests in the Central and Southern Coastal Plains
3.3. Historical and Current Forests in the Ecotonal Northern Coastal Plain
3.4. Comparison between Historical and Contemporary Forests with the Squared Chord Distance
4. Discussion
4.1. Longleaf Pine Open Forests in the Coastal Plain
4.2. Oak-Pine Ecotonal Forests in the Northern Coastal Plain
4.3. Comparisons among Forests through Boundaries and the Squared Chord Distance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, A.A.; Sankaran, M.; Ratnam, J. ‘Foresting’ the grassland: Historical management legacies in forest-grassland mosaics in southern India, and lessons for the conservation of tropical grassy biomes. Biol. Conserv. 2018, 224, 144–152. [Google Scholar] [CrossRef]
- Buisson, E.; Le Stradic, S.; Silveira, F.A.; Durigan, G.; Overbeck, G.E.; Fidelis, A.; Fernandes, G.W.; Bond, W.J.; Hermann, J.M.; Mahy, G.; et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. 2019, 94, 590–609. [Google Scholar] [CrossRef] [PubMed]
- Ratnam, J.; Tomlinson, K.W.; Rasquinha, D.N.; Sankaran, M. Savannahs of Asia: Antiquity, biogeography, and an uncertain future. Philos. Tran. R. Soc. B 2016, 371, 20150305. [Google Scholar] [CrossRef] [PubMed]
- Komarek, R. A discussion of wildlife management, fire and the wildlife landscape. Proc. Tall Timbers Fire Ecol. Conf. 1966, 5, 177–194. [Google Scholar]
- Osborne, J.L.; Williams, I.H.; Corbet, S.A. Bees, pollination and habitat change in the European community. Bee World 1991, 72, 99–116. [Google Scholar] [CrossRef]
- Kimmerer, R.W.; Lake, F.K. The role of indigenous burning in land management. J. For. 2001, 99, 36–41. [Google Scholar]
- Blackstock, M.D.; McAllister, R. First Nations perspectives on the grasslands of the interior of British Columbia. J. Ecol. Anthropol. 2004, 8, 24–46. [Google Scholar] [CrossRef]
- Baker, A.G.; Catterall, C.; Benkendorff, K.; Law, B. No room to move: Bat response to rainforest expansion into long-unburnt eucalypt forest. Pac. Conserv. Biol. 2020, 27, 13–26. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Mayle, F.E.; Langstroth, R.P.; Fisher, R.A.; Meir, P. Long-term forest–Savannah dynamics in the Bolivian Amazon: Implications for conservation. Philos. Tran. R. Soc. B 2007, 362, 291–307. [Google Scholar] [CrossRef]
- Bonnesoeur, V.; Locatelli, B.; Guariguata, M.R.; Ochoa-Tocachi, B.F.; Vanacker, V.; Mao, Z.; Stokes, A.; Mathez-Stiefel, S.L. Impacts of forests and forestation on hydrological services in the Andes: A systematic review. For. Ecol. Manag. 2019, 433, 569–584. [Google Scholar] [CrossRef]
- Lyons, K.G.; Török, P.; Hermann, J.M.; Kiehl, K.; Kirmer, A.; Kollmann, J.; Overbeck, G.E.; Tischew, S.; Allen, E.B.; Bakker, J.D.; et al. Challenges and opportunities for grassland restoration: A global perspective of best practices in the era of climate change. Glob. Ecol. Conserv. 2023, 46, e02612. [Google Scholar] [CrossRef]
- Fairhead, J.; Leach, M. False forest history, complicit social analysis: Rethinking some West African environmental narratives. World Dev. 1995, 23, 1023–1035. [Google Scholar] [CrossRef]
- Wahlenberg, W.G. Longleaf Pine; Charles Lathrop Pack Forestry Foundation: Washington, DC, USA, 1946; Available online: https://www.biodiversitylibrary.org/bibliography/172744 (accessed on 16 February 2023).
- Frost, C.C. Four centuries of changing landscape in the longleaf pine ecosystem. In Proceedings of the 18th Tall Timbers Fire Ecology Conference: The Longleaf Pine Ecosystem, Ecology, Restoration and Management, Tallahassee, FL, USA, 30 May–2 June 1991; Hermann, S.M., Ed.; Tall Timbers Research Station: Tallahassee, FL, USA, 1993; pp. 17–43. Available online: http://www.talltimbers.org/wp-content/uploads/2014/03/Frost1993_op.pdf (accessed on 18 November 2023).
- Hanberry, B.B.; Stober, J.M.; Bragg, D.C. Documenting two centuries of change in longleaf pine (Pinus palustris) forests of the Coastal Plain Province, southeastern USA. Forests 2023, 14, 1938. [Google Scholar] [CrossRef]
- Sargent, C.S. Report on the Forests of North America (Exclusive of Mexico); 10th US Census Report; University of California Libraries: Washington, DC, USA, 1884; Volume 9. [Google Scholar]
- Mohr, C.T.; Roth, F. The Timber Pines of the Southern United States; Government Printing Office: Washington, DC, USA, 1897.
- Hanberry, B.B.; Coursey, K.; Kush, J.S. Structure and composition of historical longleaf pine ecosystems in Mississippi, USA. Hum. Ecol. 2018, 46, 241–248. [Google Scholar] [CrossRef]
- Landers, J.L.; van Lear, D.H.; Boyer, W.D. The longleaf pine forests of the southeast: Requiem or renaissance? J. For. 1995, 93, 39–44. [Google Scholar]
- Peet, R. Ecological classification of longleaf pine woodlands. In The Longleaf Pine Ecosystem; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 51–93. [Google Scholar] [CrossRef]
- Noss, R.F.; Platt, W.J.; Sorrie, B.A.; Weakley, A.S.; Means, D.B.; Costanza, J.; Peet, R.K. How global biodiversity hotspots may go unrecognized: Lessons from the North American Coastal Plain. Divers. Distrib. 2015, 21, 236–244. [Google Scholar] [CrossRef]
- Darracq, A.K.; Boone, I.W.W.; McCleery, R.A. Burn regime matters: A review of the effects of prescribed fire on vertebrates in the longleaf pine ecosystem. For. Ecol. Manag. 2016, 378, 214–221. [Google Scholar] [CrossRef]
- Semenova-Nelsen, T.A.; Platt, W.J.; Patterson, T.R.; Huffman, J.; Sikes, B.A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol. 2019, 224, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Hanberry, B.B.; Noss, R.F. Locating potential historical fire-maintained grasslands of the eastern United States based on topography and wind speed. Ecosphere 2022, 13, e4098. [Google Scholar] [CrossRef]
- Heyward, F. The relation of fire to stand composition of longleaf pine forests. Ecology 1939, 20, 287–304. [Google Scholar] [CrossRef]
- Garren, K.H. Effects of fire on vegetation of the southeastern United States. Bot. Rev. 1943, 9, 617–654. [Google Scholar] [CrossRef]
- Bailey, A.D.; Mickler, R.; Frost, C. Pre settlement fire regime and vegetation mapping in the southeastern Coastal Plain forest ecosystems. In Proceedings of the Fire Environment—Innovations, Management, and Policy, Destin, FL, USA, 16–30 March 2007; Butler, B.W., Cook, W., Eds.; USDA Forest: Washington, DC, USA, 2007; pp. 275–286, Service RMRS-P-46CD. Available online: https://www.fs.usda.gov/research/treesearch/28568 (accessed on 20 November 2023).
- Stambaugh, M.C.; Guyette, R.P.; Marschall, J.M. Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. J. Veg. Sci. 2011, 22, 1094–1104. [Google Scholar] [CrossRef]
- Rother, M.T.; Huffman, J.M.; Guiterman, C.H.; Robertson, K.M.; Jones, N. A history of recurrent, low-severity fire without fire exclusion in southeastern pine savannas, USA. For. Ecol. Manag. 2020, 475, 118406. [Google Scholar] [CrossRef]
- Fowler, C.; Konopik, E. The history of fire in the southeastern United States. Hum. Ecol. Rev. 2007, 14, 165–176. [Google Scholar]
- Coughlan, M.R.; Nelson, D.R. Influences of Native American land use on the colonial Euro-American settlement of the South Carolina Piedmont. PLoS ONE 2018, 13, e0195036. [Google Scholar] [CrossRef] [PubMed]
- McNab, W.H.; Cleland, D.T.; Freeouf, J.A.; Keys, J.E., Jr.; Nowacki, G.J.; Carpenter, C.A. Descriptions of Ecological Subregions: Sections of the Coterminous United States; Technical Report for Lockheed; USDA Forest Service General: Atlanta, GA, USA, 2007; p. WO-76B. [CrossRef]
- Crocker, T.C. Longleaf Pine: A History of Man and a Forest; USDA Forest Service: Atlanta, GA, USA, 1987. Available online: www.ForgottenBooks.com (accessed on 18 October 2022).
- Hickman, N.W. Mississippi Harvest: Lumbering in the Longleaf Pine Belt, 1840–1915; University of Mississippi Press: Jackson, MS, USA, 1962. [Google Scholar]
- Williams, M. Americans and Their Forests: A Historical Geography; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Plummer, G.L. 18th century forests in Georgia. Bull. Ga. Acad. Sci. 1975, 33, 1–19. [Google Scholar]
- Black, B.A.; Foster, H.T.; Abrams, M.D. Combining environmentally dependent and independent analyses of witness tree data in east-central Alabama. Can. J. For. Res. 2002, 32, 2060–2075. [Google Scholar] [CrossRef]
- Mattoon, W.R. Life History of Shortleaf Pine; Department of Agriculture: Washington, DC, USA, 1915. [Google Scholar]
- Delcourt, H.P. Presettlement vegetation of the North Red River Land District, Louisiana, USA. Castanea 1976, 41, 122–139. [Google Scholar]
- Bragg, D.C.; Bragg, H.A. Historical and contemporary environmental context for the Saline-Fifteen site (3BR119). Ark. Archeol. 2016, 55, 1–30. [Google Scholar]
- Hanberry, B.B.; Brzuszek, R.F.; Foster, R.F.; Schauwecker, T.J. Recalling open growth forests in the Southeastern Mixed Forest province of the United States. Ecoscience 2019, 26, 11–22. [Google Scholar] [CrossRef]
- Schafale, M.P.; Harcombe, P.A. Presettlement vegetation of Hardin County, Texas. Am. Midl. Nat. 1983, 109, 355–366. [Google Scholar] [CrossRef]
- Predmore, S.A.; McDaniel, J.; Kush, J.S. Presettlement forests and fire in southern Alabama. Can. J. For. Res. 2007, 37, 1723–1736. [Google Scholar] [CrossRef]
- Mississippi State University [MSU] Extension. Forest Soils of Mississippi; Mississippi State University: Mississippi State, MS, USA, 2023; Available online: https://Extension.msstate.edu/publications/forest-soils-mississippi (accessed on 12 November 2023).
- PRISM Climate Group. 2021. Oregon State University. Available online: https://prism.oregonstate.edu (accessed on 22 November 2023).
- White, C.A. A History of the Rectangular Survey System; US Department of the Interior Bureau of Land Management: Washington, DC, USA, 1983. Available online: https://www.blm.gov//sites/blm.gov/files/histrect.pdf (accessed on 4 June 2023).
- USDI Bureau of Land Management. General Land Office Records. 2022. Available online: https://glorecords.blm.gov/search/default.aspx?searchTabIndex=0&searchByTypeIndex=1 (accessed on 31 May 2023).
- Powell, D.C. Using Government Land Office Survey Notes to Characterize Historical Vegetation Conditions for the Umatilla National Forest. 2008. Available online: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb25413735.pdf (accessed on 1 December 2023).
- White, C.A. Durability of Bearing Trees. US Department of the Interior, Bureau of Land Management, Cadastral Survey Training Staff. 2023. Available online: https://www.ntc.blm.gov/krc/uploads/538/Durability_of_Bearing_Tree.pdf (accessed on 20 October 2023).
- Bechtold, W.A.; Patterson, P.L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures; Technical Report for USDA Forest Service; Southern Research Station: Asheville, NC, USA, 2005. [CrossRef]
- USDA Forest Inventory and Analysis. FIA DataMart. 2021. Available online: https://www.fia.fs.usda.gov/tools-data/ (accessed on 18 October 2023).
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- The Nature Conservancy. Terrestrial Ecoregions. 2019. Available online: https://geospatial.tnc.org/datasets/b1636d640ede4d6ca8f5e369f2dc368b/about (accessed on 24 January 2024).
- Overpeck, J.T.; Webb, T.I.; Prentice, I.C. Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs. Quat. Res. 1985, 23, 87–108. [Google Scholar] [CrossRef]
- Gavin, D.G.; Oswald, W.W.; Wahl, E.R.; Williams, J.W. A statistical approach to evaluating distance metrics and analog assignments for pollen records. Quat. Res. 2003, 60, 356–367. [Google Scholar] [CrossRef]
- Hanberry, B.B.; Fraver, S.; He, H.S.; Yang, J.; Dey, D.D.; Palik, B.J. Spatial pattern corrections and sample sizes for forest density estimates of historical tree surveys. Landsc. Ecol. 2011, 26, 59–68. [Google Scholar] [CrossRef]
- Morisita, M. A new method for the estimation of density by the spacing method applicable to non-randomly distributed populations. Physiol. Ecol. 1957, 7, 134–144, Translation by U.S. Department of Agriculture, Division of Range Management. Available online: http://people.hws.edu/mitchell/Morisita1957.pdf (accessed on 27 June 2021).
- Hanberry, B.B.; Yang, J.; Kabrick, J.M.; Hong, H.H. Adjusting forest density estimates for surveyor bias in historical tree surveys. Am. Midl. Nat. 2012, 167, 285–306. [Google Scholar] [CrossRef]
- Hanberry, B.B.; Jones-Farrand, D.T.; Kabrick, J.M. Historical open forest ecosystems in the Missouri Ozarks: Reconstruction and restoration targets. Ecol. Res. 2014, 32, 407–416. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions of the coterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Niinemets, Ü.; Valladares, F. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol. Monogr. 2006, 76, 521–547. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 national land cover database. ISPRS J. Photogramm. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Dey, D.C.; Kabrick, J.M.; Schweitzer, C.J. Silviculture to restore oak savannas and woodlands. J. Forest 2017, 115, 202–211. [Google Scholar] [CrossRef]
- Moura, L.C.; Scariot, A.O.; Schmidt, I.B.; Beatty, R.; Russell-Smith, J. The legacy of colonial fire management policies on traditional livelihoods and ecological sustainability in savannas: Impacts, consequences, new directions. J. Enviro Manag. 2019, 232, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G.F. The Longleaf Pine in Virgin Forest; John Wiley & Sons: New York, NY, USA, 1907. [Google Scholar]
- Stoddard, H.L. Use of fire in pine forests and game lands of the deep southeast. In Proceedings of the Tall Timbers Fire Ecology Conference, Tallahassee, FL, USA, 1 January 1962; Tall Timbers Research Station: Tallahassee, FL, USA, 1962; Volume 1, pp. 32–42. [Google Scholar]
- Keeley, J.E. Ecology and evolution of pine life histories. Ann. For. Sci. 2012, 69, 445–453. [Google Scholar] [CrossRef]
- Schwartz, M.W. Natural distribution and abundance of forest species and communities in northern Florida. Ecology 1994, 75, 687–705. [Google Scholar] [CrossRef]
- Fern, R.R.; Stober, J.M.; Morris, M.A.; Rutledge, B.T. Native American landscape modification in pre-settlement south-west Georgia. Landsc. Hist. 2020, 41, 57–68. [Google Scholar] [CrossRef]
- Monette, R.; Ware, S. Early forest succession in the Virginia Coastal Plain. Bull. Torrey Bot. Club 1983, 110, 80–86. [Google Scholar] [CrossRef]
- Bartram, W. Travels of William Bartram; Cosmo Classics: New York, NY, USA, 2007. [Google Scholar]
- Longleaf Alliance. 2024. Life Stages. Available online: https://longleafalliance.org/what-is-longleaf/the-tree/life-stages/#:~:text=Longleaf%20pine%20is%20the%20longest,of%20450%20years%20old%20documented (accessed on 14 January 2024).
- Hiers, J.; Walters, R.; Mitchell, R.; Varner, M.; Conner, L.; Blanc, L.A.; Stowe, J.P. Ecological value of retaining pyrophytic oaks in longleaf pine ecosystems. J. Wildl. Manag. 2014, 78, 383–393. Available online: https://www.jstor.org/stable/43188158 (accessed on 17 November 2023). [CrossRef]
- Varner, J.M.; Kane, J.M.; Hiers, J.K.; Kreye, J.K.; Veldman, J.W. Suites of fire-adapted traits of oaks in the southeastern USA: Multiple strategies for persistence. Fire Ecol. 2016, 12, 48–64. [Google Scholar] [CrossRef]
- Babl, E.; Alexander, H.D.; Siegert, C.M.; Willis, J.L. Could canopy, bark, and leaf litter traits of encroaching non-oak species influence future flammability of upland oak forests? For. Ecol. Manag. 2020, 458, 117731. [Google Scholar] [CrossRef]
- Smith, H.C. Carya tomentosa (Poir.) Nutt. mockernut hickory. In Silvics of North America; Burns, R.M., Honkala, B.H., Eds.; USDA-Forest Service: Washington, DC, USA, 1990; pp. 226–232. Available online: https://www.fs.usda.gov/research/treesearch/1548 (accessed on 1 December 2023).
- Smalley, G.W. Carya glabra (Mill.) Sweet pignut hickory. In Silvics of North America; Burns, R.M., Honkala, B.H., Eds.; USDA-Forest Service: Washington, DC, USA, 1990; pp. 198–203. [Google Scholar]
- Smith, W.B.; Shifley, S.R. Diameter, Growth, Survival and Volume Estimates for Trees in Indiana and Illinois; USDA Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1984.
- Kormanik, P.P.; Brown, C.L. Root buds and the development of root suckers in sweet gum. For. Sci. 1967, 13, 338–345. [Google Scholar]
- Engle, L.G. Yellow-Poplar Seedfall Pattern; Station Note No. 143; U.S. Department of Agriculture, Forest Service, Central States Forest Experiment Station: Columbus, OH, USA, 1960.
- Clark, F.B.; Boyce, G.C. Yellow-poplar seed remains viable in the forest litter. J. For. 1964, 62, 564. [Google Scholar] [CrossRef]
- Auclair, A.N. Sprouting response in Prunus serotina Ehrh: Multivariate analysis of site, forest structure and growth rate relationships. Am. Midl. Nat. 1975, 94, 72–87. [Google Scholar] [CrossRef]
- Allard, H.A. Second-year sprouts of black cherry, Prunus serotina, fruiting. Castanea 1944, 9, 117. Available online: https://www.jstore.org/4031423 (accessed on 1 December 2022).
Historical | Contemporary | |||||
---|---|---|---|---|---|---|
Species Group | Count | % | Species | Scientific Name | Count | % |
pine (longleaf pine) | 14,085 | 87.5 | 55.5 | |||
slash pine (planted) | Pinus elliottii | 1194 | 22.9 | |||
loblolly pine (planted) | Pinus taeda | 1139 | 21.9 | |||
longleaf pine | Pinus palustris | 530 | 10.2 | |||
shortleaf pine | Pinus echinata | 21 | 0.4 | |||
spruce pine | Pinus glabra | 9 | 0.2 | |||
bay | 638 | 4.0 | 9.8 | |||
(broadleaf evergreen) | sweetbay | Magnolia virginiana | 430 | 8.3 | ||
southern magnolia | Magnolia grandiflora | 41 | 0.8 | |||
redbay | Persea borbonia | 39 | 0.7 | |||
oak | 425 | 2.6 | 9.8 | |||
water oak | Quercus nigra | 259 | 5.0 | |||
laurel oak | Quercus laurifolia | 82 | 1.6 | |||
post oak | Quercus stellata | 50 | 1.0 | |||
southern red oak | Quercus falcata | 46 | 0.9 | |||
white oak | Quercus alba | 36 | 0.7 | |||
blackgum | 200 | 1.2 | blackgum | Nyssa sylvatica | 424 | 8.1 |
cypress-tupelo | 117 | 0.7 | 5.5 | |||
swamp tupelo | Nyssa biflora | 189 | 3.6 | |||
pondcypress | Taxodium ascendens | 53 | 1.0 | |||
baldcypress | Taxodium distichum | 44 | 0.8 | |||
holly | 90 | 0.6 | American holly | Ilex opaca | 63 | 1.2 |
sweetgum | 80 | 0.5 | sweetgum | Liquidambar styraciflua | 128 | 2.5 |
maple | 65 | 0.4 | red maple | Acer rubrum | 165 | 3.2 |
poplar | 16 | 0.1 | yellow-poplar | Liriodendron tulipifera | 119 | 2.3 |
Total | 15,716 | 97.6 | 5061 | 97.9 |
Landscape | Historical Densities | Current Densities | Historical | Current | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Unadjusted | Low | Mod Low | Moderate | Mod High | Mean | Low | High | Diameter (cm) | ||
Coastal Plain | 197 | 168 | 189 | 228 | 268 | 336 | 308 | 364 | 42.9 | 22.8 |
Northern Coastal Plain | 150 | 144 | 162 | 183 | 204 | 400 | 352 | 447 | 38.9 | 23.2 |
Historical | Contemporary | |||||
---|---|---|---|---|---|---|
Species Group | Count | % | Species | Scientific Name | Count | % |
pine (shortleaf pine) | 4419 | 46.7 | 55.1 | |||
loblolly pine (planted) | Pinus taeda | 1369 | 51.6 | |||
shortleaf pine (planted) | Pinus echinata | 48 | 1.8 | |||
spruce pine | Pinus glabra | 28 | 1.1 | |||
longleaf pine | Pinus palustris | 13 | 0.5 | |||
slash pine | Pinus elliottii | 5 | 0.2 | |||
oak | 3029 | 32.0 | 13.2 | |||
water oak | Quercus nigra | 165 | 6.2 | |||
white oak | Quercus alba | 78 | 2.9 | |||
southern red oak | Quercus falcata | 39 | 1.5 | |||
post oak | Quercus stellata | 27 | 1.0 | |||
cherrybark oak | Quercus pagoda | 17 | 0.6 | |||
hickory | 567 | 6.0 | 1.3 | |||
mockernut hickory | Carya alba | 13 | 0.5 | |||
pignut hickory | Carya glabra | 11 | 0.4 | |||
holly | 210 | 2.2 | American holly | Ilex opaca | 5 | 0.2 |
blackgum | 177 | 1.9 | blackgum | Nyssa sylvatica | 67 | 2.5 |
beech | 153 | 1.6 | American beech | Fagus grandifolia | 10 | 0.4 |
sweetgum | 140 | 1.5 | sweetgum | Liquidambar styraciflua | 287 | 10.8 |
maple | 130 | 1.4 | red maple | Acer rubrum | 58 | 2.2 |
dogwood | 105 | 1.1 | flowering dogwood | Cornus florida | 12 | 0.5 |
bay | 94 | 1.0 | 1.9 | |||
(broadleaf evergreen) | sweetbay | Magnolia virginiana | 41 | 1.5 | ||
chestnut | 98 | 1.0 | Castanea | 0 | 0.0 | |
ironwood | 47 | 0.5 | 1.0 | |||
American hornbeam | Carpinus caroliniana | 24 | 0.9 | |||
eastern hophornbeam | Ostrya virginiana | 3 | 0.1 | |||
elm | 37 | 0.4 | 1.6 | |||
winged elm | Ulmus alata | 28 | 1.1 | |||
American elm | Ulmus americana | 13 | 0.5 | |||
poplar | 35 | 0.4 | yellow-poplar | Liriodendron tulipifera | 92 | 3.5 |
sourwood | 33 | 0.3 | sourwood | Oxydendrum arboreum | 20 | 0.8 |
cherry | 9 | 0.1 | black cherry | Prunus serotina | 67 | 2.5 |
N/A | Chinese tallowtree | Triadica sebifera | 19 | 0.7 | ||
Total | 9283 | 98.2 | 2559 | 98.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatina, R.; Hanberry, B.B.; Willis, J.L. Differentiating Historical Open Forests and Current Closed Forests of the Coastal Plain, Southeastern USA. Forests 2024, 15, 532. https://doi.org/10.3390/f15030532
Tatina R, Hanberry BB, Willis JL. Differentiating Historical Open Forests and Current Closed Forests of the Coastal Plain, Southeastern USA. Forests. 2024; 15(3):532. https://doi.org/10.3390/f15030532
Chicago/Turabian StyleTatina, Robert, Brice B. Hanberry, and John L. Willis. 2024. "Differentiating Historical Open Forests and Current Closed Forests of the Coastal Plain, Southeastern USA" Forests 15, no. 3: 532. https://doi.org/10.3390/f15030532
APA StyleTatina, R., Hanberry, B. B., & Willis, J. L. (2024). Differentiating Historical Open Forests and Current Closed Forests of the Coastal Plain, Southeastern USA. Forests, 15(3), 532. https://doi.org/10.3390/f15030532